PyDML Language Reference
Table of Contents

1PyDML Language Reference

2Introduction

2Key differences between PyDML and Python

3Variables

3Identifier Names

3Data Types

4Comments

4Expressions

4Operators

6Matrix Indexing

7Statements

7Assignment Statement

7Control Statements

7While Statement

8If Statement

8For Statement

9ParFor Statement

9User-defined Function (UDF)

11Command-line arguments

12Built-in functions

12Matrix Construction, Manipulation, and Aggregation Built-In Functions

14Matrix and/or Scalar Comparison Built-In Functions

15Casting Built-In Functions

15Statistical Built-In Functions

18Mathematical and Trigonometirc Built-In Functions

18Linear Algebra Built-In Functions

20Read/Write Built-In Functions

20File formats and MTD files

23Load Built-In Function

24Save Built-In Function

26Other Built-In Functions

26Modules

27Reserved Keywords

28Invocation of SystemML

Introduction
SystemML compiles scripts written in Python-like Declarative Machine Learning (or PyDML for short) into MapReduce jobs. PyDML’s syntax closely follows Python, thereby minimizing the learning curve to use SystemML. Before getting into detail, let’s start with a simple Hello World program in PyDML. Assuming that Hadoop is installed on your machine or cluster, place SystemML.jar and SystemML-config.xml into your directory. Now, create a text file “hello.pydml” containing following code:

print(“Hello World”);

To run this program on your machine, use following command:

hadoop jar SystemML.jar –f hello.pydml -python
The option -f in the above command refers to the path to the DML script. The option -python in the above command states that the script contains PyDML code. The detailed list of the options is given in the section “Invocation of SystemML”. Note: to install Hadoop, please follow the instructions given in the http://ibm.co/1yHtrdb
Key differences between PyDML and Python

· In PyDML, identifier cannot start with an underscore.
· PyDML has much restrictive type-system, which is described in section “Data Types”.

· PyDML follows same syntax as Numpy matrices, with exception that dot(x, y) denotes matrix multiplication whereas x*y denotes element-wise multiplication if x and y are matrices.
· Only two dimensional matrices are supported in PyDML.

· Advanced indexing (arbitrary arrays as set of indexes) and Boolean indexing is not supported in PyDML.

· PyDML has an additional parfor construct (which corresponds to parallel for loop).
· ‘break’, ‘return’ and ‘continue’ statements are not supported in PyDML

· “else” clause for ‘for’ and ‘while’ statements are not supported in PyDML.

· “elif” clause is not supported in PyDML.

· User-defined functions in PyDML have additional restrictions which are described in section “User-defined functions”.
· PyDML provides support for command-line parameters, which are described in section “Command-line arguments”.

· Attributes are not supported in PyDML.

Variables
Identifier Names

Identifiers are case-sensitive (e.g., var1, Var1, and VAR1 are different identifier names), must start with either an upper-case or lower-case letter, and may contain any alphanumeric character including underscore after the first letter. The reserved keywords described later cannot be used as identifier names. Though it is allowed, but not recommended to use built-in functions as an identifier.

Note: unlike python, the identifier cannot start with an underscore.

Examples:
A
valid variable name
_A
invalid variable name -- starts with underscore

Note: _A is valid in Python but not in PyDML
1_A
invalid variable name -- starts with number
A_1
valid variable name

min = 10 # valid but deprecated
Before, proceeding ahead let’s run the Hello World program using variable:

helloStr = “Hello World”

print(helloStr)

As seen in above example, there is no formal declaration of a variable. A variable is created when first assigned a value, and its type is inferred.

Data Types

Two data types (matrix and scalar) and four value types (float, int, str, and bool) are supported. Matrices are 2-dimensional, and support the double value type (i.e., the cells in a matrix are of type double). SystemML supports type polymorphism for both data type and value type during evaluation. For example:
y = matrix("[1 2 3; 4 5 6 ;8 9 10]")

print(scalar(y[0,0]) + ", " + int(scalar(y[1,1])) + ", " + int(2.1) + ", " + bool(1.0))

The above script will output:

1.0, 5, 2, TRUE
Note in the above script, since print function only is supported for scalar, we convert y[0,0] (i.e. the first element of matrix y) to scalar of value type double.
If instead of as.scalar(y[0,0]) we would have used y[0,0], then we will get an compilation error “print statement can only print scalars”.
Comments

A comment is indicated using a hash (#)

Examples:
this is an example of a line comment

Expressions

Now that we have familiarize ourselves with variables and data type, let’s understand how to use them into expressions.
Operators

PyDML follows same syntax as Numpy, with exception that dot(x, y) denotes matrix multiplication whereas x*y denotes element-wise multiplication if x and y are matrices.
The associativity and precedence order is as per below table.

