\documentclass[12pt]{article} \usepackage[T1]{fontenc} \usepackage[latin1]{inputenc} % \usepackage[french]{babel} \usepackage{amsmath} \usepackage{amsthm} %\usepackage{mathrsfs} \newtheorem{theorem}{Theorem}[section] \newtheorem{definition}{Definition}[section] \newenvironment{demo}{\noindent {\bf Dem.}}{\qed} \newenvironment{remarque}{\noindent {\bf Rem.} \small \itshape}{} \newenvironment{exemple}{\noindent {\bf Example}}{} \newcommand{\Lu}{L^1(\Rset)} \newcommand{\tf}[1]{{\cal F}\left(#1\right)} \newcommand{\ii}{{\mathrm{i}}} \newcommand{\Cn}{{\cal C}^{n}} \newcommand{\dd}{\mathrm{d}} % ;; \newcommand{\Rset}{{\mathbb R}} \newcommand{\Rset}{R} \newcommand{\R}{\mathbb R} \newcommand{\C}{\mathbb R} \newcommand{\ex}{\mathrm{e}} \newcommand{\Cinf}{{\cal C}^{\infty}} \newcommand{\abs}[1]{\left| #1 \right|} \newcommand{\dx}{\dd x} \newcommand{\ds}{\displaystyle} \newcommand{\vect}[1]{\overrightarrow{#1}} \newcommand{\Boule}[2]{\mathscr B(#1,#2)} \newcommand{\Cercle}[2]{\mathscr C(#1,#2)} \DeclareMathOperator{\Arg}{Arg} \newcommand{\dep}[2]{\ds \frac{\partial #1}{\partial #2}} \title{Example of the \textsf{mdput} fonts.} \author{Paul Pichaureau} \usepackage[cal=scr,mdput,greekfamily = didot]{mathdesign} %% \usepackage{amssymb} \begin{document} \maketitle \begin{abstract} The package \textsf{mdput} consists of a full set of mathematical fonts, designed to be combined with Adobe Utopia as the main text font. This example is extracted from the excellent book {\em Mathematics for Physics and Physicists}, {\sc W. Appel}, Princeton University Press, {\sc 2007}. \end{abstract} \section{Conformal maps} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \subsection{Preliminaries} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Consider a change of variable $(x,y)\mapsto (u,v)=\big(u(x,y),v(x,y)\big)$ in the plane $\R^2$, identified with~$\C$. This change of variable really only deserves the name if $f$ is locally bijective (i.e., one-to-one); this is the case if the jacobian of the map is nonzero (then so is the jacobian of the inverse map): \begin{equation*} \left| \frac{{D}(u,v)}{{D}(x,y)}\right| = \begin{vmatrix} \ds\frac{\displaystyle\partial u}{\displaystyle\partial x} & \ds\frac{\displaystyle\partial u}{\displaystyle\partial y} \\[4mm] \ds\frac{\displaystyle\partial v}{\displaystyle\partial x} & \ds\frac{\displaystyle\partial v}{\displaystyle\partial y} \end{vmatrix}\neq 0 \qquad\text{and}\qquad \left| \frac{{D}(x,y)}{{D}(u,v)}\right| =\begin{vmatrix}\ds\dep{x}{u} &\ds \dep{x}{v}\\[4mm] \ds\dep{y}{u} &\ds \dep{y}{v} \end{vmatrix}\neq 0. \end{equation*} \begin{theorem} In a complex change of variable \begin{equation*} z= x+\ii y\longmapsto w=f(z)=u+\ii v, \end{equation*} and \emph{if $f$ is holomorphic}, then the jacobian of the map is equal to \begin{equation*} J_f(z)=\left| \frac{{D}(u,v)}{{D}(x,y)}\right|= \abs{f'(z)}^2. \end{equation*} \end{theorem} \begin{demo} Indeed, we have $f'(z)=\dep{u}{x}+\ii\dep{v}{x}$ and hence, by the Cauchy-Riemann relations, \begin{align*} \abs{f'(z)}^2 & = \left(\dep{u}{x}\right)^2+\left(\dep{v}{x}\right)^2 = \dep{u}{x}\dep{v}{y}-\dep{v}{x}\dep{u}{y}=J_f(z). \end{align*} \end{demo} \begin{definition} \index{Conformal map}% \index{Transformation!conformal ---}% A \emph{conformal map} or \emph{conformal transformation} of an open subset $\Omega\subset\R^2$ into another open subset $\Omega'\subset\R^2$ is any map $f:\Omega\mapsto \Omega'$, locally bijective, that preserves angles and orientation. \end{definition} \begin{theorem} Any