Package 'diffcor'

May 3, 2024

Title Fisher's z-Tests Concerning Differences Between Correlations

Type Package

Version 0.8.3

Depends R ($>= 4.3.0$), MASS
Date 2024-05-02
Author Christian Blötner
Maintainer Christian Blötner <c.bloetner@gmail.com></c.bloetner@gmail.com>
Description Computations of Fisher's z-tests concerning different kinds of correlation differences. Additionally, approaches to estimating statistical power via Monte Carlo simulations are implemented. Important to note, the Pearson correlation coefficient is sensitive to linear association, but also to a host of statistical issues such as univariate and bivariate outliers, range restrictions, and heteroscedasticity (e.g., Duncan & Layard, 1973 <doi:10.1093 60.3.551="" biomet="">; Wilcox, 2013 <doi:10.1016 c2010-0-67044-1="">). Thus, every power analysis requires that specific statistical prerequisites are fulfilled and can be invalid if the prerequisites do not hold.</doi:10.1016></doi:10.1093>
License GPL (>= 2)
Encoding UTF-8
NeedsCompilation no
Repository CRAN
Date/Publication 2024-05-03 12:30:13 UTC
R topics documented: diffcor.dep 2 diffcor.one 3 diffcor.two 4 diffpwr.dep 6 diffpwr.one 8 diffpwr.two 10 visual_mc 12
Index 14

2 diffcor.dep

diffcor.dep	Fisher's z-Tests of dependent correlations	
-------------	--	--

Description

Tests if the correlation between two variables (r12) differs from the correlation between the first and a third one (r13), given the intercorrelation of the compared constructs (r23). All correlations are automatically transformed with the Fisher z-transformation prior to computations. The output provides the compared correlations, test statistic as z-score, and p-values.

Usage

```
diffcor.dep(r12, r13, r23, n, cor.names = NULL,
alternative = c("one.sided", "two.sided"), digit = 3)
```

Arguments

r12	Correlation between the criterion with which both competing variables are correlated and the first of the two competing variables.
r13	Correlation between the criterion with which both competing variables are correlated and the second of the two competing variables.
r23	Intercorrelation between the two competing variables.
n	Sample size in which the observed effect was found
cor.names	OPTIONAL, label for the correlation. DEFAULT is NULL
alternative	A character string specifying if you wish to test one-sided or two-sided differences
digit	Number of digits in the output for all parameters, DEFAULT = 3

Value

r12	Correlation between the criterion with which both competing variables are correlated and the first of the two competing variables.
r13	Correlation between the criterion with which both competing variables are correlated and the second of the two competing variables.
r23	Intercorrelation between the two competing variables.
Z	Test statistic for correlation difference in units of z distribution
р	p value for one- or two-sided testing, depending on alternative = c("one.sided", "two.sided)

Author(s)

Christian Blötner <c.bloetner@gmail.com>

diffcor.one 3

References

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Lawrence Erlbaum

Eid, M., Gollwitzer, M., & Schmitt, M. (2015). Statistik und Forschungsmethoden (4.Auflage) [Statistics and research methods (4th ed.)]. Beltz.

Steiger, J. H. (1980). Tests for comparing elements of a correlation matrix. Psychological Bulletin, 87, 245-251.

Examples

```
diffcor.dep(r12 = .76, r13 = .70, r23 = .50, n = 271, digit = 4, cor.names = NULL, alternative = "two.sided")
```

diffcor.one

Fisher's z-test of difference between an empirical and a hypothesized correlation

Description

The function tests whether an observed correlation differs from an expected one, for example, in construct validation. All correlations are automatically transformed with the Fisher z-transformation prior to computations. The output provides the compared correlations, a z-score, a p-value, a confidence interval, and the effect size Cohens q. According to Cohen (1988), q = |.10|, |.30| and |.50| are considered small, moderate, and large differences, respectively.