The dimensions of the input matrices need to match the operator semantics, otherwise an exception will be raised at compile time. When one of the operands is a matrix and the other operand is a scalar value, the operation is performed cell-wise on the matrix using the scalar operand.
Table 1. Operators

	Operator
	Input
	Output
	Details

	**
	Matrix, Vector or Scalar
	Matrix or Scalar1, 2
	Exponentiation (right associativity) – Highest precedence

	- +
	Matrix, Vector or Scalar
	Matrix or Scalar1
	Unary plus, minus

	dot(x, y)
	Matrix
	Matrix
	Matrix multiplication

	// %
	Matrix, Vector or Scalar
	Matrix or Scalar1, 2
	Integer division (//) and Modulus operator (%)

	/ *
	
	
	Multiplication and Division

	+ -
	
	
	Addition (or string concatenation) and Subtraction

	< > == != <= >=
	Matrix, Vector or Scalar (any value type)
	Scalar2 (boolean type)
	Relational operators

	& | !

and or not
	Scalar
	Scalar
	Boolean operators

	=
	-
	-
	Assignment (Lowest precendence). Note: associativity of assignment “a = b = 3” is not supported

1 If one of the operands is a matrix, output is matrix; otherwise it is scalar.

2 Support for Matrix-vector operations
Example:

A = matrix("[1 2; 3 4]")

B = matrix("[2 2; 2 2]")

C = A*B

print("Element-wise matrix-matrix multiplication: " + scalar(C[0, 0]) + ", " + scalar(C[0, 1]) + ", " + scalar(C[1, 0]) + ", " + scalar(C[1, 1]))

Column_V = matrix("[2; 3]")

C = A*Column_V

print("Element-wise matrix-vector multiplication1: " + scalar(C[0, 0]) + ", " + scalar(C[0, 1]) + ", " + scalar(C[1, 0]) + ", " + scalar(C[1, 1]))

Row_V = matrix("[2 3]")

C = A*Row_V

print("Element-wise matrix-vector multiplication2: " + scalar(C[0, 0]) + ", " + scalar(C[0, 1]) + ", " + scalar(C[1, 0]) + ", " + scalar(C[1, 1]))

C = dot(A,B)

print("Matrix multiplication: " + scalar(C[0, 0]) + ", " + scalar(C[0, 1]) + ", " + scalar(C[1, 0]) + ", " + scalar(C[1, 1]))
The output of above script is:

Element-wise matrix-matrix multiplication: 2.0, 4.0, 6.0, 8.0

Element-wise matrix-vector multiplication1: 2.0, 4.0, 9.0, 12.0

Element-wise matrix-vector multiplication2: 2.0, 6.0, 6.0, 12.0

Matrix multiplication: 6.0, 6.0, 14.0, 14.0
Matrix-Vector operation avoids need for creating replicated matrix for certain subset of operations. For example: to compute class conditional probabilities in Naïve-Bayes, without support for matrix-vector operations, one might write below given inefficient script that creates unnecessary and possibly huge replicatedClassSums

ones = full(1, 1, numFeatures)

repClassSums = dot(classSums, ones)

class_conditionals = (classFeatureCounts + laplace_correction) / repClassSums

With support of matrix-vector operations, the above script becomes much more efficient as well as concise:
class_conditionals = (classFeatureCounts + laplace_correction) / classSums
Matrix Indexing

Matrix indexing syntax is similar to Python:

· Indexes are zero-based

· Range of indexes are denoted by i:j where i is the starting index, j is the stopping index. In PyDML, the step size is implicit and is always equal to 1.

For example, assume that a matrix X is 4X4 matrix with following values:

1.0 2.0 3.0 4.0

5.0 6.0 7.0 8.0

9.0 10.0 11.0 12.0

13.0 14.0 15.0 16.0

Then, the matrix Y = X[0:2, 1:3] will be 2X2 matrix with following values:
2.0 3.0

6.0 7.0

Examples:

	X[i,j]
	# access cell in row i, column j of X.

	X[0,]
	# access the 1st row of X

	X[,1]
	# access the 2nd column of X

	X[,]
	# access all rows and columns of X

Statements

A script is a sequence of statements with the default computation semantics being sequential evaluation of the individual statements. Like Python, a statement is terminated by a newline. The types of statements supported are
· assignment,

· control structures (while, if, for), and

· user-defined function declaration.

Assignment Statement

An assignment statement consists of an expression, the result of which is assigned to a variable. The variable gets the appropriate data type (matrix or scalar) and value type (float, int, str, bool) depending on the type of the variable output by the expression.
Examples:

max_iteration is of type integer
max_iteration = 3
V has data type matrix and value type double.
V = dot(W, H)
Control Statements

PyDML conforms to python syntax for control statements with following exceptions:

· PyDML has an additional parfor construct
· ‘break’, ‘return’ and ‘continue’ statements are not supported in PyDML
· “else” clause for ‘for’ and ‘while’ statements are not supported.
· “elif” clause is not supported in PyDML.
While Statement

The syntax for a while statement is as follows:

while (predicate):

statement1

statement2

...

The statements in the while statement body are evaluated repeatedly until the predicate evaluates to true. The while statement body must be indented, even if the body only has a single statement.

The predicate in the while statement consist of operations on scalar variables and literals. The body of a while statement may contain any sequence of statements.

Example:

while((i < 20) and (!converge)):

H = H * dot(transpose(W), V) / dot(transpose(W), dot(W, H))

W = W * dot(V, transpose(H)) / dot(W, dot(H, transpose(H)))

i = i + 1
If Statement

The syntax for an if statement is as follows:
if (predicate) :

statement1

statement2

...
[else :

statement1

statement2

...
]?