conformal map is given by a holomorphic function $f$ such that the derivative of $f$ does not vanish. \end{theorem} This justifies the next definition: %% ---------------------------------------------------------------------- \begin{definition} \index{Conformal map}% \index{Transformation!conformal ---}% A \emph{conformal transformation} or \emph{conformal map} of an open subset $\Omega\subset\C$ into another open subset $\Omega'\subset\C$ is any holomorphic function $f:\Omega\mapsto \Omega'$ such that $f'(z)\neq 0$ for all $z\in\Omega$. \end{definition} %% ---------------------------------------------------------------------- %% ---------------------------------------------------------------------- \begin{demo}[that the definitions are equivalent] We will denote in general $w=f(z)$. Consider, in the complex plane, two line segments $\gamma_1$ and $\gamma_2$ contained inside the set $\Omega$ where $f$ is defined, and intersecting at a point $z_0$ in $\Omega$. Denote by $\gamma'_1$ and $\gamma_2'$ their images by~$f$. We want to show that if the angle between $\gamma_1$ and $\gamma_2$ is equal to $\theta$, then the same holds for their images, which means that the angle between the tangent lines to $\gamma'_1$ and $\gamma'_2$ at $w_0=f(z_0)$ is also equal to $\theta$. Consider a point $z\in\gamma_1$ close to~$z_0$. Its image $w=f(z)$ satisfies \begin{equation*} \lim_{z\to z_0} \frac{w-w_0}{z-z_0}=f'(z_0), \end{equation*} and hence $$\displaystyle \lim_{z\to z_0} \Arg (w-w_0)-\Arg(z-z_0) = \Arg f'(z_0), $$% which shows that the angle between the curve $\gamma'_1$ and the real axis is equal to the angle between the original segment $\gamma_1$ and the real axis, plus the angle $\alpha=\Arg f'(z_0)$ (which is well defined because $f'(z)\neq 0$). Similarly, the angle between the image curve $\gamma'_2$ and the real axis is equal to that between the segment $\gamma_2$ and the real axis, plus the same~$\alpha$. Therefore, the angle between the two image curves is the same as that between the two line segments, namely, $\theta$. Another way to see this is as follows: the tangent vectors of the curves are transformed according to the rule $\vect{V}'=\dd f_{z_0}\vect{V}$. But the differential of $f$ (when $f$ is seen as a map from $\R^2$ to~$\R^2$) is of the form \begin{equation} \displaystyle \dd f_{z_0}=\begin{pmatrix} \displaystyle \dep{P}{x} & \displaystyle \dep{P}{y} \\[4mm] \displaystyle \dep{Q}{x} & \displaystyle \dep{Q}{y}\end{pmatrix} = \abs{f'(z_0)}\begin{pmatrix}\cos\alpha& -\sin\alpha \\ \sin\alpha &\cos\alpha \end{pmatrix}, \label{eq:FSimil} \end{equation} where $\alpha$ is the argument of $f'(z_0)$. This is the matrix of a rotation composed with a homothety, that is, a similitude. \medskip %% ······································································ % {\begin{picture}(300,100) % \put(0,0){\epsfig{file=\Figures/TC.\Ext,height=3.2cm}} % \put(20,65){$\gamma_2$} \put(80,55){$\theta$} % \put(100,80){$\gamma_1$} \put(195,85){$\gamma'_1$} % \put(245,35){$\theta$} \put(270,60){$\gamma'_2$} % \end{picture}} %% ······································································ Conversely, if $f$ is a map which is $\R^2$-differentiable and preserves angles, then at any point $\dd f$ is an endomorphism of~$\R^2$ which preserves angles. Since $f$ also preserves orientation, its determinant is positive, so $\dd f$ is a similitude, and its matrix is exactly as in equation~\eqref{eq:FSimil}. The Cauchy-Riemann equations are immediate