Usage

```
diffcor.one(emp.r, hypo.r, n, alpha = .05, cor.names = NULL,
alternative = c("one.sided", "two.sided"), digit = 3)
```

Arguments

emp.r	Empirically observed correlation
hypo.r	Hypothesized correlation which shall be tested
n	Sample size in which the observed effect was found
alpha	Likelihood of Type I error, DEFAULT = .05
cor.names	OPTIONAL, label for the correlation (e.g., "IQ-performance"). DEFAULT is $\ensuremath{\text{NULL}}$
digit	Number of digits in the output for all parameters, DEFAULT = 3
alternative	A character string specifying if you wish to test one-sided or two-sided differences

4 diffcor.two

Value

r_exp	Vector of the expected correlations
r_obs	Vector of the empirically observed correlations
LL	Lower limit of the confidence interval of the empirical correlation, given the specified alpha level, DEFAULT = 95 percent
UL	Upper limit of the confidence interval of the empirical correlation, given the specified alpha level, DEFAULT = 95 percent
z	Test statistic for correlation difference in units of z distribution
p	p value for one- or two-sided testing, depending on alternative = c ("one.sided", "two.sided)
Cohen_q	Effect size measure for differences of independent correlations

Author(s)

Christian Blötner < c.bloetner@gmail.com>

References

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Lawrence Erlbaum.

Eid, M., Gollwitzer, M., & Schmitt, M. (2015). Statistik und Forschungsmethoden (4.Auflage) [Statistics and research methods (4th ed.)]. Beltz.

Steiger, J. H. (1980). Tests for comparing elements of a correlation matrix. Psychological Bulletin, 87, 245-251.

Examples

```
diffcor.one(c(.76, .53, -.32), c(.70, .35, -.40),
  c(225, 250, 210),
  cor.names = c("a-b", "c-d", "e-f"), digit = 2, alternative = "one.sided")
```

 $\begin{tabular}{ll} \it diffcor.two &\it Fisher's z-Tests for differences of correlations in two independent samples \\ \end{tabular}$

Description

Tests whether the correlation between two variables differs across two independent studies/samples. The correlations are automatically transformed with the Fisher z-transformation prior to computations. The output provides the compared correlations, test statistic as z-score, p-values, confidence intervals of the empirical correlations, and the effect size Cohens q. According to Cohen (1988), q = 1.101, 1.301 and 1.501 are considered small, moderate, and large differences, respectively.

diffcor.two 5

Usage

```
diffcor.two(r1, r2, n1, n2, alpha = .05, cor.names = NULL,
alternative = c("one.sided", "two.sided"), digit = 3)
```

Arguments

r1	Correlation coefficient in first sample
r2	Correlation coefficient in second sample
n1	First sample size
n2	Second sample size
alpha	Likelihood of Type I error, DEFAULT = .05
cor.names	OPTIONAL, label for the correlation (e.g., "IQ-performance"). DEFAULT is NULL
digit	Number of digits in the output for all parameters, DEFAULT = 3
alternative	A character string specifying if you wish to test one-sided or two-sided differences

Value

r1	Vector of the empirically observed correlations in the first sample
r2	Vector of the empirically observed correlations in the second sample
LL1	Lower limit of the confidence interval of the first empirical correlation, given the specified alpha level, DEFAULT = 95 percent
UL1	Upper limit of the confidence interval of the first empirical correlation, given the specified alpha level, DEFAULT = 95 percent
LL2	Lower limit of the confidence interval of the second empirical correlation, given the specified alpha level, DEFAULT = 95 percent
UL2	Upper limit of the confidence interval of the second empirical correlation, given the specified alpha level, DEFAULT = 95 percent
Z	Test statistic for correlation difference in units of z distribution
p	p value for one- or two-sided testing, depending on alternative = c("one.sided", "two.sided)
Cohen_q	Effect size measure for differences of independent correlations

Author(s)

Christian Blötner < c.bloetner@gmail.com>

References

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Lawrence Erlbaum.

Eid, M., Gollwitzer, M., & Schmitt, M. (2015). Statistik und Forschungsmethoden (4.Auflage) [Statistics and research methods (4th ed.)]. Beltz.

Steiger, J. H. (1980). Tests for comparing elements of a correlation matrix. Psychological Bulletin, 87, 245-251.

6 diffpwr.dep

Examples

```
diffcor.two(r1 = c(.39, .52, .22),
    r2 = c(.29, .44, .12),
    n1 = c(66, 66, 66), n2 = c(96, 96, 96), alpha = .01,
    cor.names = c("a-b", "c-d", "e-f"), alternative = "one.sided")
```

diffpwr.dep

Monte Carlo Simulation for the correlation difference between dependent correlations

Description

Computation of a Monte Carlo simulation to estimate the statistical power of the comparison between the correlations of a variable with two competing variables that are also correlated with each other.