The If statement has two bodies: the if body (evaluated if the predicate evaluates to true) and the optional else body (evaluated otherwise). Both, the statements in the if body and else body must be indented, even if the body only has a single statement. The if body and else body may contain any sequence of statements.

 Examples:

example of if statement
if(i < 20) :

converge = false
else :

converge = true

For Statement

The syntax for a for statement is as follows.
for (var in <for_predicate>) :

<statement>*

<for_predicate> ::= [lower]:[upper] | seq ([lower], [upper], [increment])

var is an integer scalar variable. lower, upper, and increment are integer expressions.

[lower]:[upper] defines a sequence of numbers with increment 1: {lower, lower + 1, lower + 2, …, upper – 1, upper}.

Similarly, range([lower],[upper],[increment]) defines a sequence of numbers: {lower, lower + increment, lower + 2(increment), … }. For each element in the sequence, var is assigned the value, and statements in the for loop body are executed.

The for loop body may contain any sequence of statements. The statements in the for statement body must be indented, even if the body only has a single statement.

Example:

example for statement
A = full(0, 4, 4)

val = 1

for(i in 0:3):

 for(j in 0:3):

 A[i,j] = val

 val = val + 1
ParFor Statement

The syntax and semantics of a parfor statement are equivalent to a for statement except for the different keyword and a list of optional parameters.
parfor (var in <for_predicate> <parfor_paramslist>) :

<statement>*

	 <parfor_paramslist>
	::= <,<parfor_parameter>>*

	<parfor_parameter>
	::= check = <dependency_analysis>

	||= par = <degree_of_parallelism>
	

	||= mode = <execution_mode>
	

	||= taskpartitioner = <task_partitioning_algorithm>
	

	||= tasksize = <task_size>
	

	||= datapartitioner = <data_partitioning_mode>
	

	||= resultmerge = <result_merge_mode>
	

	||= opt = <optimization_mode>
	

	<dependency_analysis>
	is one of the following tokens: 0 1

	<degree_of_parallelism>
	is an arbitrary integer number

	<execution_mode>
	is one of the following tokens: LOCAL REMOTE_MR

	<task_partitioning_algorithm>
	is one of the following tokens: FIXED NAIVE STATIC FACTORING FACTORING_CMIN FACTORING_CMAX

	<task_size>
	is an arbitrary integer number

	<data_partitioning_mode>
	is one of the following tokens: NONE LOCAL REMOTE_MR

	<result_merge_mode>
	is one of the following tokens: LOCAL_MEM LOCAL_FILE LOCAL_AUTOMATIC REMOTE_MR

	<optimization_mode>
	is one of the following tokens: NONE RULEBASED HEURISTIC GREEDY FULL_DP

If any of these parameters is not specified, the following respective defaults are used: check = 1, par = [number of virtual processors on master node], mode = LOCAL, taskpartitioner = FIXED, tasksize =1, datapartitioner = NONE, resultmerge = LOCAL_AUTOMATIC, opt = RULEBASED.
User-defined Function (UDF)

The UDF function declaration statement provides the function signature, which defines the formal parameters used to call the function and return values for the function. The function definition specifies the function implementation, and can either be a sequence of statements or external packages / libraries. If the UDF is implemented in a SystemML script, then UDF declaration and definition occur together.
	Python
	PyDML
	Description
	

	def square(x:int) -> int:

return x*x

Also, following declaration is valid in Python:

def square(x):

return x*x
	def square(x:int) -> (y:int):

y = x*x

	SystemML engine require formal parameters declaration
	Modified Python syntax because PyDML does not have return statement.

	square(square(2))
	Not supported
	Composed function invocation
	Not supported for user-defined function but supported for built-in function. For example: min(3, max(1, 2)) supported

	square(2) + 3.1
	Not supported
	Function as part of expression
	Not supported for user-defined function but supported for built-in function. For example: min(3, 1) + 1.1 supported

	z = 10

def square(x):

 y = x*x + z

 return y

n = square(5)
	Not supported
	Accessing global variables in functions
	Not supported

In addition, PyDML supports external functions which are declared as follows:
defExternal functionName([<var>:<DataType>? <ValueType>,]*) -> ([<var>:<DataType>? <ValueType>,]*) implemented in ([userParam=value])

Examples:
example of a UDF defined in PyDML

def matrixMean(A:matrix[float]) -> (m:float):

 m = A.sum()/len(A)

function invocation

X = matrix("[1 2; 3 4]")

a = matrixMean(X)

example of a UDF defined in PyDML with multiple return values

def minMax(M:matrix[float]) -> (minVal:float, maxVal:float):

 minVal = M.min()

 maxVal = M.max()

function invocation

[b, c] = minMax(X)

print("Return values:" + a + ", " + b + ", " + c)
example of an external UDF
defExternal kmeans(D:matrix[float], k:int) -> (C:matrix[double], centroids:matrix[float]) implemented in (className=com.ibm.nimbledriver, configFile=kmeans.config.xml)

Command-line arguments

Since most algorithms require arguments to be passed from command line, DML supports command-line arguments. The command line parameters are treated as constants (similar to arguments passed to main function of a java program). The command line parameters can be passed in two ways:
1. As named arguments (recommended):

