healthdb healthdb website

R-CMD-check Codecov test coverage CRAN status

The goal of ‘healthdb’ is to provide a set of tools for identifying diseases or events from healthcare database and preparing data for epidemiological studies. It features abilities that are not natively support by database, such as matching strings by ‘stringr’ style regular expression and using ‘LIKE’ operator with multiple patterns in a vector. Three types of functions are included: interactive functions – for customizing complex definitions; call building functions – for batch execution of simple definition; miscellaneous functions – for data wrangling, computing age and comorbidity index, etc.

The package is tested only on SQL Server and SQLite as we do not have access to other SQL dialects. Please report bugs if you encounter issues with other dialects.

Administrative health data are often stored on SQL database with strict security measures which may disable permission to write temporary tables. Writing queries without being able to cache intermediate results is challenging, especially when the data is too large to be downloaded from database into R (i.e., local memory) without some filtering process.

This package leverages ‘dbplyr’, particularly its ability to chain subqueries, in order to implement a common disease definition as a one-shot big query. Outputs are fully compatible with ‘dplyr’ functions.

Common disease definitions often are in the form of having n primary care/hospitalization/prescription records with some International Classification of Diseases (ICD) codes within some time span. See below for an example of implementing such case definition.

Installation

Install from CRAN:

install.packages("healthdb")

You could also install the development version from GitHub with:

# install.packages("devtools")
devtools::install_github("KevinHzq/healthdb")

Usage

We are going to implement the following case definition:

One or more hospitalization with a substance use disorder (SUD) ICD-9 diagnostic code, OR Two or more physician claims with a substance use disorder ICD-10 diagnostic code within one year.

Before we get started, please see how to connect to a database and how to write query with ‘dbplyr’ if you don’t have experience of working with database in R.

First, let’s make a demo data sets for the two sources:

Physician claims

library(healthdb)
library(tidyverse)

# make_test_dat() makes either a toy data.frame or database table in memory with known number of rows that satisfy the query we will show later
claim_db <- make_test_dat(vals_kept = c("303", "304", "305", "291", "292", str_glue("30{30:59}"), str_glue("29{10:29}"), noise_val = c("999", "111")), type = "database")

# this is a database table
# note that in-memory SQLite database stores dates as numbers
claim_db %>% head()
#> # Source:   SQL [6 x 6]
#> # Database: sqlite 3.45.2 [:memory:]
#>     uid clnt_id dates diagx diagx_1 diagx_2
#>   <int>   <int> <dbl> <chr> <chr>   <chr>  
#> 1    87       1 17740 999   <NA>    999    
#> 2    66       1 18375 999   999     999    
#> 3     2       2 18546 2920  3041    999    
#> 4    21       3 17345 2917  2916    999    
#> 5    28       3 18167 111   3035    <NA>   
#> 6    92       3 18528 999   999     999

Hospitalization

hosp_df <- make_test_dat(vals_kept = c(str_glue("F{10:19}"), str_glue("F{100:199}"), noise_val = "999"), type = "data.frame")

# this is a local data.frame/tibble
hosp_df %>% head()
#>   uid clnt_id      dates diagx diagx_1 diagx_2
#> 1  57       1 2020-09-19   999    <NA>    <NA>
#> 2  91       2 2015-02-15   999    <NA>     999
#> 3  92       2 2016-09-03   999     999     999
#> 4  66       2 2018-07-02   999     999     999
#> 5  89       2 2018-11-03   999     999    <NA>
#> 6  62       2 2019-03-14   999    <NA>     999

Here’s how you could use healthdb to implement the SUD definition above:

  1. Identify rows contains the target codes in the claim database

  2. Restrict the number of records per client

  3. Restrict the temporal pattern of diagnoses

  4. Repeat these steps for hospitalization and row bind the results.

The output of these functions, including identify_row(), exclude(), restrict_n(), restrict_date() and more, can be piped into ‘dplyr’ functions for further manipulations. Therefore, wrangling with them along with ‘dplyr’ provide the maximum flexibility for implementing complex algorithms. However, your code could look repetitive if multiple data sources were involved. See the introduction vignette (vignette("healthdb")) for a much more concise way to work with multiple sources and definitions (the ‘Call-building functions’ section).