Usage

Arguments

n	Sample size to be tested in the Monte Carlo simulation.
rho12	Assumed population correlation between the criterion with which both competing variables are correlated and the first of the two competing variables.
rho13	Assumed population correlation between the criterion with which both competing variables are correlated and the second of the two competing variables.
rho23	Assumed population correlation between the two competing variables.
alpha	Type I error. Default is .05.
n.samples	Number of samples generated in the Monte Carlo simulation. The recommended minimum is 1,000 iterations, which is also the default.
seed	To make the results reproducible, it is recommended to set a random seed.

Details

Depending on the number of generated samples (n.samples), correlation coefficients simulated. For each simulated sample, it is checked whether the correlations r12 and r13 differ, given the correlation r23. The ratio of simulated z-tests of the correlation difference tests exceeding the critical z-value, given the intended alpha-level and sample size, equals the achieved statistical

diffpwr.dep 7

power(see Muthén & Muthén, 2002 <doi:10.1207/S15328007SEM0904_8>; Robert & Casella, 2010 <doi:10.1007/978-1-4419-1576-4>, for overviews of the Monte Carlo method).

It should be noted that the Pearson correlation coefficient is sensitive to linear association, but also to a host of statistical issues such as univariate and bivariate outliers, range restrictions, and heteroscedasticity (e.g., Duncan & Layard, 1973 <doi:10.1093/BIOMET/60.3.551>; Wilcox, 2013 <doi:10.1016/C2010-0-67044-1>). Thus, every power analysis requires that specific statistical prerequisites are fulfilled and can be invalid with regard to the actual data if the prerequisites do not hold, potentially biasing Type I error rates.

Value

As dataframe with the following parameters

rho12	Assumed population correlation between the criterion with which both competing variables are correlated and the first of the two competing variables.
cov12	Coverage. Indicates the ratio of simulated confidence intervals including the assumed effect size rho12.
bias12_M	Difference between the mean of the distribution of the simulated correlations and rho12, divided by rho12.
bias12_Md	Difference between the median of the distribution of the simulated correlations and rho12, divided by rho12.
rho13	Assumed population correlation between the criterion with which both competing variables are correlated and the second of the two competing variables.
cov13	Coverage. Indicates the ratio of simulated confidence intervals including the assumed effect size rho13.
bias13_M	Difference between the mean of the distribution of the simulated correlations and rho13, divided by rho13.
bias13_Md	Difference between the median of the distribution of the simulated correlations and rho13, divided by rho13.
rho23	Assumed population correlation between the two competing variables.
cov23	Coverage. Indicates the ratio of simulated confidence intervals including the assumed effect size rho23.
bias23_M	Difference between the mean of the distribution of the simulated correlations and rho23, divided by rho23.
bias23_Md	Difference between the median of the distribution of the simulated correlations and rho23, divided by rho23.
n	Sample size to be tested in the Monte Carlo simulation.
pwr	Statistical power as the ratio of simulated difference tests that yielded statistical significance.

Biases should be as close to zero as possible and coverage should be ideally between .91 and .98 (Muthén & Muthén, $2002 < 000:10.1207/S15328007SEM0904_8>$).

Author(s)

Christian Blötner < c.bloetner@gmail.com>

8 diffpwr.one

References

Duncan, G. T., & Layard, M. W. (1973). A Monte-Carlo study of asymptotically robust tests for correlation coefficients. Biometrika, 60, 551–558. https://doi.org/10.1093/BIOMET/60.3.551

Muthén, L. K., & Muthén, B. O. (2002). How to use a Monte Carlo study to decide on sample size and determine power. Structural Equation Modeling: A Multidisciplinary Journal, 9(4), 599–620. https://doi.org/10.1207/S15328007SEM0904_8

Robert, C., & Casella, G. (2010). Introducing Monte Carlo methods with R. Springer. https://doi.org/10.1007/978-1-4419-1576-4

Wilcox, R. (2013). Introduction to robust estimation and hypothesis testing. Elsevier. https://doi.org/10.1016/C2010-0-67044-1

Examples

diffpwr.one

Monte Carlo Simulation for the correlation difference between an expected and an observed correlation

Description

Computation of a Monte Carlo simulation to estimate the statistical power the correlation difference between an observed correlation coefficient and an a fixed value against which the correlation should be tested.