consequences. \end{demo} %% ---------------------------------------------------------------------- %% ---------------------------------------------------------------------- \begin{remarque} \index{Antiholomorphic function}% \index{Function!antiholomorphic ---}% An \emph{antiholomorphic} map also preserves angles, but it reverses the orientation. \end{remarque} %% ---------------------------------------------------------------------- \newpage \subsection*{Calcul différentiel} Pour obtenir la différentielle totale de cette expression, considérée comme fonction de $x$, $y$, ..., donnons à $x$, $y$, ... des accroissements $d\!x$, $d\!y$, .... Soient $\Delta u$, $\Delta v$, ..., $\Delta f$ les accroissements correspondants de $u$, $v$, ...,$f$. On aura \begin{equation*} \Delta f= \dfrac{\partial\! f}{\partial u} \Delta u + \dfrac{\partial\! f}{\partial v} \Delta v + \hdots + R\Delta u + R_1 \Delta v + \hdots, \end{equation*} $R$, $R_1$, ... tendant vers zéro avec $\Delta u$, $\Delta v$, .... Mais on a, d'autre part, \begin{align*} \Delta u & = \dfrac{\partial u}{\partial x} d\! x + + \dfrac{\partial u}{\partial y} \Delta y + \hdots + S\Delta x + S_1 \Delta y + \hdots \\ & = du + Sd\! x + S_1 d\! y + \hdots \\ \Delta v & = \dfrac{\partial v}{\partial x} d\! x + + \dfrac{\partial v}{\partial y} \Delta y + \hdots + T\Delta x + T_1 \Delta y + \hdots \\ & = dv + Td\! x + T_1 d\! y + \hdots \\ \hdots \end{align*} $S$, $S_1$, ..., $T$, $T_1$,... tendant vers zéro avec $d\! x$, $d\! y$, .... Substituant ces valeurs dans l'expression de $\Delta f$, il vient \begin{equation*} \begin{array}{rcl} \vbox to 25pt {} \Delta f & = &\dfrac{\partial\! f}{\partial u} d u + \dfrac{\partial\! f}{\partial v} d v + \hdots + \rho d\! x + \rho_1 d\! y + \hdots \\ \vbox to 25pt {}& = & \phantom{+} \left( \dfrac{\partial\! f}{\partial u} \dfrac{\partial u}{\partial x} + \dfrac{\partial\! f}{\partial v} \dfrac{\partial v}{\partial x} + \hdots \right) d\! x \\ \vbox to 25pt {}& & + \left( \dfrac{\partial\! f}{\partial u} \dfrac{\partial u}{\partial y} + \dfrac{\partial\! f}{\partial v} \dfrac{\partial v}{\partial y} + \hdots \right) d\! y \\ \vbox to 25pt {}&& + \hdots + \rho d\! x + \rho_1 d\! y + \hdots \end{array} \end{equation*} $\rho$, $\rho_1$, ... tendant vers zéro avec $d\! x$, $d\! y$, .... On aura donc \begin{align*} \dfrac{\partial\! f}{\partial x}& = \dfrac{\partial\! f}{\partial u} \dfrac{\partial u}{\partial x} + \dfrac{\partial\! f}{\partial v} \dfrac{\partial v}{\partial x} + \hdots, \\ \dfrac{\partial\! f}{\partial y}& = \dfrac{\partial\! f}{\partial u} \dfrac{\partial u}{\partial y} + \dfrac{\partial\! f}{\partial v} \dfrac{\partial v}{\partial y} + \hdots, \\ \hdots \end{align*} et, d'autre part, \begin{equation*} df = \dfrac{\partial\! f}{\partial u} {\mathrm d} u + \dfrac{\partial\! f}{\partial v} {\mathrm d} v + \hdots ; \end{equation*} d'où les deux propositions suivantes : {\em La dérivée, par rapport à une variable indépendante $x$, d'une fonction composée $f(u,v,\hdots)$ s'obtient en ajoutant ensemble les dérivées partielles $\dfrac{\partial\! f}{\partial u}$, $\dfrac{\partial\! f}{\partial v}$, ..., respectivement multipliées par les dérivées de $u$, $v$, ... par rapport à $x$. La différentielle totale $df$ s'exprimer au moyen de $u$, $v$, ..., $du$, $dv$, ..., de la même manière que si $u$, $v$, ... étaient des variables indépendantes. } \hbox to \textwidth { \hfill {\sc Camille Jordan}, {\em Cours d'analyse de l'\'Ecole polytechnique} } \end{document}