-nvargs param1=7 param2=”abc” param3=3.14

2. As positional arguments (deprecated):

-args 7 “abc” 3.14

The named arguments can be accessed by adding “$” before the parameter name, i.e. $param1. On the other hand, the positional parameter are accessible by adding “$” before their positions (starting from index 1), i.e. $1. A string parameter can be passed without quote. For example, param2=abc is valid argument, but it is not recommend.
Sometimes the user would want to support default values in case user does not explicitly pass the corresponding command line parameter (in below example: $nbrRows). To do so, we use the ifdef function which assigns either command line parameter or the default value to the local parameter.

local_variable = ifdef(command line variable, default value)

Example: Script in file test.pydml
localVar_nbrRows=ifdef($nbrRows , 10)

M = random.uniform(localVar_nbrRows, $nbrCols, 0, 1)
write(M, $fname, format="csv")
print("Done creating and writing random matrix in " + $fname)

In above script, ifdef($nbrRows, 10) function is a short-hand for “ifdef($nbrRows) then $nbrRows else 10”

Let’s assume that the above script is invoked using following the command line values:

> hadoop jar SystemML.jar -f test.dml -python -nvargs fname=test.mtx nbrRows=5 nbrCols=5

In this case, the script will create a random matrix M with 5 rows and 5 columns and write it to the file “text.mtx” in csv format. After that it will print the message “Done creating and writing random matrix in test.mtx” on the standard output.

If however, the above script is invoked from the command line using named arguments:

> hadoop jar SystemML.jar -f test.dml -python -nvargs fname=test.mtx nbrCols=5

Then, the script will instead create a random matrix M with 10 rows (i.e. default value provided in the script) and 5 columns.

It is important to note that the placeholder variables should be treated like constants that are initialized once, either via command line-arguments or via default values at the beginning of the script.

Each argValue passed from the command-line has a scalar data type, and the value type for argValue is inferred using the following logic:

if (argValue can be cast as int)

 Assign argValue int value type

else if (argValue can be cast as float)

 Assign argValue float value type

else if (argValue can be cast as bool)

 Assign argValue bool value type

else

 Assign argValue str value type

In above example, the placeholder variable $nbrCols will be treated as integer in the script. If however, the command line arguments were “nbrCols=5.0”, then it would be treated as a double.

NOTE: argName must be a valid identifier.

NOTE: If argValue contains spaces, it must be enclosed in double-quotes.

NOTE: The values passed from the command-line are passed as literal values which replace the placeholders in the PyDML script, and are not interpreted as PyDML.

Built-in functions

Matrix Construction, Manipulation, and Aggregation Built-In Functions
	Array notation
	Matrix notation
	PyDML
	Description
	Comments

	concatenate((x,y), axis=1)
	concatenate(x,y)
	Append columns of two matrices
	Modified Python syntax because array is not supported

	concatenate((x,y), axis=0)
	Not supported
	Append rows of two matrices
	Not supported

	x.min(), x.max()
	x.min(), x.max()
	Minimum/maximum value in a matrix
	Same as Python

	min((2,3)), max((2,3)), min(2,3), max(2,3)
	min(2,3), max(2,3)
	Minimum/maximum value between two scalars
	Modified Python syntax because array is not supported

	min((2,3,4)), max((2,3,4))
	Not supported
	Minimum/maximum value between three or more scalars
	Not supported

	minimum(x,2)
	minimum(x,2), maximum(x,2)
	Element-wise minimum
	Same as Python

	x.shape[0]
	x.shape(0)
	Number of rows in matrix x. Technically, shape returns a tuple.
	Modified Python syntax because array is not supported

	x.shape[1]
	x.shape(1)
	Number of columns in matrix x
	Modified Python syntax because array is not supported

	len(x)
	len(x)
	Number of cells in the matrix
	Same as Python

	prod(x)
	prod(x)
	Product of all the cells of the matrix
	Same as Python

	random.uniform(0, 1, (10,20))
	matrix(random.uniform(0, 1, (10,20)))
	random.uniform(10, 20, 0.2, 0, 1)
	Random matrix with uniform distribution. Python does not have parameter to support sparsity.
	Modified Python syntax to support sparsity

	random.normal(0, 1, (10,20))
	matrix(random.normal(0, 1, (10,20)))
	random.normal(10, 20, 0.2)
	Random matrix with standard normal distribution. Python does not have parameter to support sparsity. DML doesnot support non-standard normal directly
	Modified Python syntax to support sparsity. Additionally, the only acceptable value for mean & variance is 0, 1. This can be later extended by simple translation operation.

	x = full((4, 4), 3)
	x = matrix(full((4, 4), 3))
	x = full(4, 4, 3)
	Constant initialization
	Modified Python syntax because array is not supported

	y = array([[1,2,3],[4,5,6]])
	y = matrix("[1 2 3; 4 5 6]")
	y = matrix("[1 2 3; 4 5 6]")
	String initializer
	Same as Python

	z = y.reshape((3, 2))
	z = y.reshape(3, 2)
	Reshaping the matrix
	Modified Python syntax because array is not supported

	x33[~all(x33 == 0, axis=0)]
	removeEmpty(x, axis=0)
	Removes all empty rows or columns from the input matrix target X according to the specified margin.
	Modified to support axis

	y[y==3] = 2
	y = replace(y, 3, 2)
	Creates a copy of input matrix X, where all values that are equal to the scalar pattern s1 are replaced with the scalar replacement s2.
	Added in PyDML

	range (10, 200, 10)
	range (10, 200, 10)
	Creates a single column vector with values starting from <from>, to <to>, in increments of <increment>
	Same as Python

	sum(x), x.sum()
	sum(x), x.sum()
	Sum of all cells in matrix
	Same as Python (also see row-wise and column-wise sum)

