% Introductory sample article: intrart.tex % Typeset with LaTeX format \documentclass{article} \usepackage{latexsym} \newtheorem{theorem}{Theorem} \newtheorem{definition}{Definition} \newtheorem{notation}{Notation} \begin{document} \title{A construction of complete-simple\\ distributive lattices} \author{George~A. Menuhin\thanks{Research supported by the NSF under grant number~23466.}\\ Computer Science Department\\ Winnebago, Minnesota 23714\\ menuhin@cc.uwinnebago.edu} \date{March 15, 1999} \maketitle \begin{abstract} In this note, we prove that there exist \emph{complete-simple distributive lattices,} that is, complete distributive lattices in which there are only two complete congruences. \end{abstract} \section{Introduction}\label{S:intro} In this note, we prove the following result: \begin{theorem} There exists an infinite complete distributive lattice $K$ with only the two trivial complete congruence relations. \end{theorem} \section{The $\Pi^{*}$ construction}\label{S:P*} The following construction is crucial in the proof of our Theorem: \begin{definition}\label{D:P*} Let $D_{i}$, for $i \in I$, be complete distributive lattices satisfying condition~\textup{(J)}. Their $\Pi^{*}$ product is defined as follows: \[ \Pi^{*} ( D_{i} \mid i \in I ) = \Pi ( D_{i}^{-} \mid i \in I ) + 1; \] that is, $\Pi^{*} ( D_{i} \mid i \in I )$ is $\Pi ( D_{i}^{-} \mid i \in I )$ with a new unit element. \end{definition} \begin{notation} If $i \in I$ and $d \in D_{i}^{-}$, then \[ \langle \ldots, 0, \ldots, d, \ldots, 0, \ldots \rangle \] is the element of $\Pi^{*} ( D_{i} \mid i \in I )$ whose $i$-th component is $d$ and all the other components are $0$. \end{notation} See also Ernest~T. Moynahan~\cite{eM57a}. Next we verify the following result: \begin{theorem}\label{T:P*} Let $D_{i}$, $i \in I$, be complete distributive lattices satisfying condition~\textup{(J)}. Let $\Theta$ be a complete congruence relation on $\Pi^{*} ( D_{i} \mid i \in I )$. If there exist $i \in I$ and $d \in D_{i}$ with $d < 1_{i}$ such that, for all $d \leq c < 1_{i}$, \begin{equation}\label{E:cong1} \langle \ldots, d, \ldots, 0, \ldots \rangle \equiv \langle \ldots, c, \ldots, 0, \ldots \rangle \pmod{\Theta}, \end{equation} then $\Theta = \iota$. \end{theorem} \emph{Proof.} Since \begin{equation}\label{E:cong2} \langle \ldots, d, \ldots, 0, \ldots \rangle \equiv \langle \ldots, c, \ldots, 0, \ldots \rangle \pmod{\Theta}, \end{equation} and $\Theta$ is a complete congruence relation, it follows from condition~(J) that \begin{equation}\label{E:cong} \langle \ldots, d, \ldots, 0, \ldots \rangle \equiv \bigvee ( \langle \ldots, c, \ldots, 0, \ldots \rangle \mid d \leq c < 1 ) \pmod{\Theta}. \end{equation} Let $j \in I$, $j \neq i$, and let $a \in D_{j}^{-}$. Meeting both sides of the congruence (\ref{E:cong2}) with $\langle \ldots, a, \ldots, 0, \ldots \rangle$, we obtain that \begin{equation}\label{E:comp} 0 = \langle \ldots, a, \ldots, 0, \ldots \rangle \pmod{\Theta}, \end{equation} Using the completeness of $\Theta$ and (\ref{E:comp}), we get: \[ 0 \equiv \bigvee ( \langle \ldots, a, \ldots, 0, \ldots \rangle \mid a \in D_{j}^{-} ) = 1 \pmod{\Theta}, \] hence $\Theta = \iota$. \begin{thebibliography}{9} \bibitem{sF90} Soo-Key Foo, \emph{Lattice Constructions,} Ph.D. thesis, University of Winnebago, Winnebago, MN, December, 1990. \bibitem{gM68} George~A. Menuhin, \emph{Universal Algebra,} D.~van Nostrand, Princeton-Toronto-London-Melbourne, 1968. \bibitem{eM57} Ernest~T. Moynahan, \emph{On a problem of M.H. Stone,} Acta Math. Acad. Sci. Hungar. \textbf{8} (1957), 455--460. \bibitem{eM57a} Ernest~T. Moynahan, \emph{Ideals and congruence relations in lattices.~II,} Magyar Tud. Akad. Mat. Fiz. Oszt. K\"{o}zl. \textbf{9} (1957), 417--434. \end{thebibliography} \end{document}