Usage

Arguments

n Sample size to be tested in the Monte Carlo simulation.

Assumed observed correlation.

rho Correlation coefficient against which to test (reflects the null hypothesis).

diffpwr.one 9

alpha Type I error. Default is .05.

n.samples Number of samples generated in the Monte Carlo simulation. The recommended

minimum is 1,000 iterations, which is also the default.

seed To make the results reproducible, it is recommended to set a random seed.

Details

Depending on the number of generated samples (n.samples), correlation coefficients of size r are simulated. Confidence intervals are constructed around the simulated correlation coefficients. For each simulated coefficient, it is then checked whether the hypothesized correlation cofficient (rho) falls within this interval. All correlations are automatically transformed with the Fisher z-transformation prior to computations. The ratio of simulated confidence intervals excluding the hypothesized coefficient equals the statistical power, given the intended alpha-level and sample size (see Robert & Casella, 2010 <doi:10.1007/978-1-4419-1576-4>, for an overview of the Monte Carlo method).

It should be noted that the Pearson correlation coefficient is sensitive to linear association, but also to a host of statistical issues such as univariate and bivariate outliers, range restrictions, and heteroscedasticity (e.g., Duncan & Layard, 1973 <doi:10.1093/BIOMET/60.3.551>; Wilcox, 2013 <doi:10.1016/C2010-0-67044-1>). Thus, every power analysis requires that specific statistical prerequisites are fulfilled and can be invalid with regard to the actual data if the prerequisites do not hold, potentially biasing Type I error rates.

Value

As dataframe with the following parameters

r Empirically observed correlation.

rho Correlation against which r should be tested.

n The sample size entered in the function.

cov Coverage. Indicates the ratio of simulated confidence intervals including the

assumed correlation r. Should be between .91 and .98 (Muthén & Muthén, 2002

<doi:10.1207/S15328007SEM0904 8>).

bias_M Difference between the mean of the distribution of the simulated correlations

and rho, divided by rho.

bias_Md Difference between the median of the distribution of the simulated correlations

and rho, divided by rho.

pwr Statistical power as the ratio of simulated confidence intervals excluding rho.

Author(s)

Christian Blötner < c.bloetner@gmail.com>

References

Duncan, G. T., & Layard, M. W. (1973). A Monte-Carlo study of asymptotically robust tests for correlation coefficients. Biometrika, 60, 551–558. https://doi.org/10.1093/BIOMET/60.3.551

10 diffpwr.two

Muthén, L. K., & Muthén, B. O. (2002). How to use a Monte Carlo study to decide on sample size and determine power. Structural Equation Modeling: A Multidisciplinary Journal, 9(4), 599–620. https://doi.org/10.1207/S15328007SEM0904_8

Robert, C., & Casella, G. (2010). Introducing Monte Carlo methods with R. Springer. https://doi.org/10.1007/978-1-4419-1576-4

Wilcox, R. (2013). Introduction to robust estimation and hypothesis testing. Elsevier. https://doi.org/10.1016/C2010-0-67044-1

Examples

diffpwr.two

Monte Carlo Simulation for the correlation difference between two correlations that were observed in two independent samples

Description

Computation of a Monte Carlo simulation to estimate the statistical power the correlation difference between the correlation coefficients detected in two indepdenent samples (e.g., original study and replication study).

Usage

Arguments

n1	Sample size to be tested in the Monte Carlo simulation for the first sample.
n2	Sample size to be tested in the Monte Carlo simulation for the second sample.
rho1	Assumed population correlation to be observed in the first sample.
rho2	Assumed population correlation to be observed in the second sample.
alpha	Type I error. Default is .05.
n.samples	Number of samples generated in the Monte Carlo simulation. The recommended minimum is 1,000 iterations, which is also the default.
seed	To make the results reproducible, a random seed is specified.

diffpwr.two 11

Details

Depending on the number of generated samples (n.samples), correlation coefficients are simulated. For each simulated pair of coefficients, it is then checked whether the confidence intervals (with given alpha level) of the correlations overlap. All correlations are automatically transformed with the Fisher z-transformation prior to computations. The ratio of simulated non- overlapping confidence intervals equals the statistical power, given the alpha-level and sample sizes (see Robert & Casella, 2010 <doi:10.1007/978-1-4419-1576-4>, for an overview of the Monte Carlo method).