Matrix and/or Scalar Comparison Built-In Functions

	x.argmax(axis=1)

argmax(x, axis=1)
	x.argmax(axis=1)

argmax(x, axis=1)
	Row-wise computation -- for each row, find the max value, and return its column index.
	Same as Python

	x.argmin(axis=1)

argmin(x, axis=1)
	x.argmin(axis=1)

argmin(x, axis=1)
	Row-wise computation -- for each row, find the minimum value, and return its column index.
	Same as Python

Casting Built-In Functions

	Not supported,

matrix(2)
	scalar(x),

matrix(2)
	Data type conversion
	Partly similar to Python

	· float(1),

· int(2.1),

· bool(1)

	· float(1),

· int(2.1),

bool(1)
	Value type conversion
	Same as Python

Statistical Built-In Functions

	mean(x), avg(x), x.mean(), x.avg()
	mean(x), avg(x), x.mean(), x.avg()
	Return the mean value of all cells in matrix
	Same as Python

	from scipy.stats import *

moment(x,2)
	moment(x,2)
	Returns the kth central moment of values in a column matrix V, where k = 2, 3, or 4. It can be used to compute statistical measures like Variance, Kurtosis, and Skewness. This function also takes an optional weights parameter W.
	Same as Python

	x.sum(axis=0), x.mean(axis=0), x.max(axis=0), x.min(axis=0)
	x.sum(axis=0), x.mean(axis=0), x.max(axis=0),

x.min(axis=0)
	Column-wise computations -- for each column, compute the sum/mean/max/min of cell values
	Same as Python. Note: axis=0 maps to column-wise computation and axis=1 maps to row-wise computation

	x.sum(axis=1), x.mean(axis=1), x.max(axis=1), x.min(axis=1)
	x.sum(axis=1), x.mean(axis=1), x.max(axis=1), x.min(axis=1)
	Row-wise computations -- for each row, compute the sum/mean/max/min of cell value
	Same as Python

	cov(x,y)[1,0]
	cov(x,y)
cov(x,y,w)
	Returns the covariance between two 1-dimensional column matrices x and y. The function takes an optional weights parameter w. All column matrices x, y, and y (when specified) must have the exact same dimension.
	Special case of Python

	Not supported directly as part of Scipy/Numpy package as SystemML’s version is heavily overloaded.

	F = table(A, B)
F = table(A, B, C)

Also, additional parameters can be provided to handle padding/truncation, for example: table(F, 1, maxDomain, 1).
	Returns the contingency table of two vectors A and B. The resulting table F consists of max(A) rows and max(B) columns.
More precisely, F[i,j] = |{ k | A[k] = i and B[k] = j, 1 ≤ k ≤ n }|, where A and B are two n-dimensional vectors.
In an alternative form, it takes an optional third parameter C which is a vector that has same dimensions as A and B.
In this context, F[i,j] = ∑kC[k], where A[k] = i and B[k] = j (1 ≤ k ≤ n).
	Added in PyDML

	from scipy.stats import *

norm.cdf(0.4, 0, 1)

expon.cdf(0.7, 0.5)

chi.cdf(0.3, 100)

f.cdf(2, 100, 200)

t.cdf(1, 100)
	norm.cdf(0.4, 0, 1)

expon.cdf(0.7, 0.5)

chi.cdf(0.3, 100)

f.cdf(2, 100, 200)

t.cdf(1, 100)
	Returns the cumulative probability P[X <= q] where is X is random variable whose distribution is specified by dist. dist is: "normal" (Normal/Gaussian), "exp" (Exponential), "chisq" (Chi-square), "f" (F), and "t" (T).
	Same as Python

	Not supported directly as part of Scipy/Numpy package as SystemML’s version is heavily overloaded.
	aggregate(target=X, groups=G, fn="..." [,weights = W])
Where target= X <(n x 1) matrix>, groups = G <(n x 1) matrix>, fn="..." [,weights= W<(n x 1) matrix>]). The parameter fn takes one of the following functions: "count", "sum", "mean", "variance", "centralmoment". Output is column matrix whose number of rows is equal to the number of groups (or distinct values) present in G
	Splits/groups the values in target X into subsets according to the values present in G, and computes the summary statistic for each group using fn. The result is a column matrix where each row corresponds to the computed statistic for a distinct group in G. The function also takes an optional weights matrix W.
	Added in PyDML

	>>> p2 = percentile(a, [75])

>>> x = a[a > percentile(a, [25])]

