\documentclass{article} \usepackage{lipsum,url} \usepackage{textcomp} \usepackage{mathgifg,amsfonts,amsmath} \usepackage{ifpdf} \ifpdf \pdfmapfile{+mathgifg.map} \fi \newcounter{lipsumnum} \setcounter{lipsumnum}{1} \newcommand{\samplefont}[2]{{#1\selectfont #2: 0123456789, \$20, \texteuro30, \pounds60. Na\"ive \AE sop's \OE uvres in fran\c cais were my first reading. \lipsum[\value{lipsumnum}]\stepcounter{lipsumnum}\par}} \DeclareMathSymbol{\dit}{\mathord}{letters}{`d} \DeclareMathSymbol{\dup}{\mathord}{operators}{`d} \def\test#1{#1} \def\testnums{% \test 0 \test 1 \test 2 \test 3 \test 4 \test 5 \test 6 \test 7 \test 8 \test 9 } \def\testupperi{% \test A \test B \test C \test D \test E \test F \test G \test H \test I \test J \test K \test L \test M } \def\testupperii{% \test N \test O \test P \test Q \test R \test S \test T \test U \test V \test W \test X \test Y \test Z } \def\testupper{% \testupperi\testupperii} \def\testloweri{% \test a \test b \test c \test d \test e \test f \test g \test h \test i \test j \test k \test l \test m } \def\testlowerii{% \test n \test o \test p \test q \test r \test s \test t \test u \test v \test w \test x \test y \test z \test\imath \test\jmath } \def\testlower{% \testloweri\testlowerii} \def\testupgreeki{% \test A \test B \test\Gamma \test\Delta \test E \test Z \test H \test\Theta \test I \test K \test\Lambda \test M } \def\testupgreekii{% \test N \test\Xi \test O \test\Pi \test P \test\Sigma \test T \test\Upsilon \test\Phi \test X \test\Psi \test\Omega \test\nabla } \def\testupgreek{% \testupgreeki\testupgreekii} \def\testlowgreeki{% \test\alpha \test\beta \test\gamma \test\delta \test\epsilon \test\zeta \test\eta \test\theta \test\iota \test\kappa \test\lambda \test\mu } \def\testlowgreekii{% \test\nu \test\xi \test o \test\pi \test\rho \test\sigma \test\tau \test\upsilon \test\phi \test\chi \test\psi \test\omega } \def\testlowgreekiii{% \test\varepsilon \test\vartheta \test\varpi \test\varrho \test\varsigma \test\varphi} \def\testlowgreek{% \testlowgreeki\testlowgreekii\testlowgreekiii} \begin{document} \section{Text Tests} \label{sec:text} \samplefont{\normalfont}{Georgia} \samplefont{\itshape}{Georgia Italic} \samplefont{\bfseries}{Georgia Bold} \samplefont{\bfseries\itshape}{Georgia Bold Italic} \samplefont{\sffamily\fontseries{k}}{Franklin Gothic Book} \samplefont{\sffamily\fontseries{k}\itshape}{Franklin Gothic Book Italic} \samplefont{\sffamily}{Franklin Gothic Medium} \samplefont{\sffamily\itshape}{Franklin Gothic Medum Italic} \samplefont{\sffamily\fontseries{mc}}{Franklin Gothic Medium Condensed} \samplefont{\sffamily\bfseries}{Franklin Gothic Demibold} \samplefont{\sffamily\bfseries\itshape}{Franklin Gothic Demibold Italic} \samplefont{\sffamily\fontseries{dc}}{Franklin Gothic Demibold Condensed} \samplefont{\sffamily\fontseries{h}}{Franklin Gothic Heavy} \samplefont{\sffamily\fontseries{h}\itshape}{Franklin Gothic Heavy Italic} \section{Math Tests} \label{sec:mthtests} Math