It should be noted that the Pearson correlation coefficient is sensitive to linear association, but also to a host of statistical issues such as univariate and bivariate outliers, range restrictions, and heteroscedasticity (e.g., Duncan & Layard, 1973 <doi:10.1093/BIOMET/60.3.551>; Wilcox, 2013 <doi:10.1016/C2010-0-67044-1>). Thus, every power analysis requires that specific statistical prerequisites are fulfilled and can be invalid with regard to the actual data if the prerequisites do not hold, potentially biasing Type I error rates.

Value

As dataframe with the following parameters

rho1	Assumed population correlation to be observed in the first sample.
n1	Sample size of the first sample.
cov1	Coverage. Ratio of simulated confidence intervals including rho1.
bias1_M	Difference between the mean of the distribution of the simulated correlations and rho1, divided by rho1.
bias1_Md	Difference between the median of the distribution of the simulated correlations and rho1, divided by rho1.
rho2	Assumed population correlation to be observed in the second sample.
n2	The sample size of the second sample.
cov2	Coverage. Ratio of simulated confidence intervals including rho2.
bias2_M	Difference between the mean of the distribution of the simulated correlations and rho2, divided by rho2.
bias2_Md	Difference between the median of the distribution of the simulated correlations and rho2, divided by rho2.

Biases should be as close to zero as possible and coverage should be ideally between .91 and .98 (Muthén & Muthén, 2002 <doi:10.1207/S15328007SEM0904_8>).

Statistical power as the ratio of simulated non-verlapping confidence intervals.

Author(s)

pwr

Christian Blötner < c.bloetner@gmail.com>

References

Duncan, G. T., & Layard, M. W. (1973). A Monte-Carlo study of asymptotically robust tests for correlation coefficients. Biometrika, 60, 551–558. https://doi.org/10.1093/BIOMET/60.3.551

12 visual_mc

Muthén, L. K., & Muthén, B. O. (2002). How to use a Monte Carlo study to decide on sample size and determine power. Structural Equation Modeling: A Multidisciplinary Journal, 9(4), 599–620. https://doi.org/10.1207/S15328007SEM0904_8

Robert, C., & Casella, G. (2010). Introducing Monte Carlo methods with R. Springer. https://doi.org/10.1007/978-1-4419-1576-4

Wilcox, R. (2013). Introduction to robust estimation and hypothesis testing. Elsevier. https://doi.org/10.1016/C2010-0-67044-1

Examples

visual mc

Visualization of the simulated parameters

Description

To evaluate the quality of the Monte Carlo simulation beyond bias and coverage parameters (Muthén & Muthén, 2002), it can be helpful to also inspect the simulated parameters visually. To this end, visual_mc() can be used to visualize the simulated parameters (including corresponding confidence intervals) in relation to the targeted parameter.

Usage

Arguments

rho Targeted correlation coefficient of the simulation.

n An integer reflecting the sample size.

alpha Type I error. Default is .05.

n.intervals An integer reflecting the number of simulated parameters that should be visual-

ized in the graphic. Default is 100.

seed To make the results reproducible, a random seed is specified.

visual_mc 13

Value

A plot in which the targeted correlation coefficient is visualized with a dashed red line and the simulated correlation coefficients are visualized by black squares and confidence intervals (level depending on the specification made in the argument alpha).

Author(s)

Christian Blötner <c.bloetner@gmail.com>

References

Muthén, L. K., & Muthén, B. O. (2002). How to use a Monte Carlo study to decide on sample size and determine power. Structural Equation Modeling: A Multidisciplinary Journal, 9(4), 599–620. https://doi.org/10.1207/S15328007SEM0904_8

Examples

Index

```
* &htest
    diffcor.dep, 2
    \hbox{diffcor.one,}\, 3
    diffcor.two,4
    diffpwr.dep, 6
    diffpwr.one, 8
    {\tt diffpwr.two,}\, {\color{red}10}
*\ graphs
    visual_mc, 12
* utilities
    visual_mc, 12
diffcor.dep, 2
diffcor.one, 3
diffcor.two,4
diffpwr.dep, 6
diffpwr.one, 8
diffpwr.two, 10
visual_mc, 12
```