>>> mean(x[x <= p2])
	interQuartileMean(X)
interQuartileMean(X, W)
	Returns the mean of all x in X such that x>quantile(X, 0.25) and x<=quantile(X, 0.75). X, W are column matrices (vectors) of the same size. W contains the weights for data in X.
	Added in PyDML

	percentile(x,p)
	percentile(x,p)

percentile(x, w, p)
	The p-quantile for a random variable X is the value x such that Pr[X<x] <= p and Pr[X<= x] >= p
let n=nrow(X), i=ceiling(p*n), quantile() will return X[i]. p is a scalar (0<p<1) that specifies the quantile to be computed. Optionally, a weight vector may be provided for X. Python’s function doesnot support weight vector.
	Similar to Python

	median(x)
	median(x) fails with out of bounds error
	median(x), median(x, w)
	Computes the median in a given column matrix of values
	Same as Python

	y.cumsum(axis=0),

cumsum(y, axis=0)
	y.cumsum(axis=0),

cumsum(y, axis=0)
	Column prefix-sum (For row-prefix sum, use cumsum(t(X))
	Same as Python

Mathematical and Trigonometirc Built-In Functions
	exp(x), log(x), abs(x), sqrt(x), floor(x), ceil(x), round(x)
	exp(x), log(x), abs(x), sqrt(x), floor(x), ceil(x), round(x)
	Apply mathematical function on input (cell wise if input is matrix)
	Same as Python

	
	
	
	

	sin(x), cos(x), tan(x), arcsin(x) arccos(x), arctan(x)
	sin(x), cos(x), tan(x), arcsin(x) arccos(x), arctan(x)
	Apply trigonometric function on input (cell wise if input is matrix)
	Same as Python

	
	
	
	

Linear Algebra Built-In Functions
	diag(x)
	diag(x)
	Create diagonal matrix from (n x 1) or (1 x n) matrix, or take diagonal from square matrix
	Same as Python

	[w, V] = linalg.eig(x)
	[w, V] = eig(x)
	Computes Eigen decomposition of input matrix A. The Eigen decomposition consists of two matrices V and w such that A = V %*% diag(w) %*% t(V). The columns of V are the eigenvectors of the original matrix A. And, the eigen values are given by w.

A is a square symmetric matrix with dimensions (m x m). This function returns two matrices w and V, where w is (m x 1) and V is of size (m x m).
	Same as Python (without package name linalg)

	import scipy

import scipy.linalg

 [P, L, U] = scipy.linalg.lu(A)
	[P, L, U] = lu(A)
	Computes Pivoted LU decomposition of input matrix A. The LU decomposition consists of three matrices P, L, and U such that P %*% A = L %*% U, where P is a permutation matrix that is used to rearrange the rows in A before the decomposition can be computed. L is a lower-triangular matrix whereas U is an upper-triangular matrix.
	Same as Python (without package name linalg)

	[Q, R] = linalg.qr(A)
	[H, R] = qr(A)
Note, we will still be returning matrix of householder reflector vectors H instead of Q.
	Computes QR decomposition of input matrix A using Householder reflectors. For efficiency purposes, this function returns the matrix of Householder reflector vectors H instead of Q (which is a large m x m potentially dense matrix).
	Same as Python (without package name linalg). Also instead of Q, we will return H.

	linalg.solve(a, b)
	solve(a, b)
	Computes the least squares solution for system of linear equations A %*% x = b i.e., it finds x such that ||A%*%x – b|| is minimized. The solution vector x is computed using a QR decomposition of A.
A is a matrix of size (m x n) and b is a 1D matrix of size m x 1. This function returns a 1D matrix x of size n x 1.
	Same as Python (without package name linalg)

	x.T

x.transpose()
	x.transpose()
	Transpose a matrix
	Same as Python (but won’t support attribute x.T)

	x.trace()

trace(x)
	x.trace()

trace(x)
	Return the sum of the cells of the main diagonal square matrix
	Same as Python

Read/Write Built-In Functions

Read/Write supports reading/writing of all data types (matrices, scalars) from/to HDFS files. Associated with each data file is a optional metadata file (MTD) which stores metadata information about the content of the data file. For data files generated by SystemML, a MTD file will automatically be generated. The name of the MTD file associated with the data file <filename> must be <filename>.mtd. A user can provide an MTD file for their own data as well.
File formats and MTD files

SystemML supports 3 external file formats:

· (i,j,v)-format,

· MatrixMarket format,

· Delimited or CSV format.

The (i,j,v)-format is a sparse format in which the cell values of a matrix are serialized in space separated triplets of rowId, columnId, and cellValue with rowId and columnId indices being 1-based. The MatrixMarket format (see open source R documentation) only supports headers of "%%MatrixMarket matrix coordinate real general". The (i,j,v) formats can be stored in text form, or binary. The binary format can only be read and written by SystemML.

As an example, see the content of a matrix file X.mtx in text format with 4 non-zero cells. The matrix has 10 rows and 8 columns.

1 1 4.0
3 4 10.0
5 6 7.0
9 8 20.0

The content of the MTD file X.mtx.mtd associated with data X.mtx is:

{ "data_type": "matrix",
"value_type": "double",
"rows": 10,
"cols": 8,
"nnz": 4,
"format": "text",
"description": { "author": "SystemML" } }

The content of the MTD file scalar_i.mtd associated with a scalar data file scalar_i (which contains the integer scalar value 2)

{"data_type": "scalar",
"value_type": "double",
"format": "text",
"description": { "author": "SystemML" } }

The MTD file contains a single JSON object with the attributes described below.