test are taken from\cite{Schmidt04:PSNFSS9.2}. Note that we do not have \texttt{\string\jmath}, so we took one from CM. \parindent 0pt %\mathindent 1em \subsection{Math Alphabets} Math Italic (\texttt{\string\mathnormal}) \def\test#1{\mathnormal{#1},} \begin{eqnarray*} && {\testnums}\\ && {\testupper}\\ && {\testlower}\\ && {\testupgreek}\\ && {\testlowgreek} \end{eqnarray*}% Math Roman (\texttt{\string\mathrm}) \def\test#1{\mathrm{#1},} \begin{eqnarray*} && {\testnums}\\ && {\testupper}\\ && {\testlower}\\ && {\testupgreek}\\ && {\testlowgreek} \end{eqnarray*}% %Math Italic Bold %\def\test#1{\mathbm{#1},} %\begin{eqnarray*} % && {\testnums}\\ % && {\testupper}\\ % && {\testlower}\\ % && {\testupgreek}\\ % && {\testlowgreek} %\end{eqnarray*}% Math Bold (\texttt{\string\mathbf}) \def\test#1{\mathbf{#1},} \begin{eqnarray*} && {\testnums}\\ && {\testupper}\\ && {\testlower}\\ && {\testupgreek} \end{eqnarray*}% Math Sans Serif (\texttt{\string\mathsf}) \def\test#1{\mathsf{#1},} \begin{eqnarray*} && {\testnums}\\ && {\testupper}\\ && {\testlower}\\ && {\testupgreek} \end{eqnarray*}% %Caligraphic (\texttt{\string\mathcal}) %\def\test#1{\mathcal{#1},} %\begin{eqnarray*} % && {\testupper} %\end{eqnarray*}% %Script (\texttt{\string\mathscr}) %\def\test#1{\mathscr{#1},} %\begin{eqnarray*} % && {\testupper} %\end{eqnarray*}% %Fraktur (\texttt{\string\mathfrak}) %\def\test#1{\mathfrak{#1},} %\begin{eqnarray*} % && {\testupper}\\ % && {\testlower} %\end{eqnarray*}% %Blackboard Bold (\texttt{\string\mathbb}) %\def\test#1{\mathbb{#1},} %\begin{eqnarray*} % && {\testupper} %\end{eqnarray*}% \clearpage \subsection{Character Sidebearings} \def\test#1{|#1|+} \begin{eqnarray*} && {\testupperi}\\ && {\testupperii}\\ && {\testloweri}\\ && {\testlowerii}\\ && {\testupgreeki}\\ && {\testupgreekii}\\ && {\testlowgreeki}\\ && {\testlowgreekii}\\ && {\testlowgreekiii} \end{eqnarray*}% % \def\test#1{|\mathrm{#1}|+}% \begin{eqnarray*} && {\testupperi}\\ && {\testupperii}\\ && {\testloweri}\\ && {\testlowerii}\\ && {\testupgreeki}\\ && {\testupgreekii} \end{eqnarray*}% % %\def\test#1{|\mathbm{#1}|+}% %\begin{eqnarray*} % && {\testupperi}\\ % && {\testupperii}\\ % && {\testloweri}\\ % && {\testlowerii}\\ % && {\testupgreeki}\\ % && {\testupgreekii}\\ % && {\testlowgreeki}\\ % && {\testlowgreekii}\\ % && {\testlowgreekiii} %\end{eqnarray*}% %% %\def\test#1{|\mathbf{#1}|+}% %\begin{eqnarray*} % && {\testupperi}\\ % && {\testupperii}\\ % && {\testloweri}\\ % && {\testlowerii}\\ % && {\testupgreeki}\\ % && {\testupgreekii} %\end{eqnarray*}% % \def\test#1{|\mathcal{#1}|+}% \begin{eqnarray*} && {\testupperi}\\ && {\testupperii} \end{eqnarray*}% \clearpage \subsection{Superscript positioning} \def\test#1{#1^{2}+}% \begin{eqnarray*} && {\testupperi}\\ && {\testupperii}\\ && {\testloweri}\\ && {\testlowerii}\\ && {\testupgreeki}\\ && {\testupgreekii}\\ && {\testlowgreeki}\\ && {\testlowgreekii}\\ && {\testlowgreekiii} \end{eqnarray*}% % \def\test#1{\mathrm{#1}^{2}+}% \begin{eqnarray*} && {\testupperi}\\ && {\testupperii}\\ && {\testloweri}\\ && {\testlowerii}\\ && {\testupgreeki}\\ && {\testupgreekii} \end{eqnarray*}% % %\def\test#1{\mathbm{#1}^{2}+}% %\begin{eqnarray*} % && {\testupperi}\\ % && {\testupperii}\\ % && {\testloweri}\\ % && {\testlowerii}\\ % && {\testupgreeki}\\ % && {\testupgreekii}\\ % && {\testlowgreeki}\\ % && {\testlowgreekii}\\ % && {\testlowgreekiii} %\end{eqnarray*}% % %\def\test#1{\mathbf{#1}^{2}+}% %\begin{eqnarray*} % && {\testupperi}\\ % && {\testupperii}\\ % && {\testloweri}\\ % && {\testlowerii}\\ % && {\testupgreeki}\\ % && {\testupgreekii} %\end{eqnarray*} % \def\test#1{\mathcal{#1}^{2}+}% \begin{eqnarray*} && {\testupperi}\\ && {\testupperii} \end{eqnarray*}% \clearpage \subsection{Subscript positioning} \def\test#1{\mathnormal{#1}_{i}+}% \begin{eqnarray*} && {\testupperi}\\ && {\testupperii}\\ && {\testloweri}\\ && {\testlowerii}\\ && {\testupgreeki}\\ && {\testupgreekii}\\ && {\testlowgreeki}\\ && {\testlowgreekii}\\ && {\testlowgreekiii} \end{eqnarray*}% % \def\test#1{\mathrm{#1}_{i}+}% \begin{eqnarray*} && {\testupperi}\\ && {\testupperii}\\ && {\testloweri}\\ && {\testlowerii}\\ && {\testupgreeki}\\ && {\testupgreekii} \end{eqnarray*}% % %\def\test#1{\mathbm{#1}_{i}+}% %\begin{eqnarray*} % && {\testupperi}\\ % && {\testupperii}\\ % && {\testloweri}\\ % && {\testlowerii}\\ % && {\testupgreeki}\\ % && {\testupgreekii}\\ % && {\testlowgreeki}\\ % && {\testlowgreekii}\\ % && {\testlowgreekiii} %\end{eqnarray*} %% %\def\test#1{\mathbf{#1}_{i}+}% %\begin{eqnarray*} % && {\testupperi}\\ % && {\testupperii}\\ % && {\testloweri}\\ % && {\testlowerii}\\ % && {\testupgreeki}\\ % && {\testupgreekii} %\end{eqnarray*}% % \def\test#1{\mathcal{#1}_{i}+}% \begin{eqnarray*} && {\testupperi}\\ && {\testupperii} \end{eqnarray*}% \clearpage \subsection{Accent positioning} \def\test#1{\hat{#1}+}% \begin{eqnarray*} && {\testupperi}\\ && {\testupperii}\\ && {\testloweri}\\ && {\testlowerii}\\ && {\testupgreeki}\\ && {\testupgreekii}\\ && {\testlowgreeki}\\ && {\testlowgreekii}\\ && {\testlowgreekiii} \end{eqnarray*}% % \def\test#1{\hat{\mathrm{#1}}+}% \begin{eqnarray*} && {\testupperi}\\ && {\testupperii}\\ && {\testloweri}\\ && {\testlowerii}\\ && {\testupgreeki}\\ && {\testupgreekii} \end{eqnarray*}% % %\def\test#1{\hat{\mathbm{#1}}+}% %\begin{eqnarray*} % && {\testupperi}\\ % && {\testupperii}\\ % && {\testloweri}\\ % && {\testlowerii}\\ % && {\testupgreeki}\\ % && {\testupgreekii}\\ % && {\testlowgreeki}\\ % && {\testlowgreekii}\\ % && {\testlowgreekiii} %\end{eqnarray*}% %% %\def\test#1{\hat{\mathbf{#1}}+}% %\begin{eqnarray*} % && {\testupperi}\\ % && {\testupperii}\\ % && {\testloweri}\\ % && {\testlowerii}\\ % && {\testupgreeki}\\ % && {\testupgreekii} %\end{eqnarray*} % \def\test#1{\hat{\mathcal{#1}}+}% \begin{eqnarray*} && {\testupperi}\\ && {\testupperii} \end{eqnarray*}% \clearpage \subsection{Differentials} \begin{eqnarray*} \gdef\test#1{\dit #1+}% && {\testupperi}\\ && {\testupperii}\\ && {\testloweri}\\ && {\testlowerii}\\ && {\testupgreeki}\\ && {\testupgreekii}\\ && {\testlowgreeki}\\ && {\testlowgreekii}\\ && {\testlowgreekiii}\\ \gdef\test#1{\dit \mathrm{#1}+}% && {\testupgreeki}\\ && {\testupgreekii} \end{eqnarray*}% % \begin{eqnarray*} \gdef\test#1{\dup #1+}% && {\testupperi}\\ && {\testupperii}\\ && {\testloweri}\\ && {\testlowerii}\\ && {\testupgreeki}\\ && {\testupgreekii}\\ && {\testlowgreeki}\\ && {\testlowgreekii}\\ && {\testlowgreekiii}\\ \gdef\test#1{\dup \mathrm{#1}+}% && {\testupgreeki}\\ && {\testupgreekii} \end{eqnarray*}% % \begin{eqnarray*} \gdef\test#1{\partial #1+}% && {\testupperi}\\ && {\testupperii}\\ && {\testloweri}\\ && {\testlowerii}\\ && {\testupgreeki}\\ && {\testupgreekii}\\ && {\testlowgreeki}\\ && {\testlowgreekii}\\ && {\testlowgreekiii}\\ \gdef\test#1{\partial \mathrm{#1}+}% && {\testupgreeki}\\ && {\testupgreekii} \end{eqnarray*}% \clearpage \subsection{Slash kerning} \def\test#1{1/#1+} \begin{eqnarray*} && {\testupperi}\\ && {\testupperii}\\ && {\testloweri}\\ && {\testlowerii}\\ && {\testupgreeki}\\ && {\testupgreekii}\\ && {\testlowgreeki}\\ && {\testlowgreekii}\\ && {\testlowgreekiii} \end{eqnarray*} \def\test#1{#1/2+} \begin{eqnarray*} && {\testupperi}\\ && {\testupperii}\\ && {\testloweri}\\ && {\testlowerii}\\ && {\testupgreeki}\\ && {\testupgreekii}\\ && {\testlowgreeki}\\ && {\testlowgreekii}\\ && {\testlowgreekiii} \end{eqnarray*} \clearpage \subsection{Big operators} \def\testop#1{#1_{i=1}^{n} x^{n} \quad} \begin{displaymath} \testop\sum \testop\prod \testop\coprod \testop\int \testop\oint \end{displaymath} \begin{displaymath} \testop\bigotimes \testop\bigoplus \testop\bigodot \testop\bigwedge \testop\bigvee \testop\biguplus \testop\bigcup \testop\bigcap \testop\bigsqcup % \testop\bigsqcap \end{displaymath} \subsection{Radicals} \begin{displaymath} \sqrt{x+y} \qquad \sqrt{x^{2}+y^{2}} \qquad \sqrt{x_{i}^{2}+y_{j}^{2}} \qquad \sqrt{\left(\frac{\cos x}{2}\right)} \qquad \sqrt{\left(\frac{\sin x}{2}\right)} \end{displaymath} \begingroup \delimitershortfall-1pt \begin{displaymath} \sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{x+y}}}}}}} \end{displaymath} \endgroup % \delimitershortfall \subsection{Over- and underbraces} \begin{displaymath} \overbrace{x} \quad \overbrace{x+y} \quad \overbrace{x^{2}+y^{2}} \quad \overbrace{x_{i}^{2}+y_{j}^{2}} \quad \underbrace{x} \quad \underbrace{x+y} \quad \underbrace{x_{i}+y_{j}} \quad \underbrace{x_{i}^{2}+y_{j}^{2}} \quad \end{displaymath} \subsection{Normal and wide accents} \begin{displaymath} \dot{x} \quad \ddot{x} \quad \vec{x} \quad \bar{x} \quad \overline{x} \quad \overline{xx} \quad \tilde{x} \quad \widetilde{x} \quad \widetilde{xx} \quad \widetilde{xxx} \quad \hat{x} \quad \widehat{x} \quad \widehat{xx} \quad \widehat{xxx} \quad \end{displaymath} \subsection{Long arrows} \begin{displaymath} \leftarrow \mathrel{-} \rightarrow \quad \leftrightarrow \quad \longleftarrow \quad \longrightarrow \quad \longleftrightarrow \quad \Leftarrow = \Rightarrow \quad \Leftrightarrow \quad \Longleftarrow \quad \Longrightarrow \quad \Longleftrightarrow \quad \end{displaymath} \subsection{Left and right delimters} \def\testdelim#1#2{ - #1 f #2 - } \begin{displaymath} \testdelim() \testdelim[] \testdelim\lfloor\rfloor \testdelim\lceil\rceil \testdelim\langle\rangle \testdelim\{\} \end{displaymath} \def\testdelim#1#2{ - \left#1 f \right#2 - } \begin{displaymath} \testdelim() \testdelim[] \testdelim\lfloor\rfloor \testdelim\lceil\rceil \testdelim\langle\rangle \testdelim\{\} % \testdelim\lgroup\rgroup % \testdelim\lmoustache\rmoustache \end{displaymath} \begin{displaymath} \testdelim)( \testdelim][ \testdelim// \testdelim\backslash\backslash \testdelim/\backslash \testdelim\backslash/ \end{displaymath} \clearpage \subsection{Big-g-g delimters} \def\testdelim#1#2{% - \left#1\left#1\left#1\left#1\left#1\left#1\left#1\left#1 - \right#2\right#2\right#2\right#2\right#2\right#2\right#2\right#2 -} \begingroup \delimitershortfall-1pt \begin{displaymath} \testdelim\lfloor\rfloor \qquad \testdelim() \end{displaymath} \begin{displaymath} \testdelim\lceil\rceil \qquad \testdelim\{\} \end{displaymath} \begin{displaymath} \testdelim[] \qquad \testdelim\lgroup\rgroup \end{displaymath} \begin{displaymath} \testdelim\langle\rangle \qquad \testdelim\lmoustache\rmoustache \end{displaymath} \begin{displaymath} \testdelim\uparrow\downarrow \quad \testdelim\Uparrow\Downarrow \quad \end{displaymath} \endgroup % \delimitershortfall \subsection{Miscellanneous formulae} Taken from~\cite{Downes04:amsart} \label{sec:misc} \begin{displaymath} \hbar\nu=E \end{displaymath} Let $\mathbf{A}=(a_{ij})$ be the adjacency matrix of graph $G$. The corresponding Kirchhoff matrix $\mathbf{K}=(k_{ij})$ is obtained from $\mathbf{A}$ by replacing in $-\mathbf{A}$ each diagonal entry by the degree of its corresponding vertex; i.e., the $i$th diagonal entry is identified with the degree of the $i$th vertex. It is well known that \begin{equation} \det\mathbf{K}(i|i)=\text{ the number of spanning trees of $G$}, \quad i=1,\dots,n \end{equation} where $\mathbf{K}(i|i)$ is the $i$th principal submatrix of $\mathbf{K}$. \newcommand{\abs}[1]{\left\lvert#1\right\rvert} \newcommand{\wh}{\widehat} Let $C_{i(j)}$ be the set of graphs obtained from $G$ by attaching edge $(v_iv_j)$ to each spanning tree of $G$. Denote by $C_i=\bigcup_j C_{i(j)}$. It is obvious that the collection of Hamiltonian cycles is a subset of $C_i$. Note that the cardinality of $C_i$ is $k_{ii}\det \mathbf{K}(i|i)$. Let $\wh X=\{\hat x_1,\dots,\hat x_n\}$. Define multiplication for the elements of $\wh X$ by \begin{equation}\label{multdef} \hat x_i\hat x_j=\hat x_j\hat x_i,\quad \hat x^2_i=0,\quad i,j=1,\dots,n. \end{equation} Let $\hat k_{ij}=k_{ij}\hat x_j$ and $\hat k_{ij}=-\sum_{j\not=i} \hat k_{ij}$. Then the number of Hamiltonian cycles $H_c$ is given by the relation \begin{equation}\label{H-cycles} \biggl(\prod^n_{\,j=1}\hat