	 Parameter Name
	Description
	Optional
	Permissible values
	Data type valid for

	data_type
	Indicates the data type of the data
	Yes. Default value is matrix if not specified.
	matrix, scalar.
	matrix, scalar.

	value_type
	Indicates the value type of data

	Yes. Default value is double if not specified
	double, int, string, boolean (Not case-sensitive). Must be double when data_type matrix
	matrix, scalar.

	rows
	Number of rows in matrix
	Yes – only when format=”csv”.
	Any integer > 0
	Matrix

	cols
	Number of columns in matrix
	Yes – only when format=”csv”
	Any integer > 0
	Matrix

	rows_in_block, cols_in_block
	Valid only for binary blocked matrix. Indicate dimensions of blocks
	No. Only valid if matrix in binary blocked format.
	Any integer > 0 .
	matrix in blocked binary format. Valid only when format "binary"

	nnz
	Number of non-zero values
	Yes
	Any integer > 0
	Matrix

	format
	data file format
	Yes. Default value is text
	binary, text, mm, csv
	matrix, scalar. Formats mm and csv are applicable only for matrices.

	Description
	description of the data..
	Yes
	Any valid JSON string
	matrix, scalar.

In addition, when reading/writing delimited or CSV files, the metadata file (mtd file) may contain one or more of the following four attributes.

	 Parameter Name
	Description
	Optional
	Permissible values
	Data type valid for

	header
	Specifies whether the input data file has a header. Header, if exists, must be a single line and it must also be the first line in the file.
	Yes, default value is False.
	true or false
	Matrix

	sep
	Specifies the separator or the delimiter used in the input data file. Note that using a delimiter composed of just numeric values or a dot (decimal point) can be ambiguous and may lead to unexpected results.
	Yes, default value is ‘,’ (comma)
	A quoted string
	Matrix

	fill
	Only valid when reading CSV files. It specifies whether or not to fill the empty fields in the input file. Empty fields are denoted by consecutive separators/delimiters. If fill=true then every empty field is filled with the value specified by “default” attribute. An exception is raised if fill=false and and the input file has one or more empty fields.
	Yes, default is true.
	true or false
	Matrix

	default
	Only valid when reading CSV files and fill=true. It specifies the special value with which all empty values are filled while reading the input matrix.
	Yes, default value is 0 (zero)
	Any double value
	Matrix

	sparse
	Only valid when writing CSV files. It specifies whether or not to explicitly output zero (0) values. Zero values are written out only when sparse=false.
	Yes, default value is true.
	true or false
	Matrix

Furthermore, following additional notes apply when reading and writing CSV files.

· Every line in the input file must have the same number of fields or values.

· Input file can only contain numeric values separated by the delimitor (as specifed by sep).

· While writing CSV files, if header=true is specified then the header line is formed as a concatenated string of column names separated by delimiters. Columns are of the form "C<column_id>". For a matrix with 5 columns, the header line would look like: "C1,C2,C3,C4,C5" (assuming sep=",").

Load Built-In Function

The syntax of a read statement is as follows:
load(“inputfile”, [list of parameters])

where inputfile is the path to the data file in HDFS. The list of parameters is the same as provided in MTD files. For "inputfile" parameter, the user can use constant string concatenation to give the full path of the file, where "+" is used as the concatenation operator. However, the file path must evaluate to a constant string at compile time. For example, “/my/dir”+“filename.mtx” is valid parameter but “/my/dir”+“filename”+i+“.mtx” is not (where i is a variable).

The user has the option of specifying each parameter value either in the MTD file, the read function invocation, or in both locations. However, parameter values specified in both the read invocation and MTD file must have the same value. Also, if a scalar value is being read, then format cannot be specified. The read invocation in SystemML is parameterized as follows during compilation.

1. Default values are assigned to parameters with default values.

2. Parameters provided in load() either fill in values or override defaults.

3. SystemML will look for the MTD file at compile time in the specified location (same path as data file, filename for MTD file is same name as data file with ".mtd" appended).

4. If all non-optional parameters are specified or conflicting values are detected, then an exception is thrown.

Examples:

read a matrix from HDFS with path "in/v".
Defaults for data_type and value_type are used.
V = load("in/v", rows=10, cols=8, format="text");

read a matrix from HDFS with path "in/v".
The user specifies "in" as the directory and “v” as
the file name and uses constant string concatenation.
dir = "in";
file = "v";
V = load(dir+file, rows=10, cols=8, format="text");

read a matrix data file from HDFS with an MTD file available
(MTD file path: in/data.mtd)
V = load("in/data");

read a scalar integer value from HDFS file "in/scalar_i"
V = load(“in/scalar_i”,data_type=”scalar", value_type="int");

	V = fromfile(dir+file, dtype=dt)

V = load(dir+file)

	V = load(dir+file, rows=10, cols=8, format="text")
	Read matrix from file:

· (i,j,v)-format,

· MatrixMarket format,

· Delimited or CSV format.

	Similar naming as Python

Save Built-In Function

save() is used to persist scalar and matrix data to files in HDFS. The syntax of save() is below. The parameters are described in the table. Note, that the set of supported parameters for save() is NOT the same as for load(). SystemML writes a MTD file for the written data.
save(identifier, “outputfile”, format = “fmt”)

The user can use constant string concatenation in “outputfile” parameter to give the full path of the file, where "+" is used as the concatenation operator.