x_j\biggr)H_c=\frac{1}{2}\hat k_{ij}\det \wh{\mathbf{K}}(i|i),\qquad i=1,\dots,n. \end{equation} The task here is to express \eqref{H-cycles} in a form free of any $\hat x_i$, $i=1,\dots,n$. The result also leads to the resolution of enumeration of Hamiltonian paths in a graph. It is well known that the enumeration of Hamiltonian cycles and paths in a complete graph $K_n$ and in a complete bipartite graph $K_{n_1n_2}$ can only be found from \textit{first combinatorial principles}. One wonders if there exists a formula which can be used very efficiently to produce $K_n$ and $K_{n_1n_2}$. Recently, using Lagrangian methods, Goulden and Jackson have shown that $H_c$ can be expressed in terms of the determinant and permanent of the adjacency matrix. However, the formula of Goulden and Jackson determines neither $K_n$ nor $K_{n_1n_2}$ effectively. In this paper, using an algebraic method, we parametrize the adjacency matrix. The resulting formula also involves the determinant and permanent, but it can easily be applied to $K_n$ and $K_{n_1n_2}$. In addition, we eliminate the permanent from $H_c$ and show that $H_c$ can be represented by a determinantal function of multivariables, each variable with domain $\{0,1\}$. Furthermore, we show that $H_c$ can be written by number of spanning trees of subgraphs. Finally, we apply the formulas to a complete multigraph $K_{n_1\dots n_p}$. The conditions $a_{ij}=a_{ji}$, $i,j=1,\dots,n$, are not required in this paper. All formulas can be extended to a digraph simply by multiplying $H_c$ by 2. The boundedness, property of $\Phi_ 0$, then yields \[\int_{\mathcal{D}}\abs{\overline\partial u}^2e^{\alpha\abs{z}^2}\geq c_6\alpha \int_{\mathcal{D}}\abs{u}^2e^{\alpha\abs{z}^2} +c_7\delta^{-2}\int_ A\abs{u}^2e^{\alpha\abs{z}^2}.\] Let $B(X)$ be the set of blocks of $\Lambda_{X}$ and let $b(X) = \abs{B(X)}$. If $\phi \in Q_{X}$ then $\phi$ is constant on the blocks of $\Lambda_{X}$. \begin{equation}\label{far-d} P_{X} = \{ \phi \in M \mid \Lambda_{\phi} = \Lambda_{X} \}, \qquad Q_{X} = \{\phi \in M \mid \Lambda_{\phi} \geq \Lambda_{X} \}. \end{equation} If $\Lambda_{\phi} \geq \Lambda_{X}$ then $\Lambda_{\phi} = \Lambda_{Y}$ for some $Y \geq X$ so that \[ Q_{X} = \bigcup_{Y \geq X} P_{Y}. \] Thus by M\"obius inversion \[ \abs{P_{Y}}= \sum_{X\geq Y} \mu (Y,X)\abs{Q_{X}}.\] Thus there is a bijection from $Q_{X}$ to $W^{B(X)}$. In particular $\abs{Q_{X}} = w^{b(X)}$. \renewcommand{\arraystretch}{2.2} \[W(\Phi)= \begin{Vmatrix} \dfrac\varphi{(\varphi_1,\varepsilon_1)}&0&\dots&0\\ \dfrac{\varphi k_{n2}}{(\varphi_2,\varepsilon_1)}& \dfrac\varphi{(\varphi_2,\varepsilon_2)}&\dots&0\\ \hdotsfor{5}\\ \dfrac{\varphi k_{n1}}{(\varphi_n,\varepsilon_1)}& \dfrac{\varphi k_{n2}}{(\varphi_n,\varepsilon_2)}&\dots& \dfrac{\varphi k_{n\,n-1}}{(\varphi_n,\varepsilon_{n-1})}& \dfrac{\varphi}{(\varphi_n,\varepsilon_n)} \end{Vmatrix}\] \bibliography{mathgifg} \bibliographystyle{unsrt} \end{document}