	 Parameter Name
	Description
	Optional
	Permissible Values

	identifier
	variable whose data is to be written to a file. Can be any data type: Matrix, Scalar.
	No.
	Any non-keyword string

	outputfile
	
	No
	Any valid filename

	Format
	Valid for all three datatypes.
Indicates the output file format.
	Yes
	text, binary, mm, csv
Constraints: when datatype is matrix, can be text or binary. When datatype is scalar, can only be text

 Examples:

write V to HDFS file “out/file”, in text format.
Create MTD file out/file.mtd
save(V, "out/file");

out/file.mtd:

{ "data_type": "matrix",
"value_type": "double",
"rows": 10,
"cols": 8,
"nnz": 4,
"format": "text”,
"description": { "author": "SystemML" } }

Write V to HDFS file”out/file” in binary blocked format:

save(V, “out/file”, format=”binary”);

 out/file.mtd:

{ "data_type": "matrix",
"value_type": "double",
"rows": 10,
"cols": 8,
"nnz": 4,
"rows_in_block": 1000,
"cols_in_block": 1000,
"format": "binary",
"description": { "author": "SystemML" } }

Write a scalar integer value to HDFS file “out/scalar_i”

save(x, "out/scalar_i");

out/scalar_i.mtd:

{"data_type": "scalar",
"value_type": "double",
"format": "text",
"description": { "author": "SystemML" } }

Unlike read(), write() function does not need a constant string expression, so following example will work:

A = rand(rows=10, cols=2)

dir = "tmp/"

i = 1

file = "A" + i + ".mtx"

save(A, dir+file, format="csv")
	V.tofile(dir+file)

save(dir+file, V)
	save(V, "out/file", format=”..”)
	persist scalar and matrix data to files in HDFS
	Similar naming as Python

Other Built-In Functions
	print(scalar or matrix)
	print(scalar)
	Prints the value of a scalar variable x. This built-in takes an optional string parameter.
	Similar naming as Python (but can only print scalar)

	print(“Message”)

sys.exit(error code)
	stop(“Message”)
	Halts the execution of DML program by printing the message that is passed in as the argument.

Note that the use of stop() is not allowed inside a parfor loop.
	Added in PyDML

Modules

A module is a collection of UDF declarations. For calling a module, source(...) and setwd(...) are used to read and use a source file.

Syntax:
setwd(<file-path>);
source(<DML-filename>) [as <alias>]

If the functions don't conflict with any built-in functions, then one can use Example 1, and import everything into default namespace. Note that setwd(...) and source(...) do not support $-parameters. Also we do not support nested namespaces.
Example 1:
if the file is in .\some_dir\module.dml, and has method LR(...)
setwd(".\some_dir");
source("module.dml");
X = read($1);
y = read($2);
w = LR(X,y) # call the method LR
LR is in default namespace

Example 2:

if the file is in .\some_dir\module.dml, and you want the
methods in module.dml to be imported into namepace myNS
setwd(".\some_dir");
source("module.dml") as myNS
X = read($1)
y = read($2)
w = myNS.LR(X,y) # call the method LR, which is in namespace myNS.

	import package-name as <alias>
	source(<DML-filename>) [as <alias>]
	Importing a module (collection of UDF in DML). The difference is that python (like java) finds the appropriate path (like classpath).
	Added in PyDML because SystemML donot have package-filepath resolution

	Not supported
	setwd(<file-path>)
	Set working directory. This is little tricky as this function will be called before import (which is usually the first statement in python)
	Added in PyDML

Reserved Keywords

Reserved keywords cannot be used as variable names.

All reserved keywords are case-sensitive.

	if
	else
	while
	for
	parfor

	True
	False
	ifdef
	in
	as

	def
	defExternal
	implemented
	source
	setwd

	and
	or
	bool
	
	

	
	
	
	
	

	
	
	
	
	

Invocation of SystemML

To execute a PyDML script, SystemML is invoked as follows:
hadoop jar SystemML.jar [-? | -help | -f] <filename> (-config=<config_filename>)? -python (-args | -nvargs)? <args-list>?

Where

-f <filename>: will be interpreted as a path to file with DML script. <filename> prefixed with hdfs or gpfs is assumed path in DFS, otherwise <filename> treated as path on local file system --debug: (optional) run in debug mode

-python: (optional) parse PyDML

-config=<config_filename>: (optional) use config file located at specified path <config_filename>. <config_filename> prefixed with hdfs or gpfs is assumed path in DFS, otherwise <config_filename> treated as path on local file system (default value for <config_filename> is ./SystemML-config.xml)

-args <args-list>: (optional) parameterize DML script with contents of <args-list>, which is ALL args after -args flag. Each argument must be an unnamed-argument, where 1st value after -args will replace $1 in DML script, 2nd value will replace $2 in DML script, and so on.

-nvargs <args-list>: (optional) parameterize DML script with contents of <args-list>, which is ALL args after -nvargs flag. Each argument must be named-argument of form name=value, where value will replace $name in DML script.

-?, or -help: show this help.

NOTE: Please refer to section on Command-line Arguments for more details and restrictions on usage of command-line arguments to DML script using –args <args-list> and –nvargs <args-list>.

Examples:
Run a script in local file foo.dml:
hadoop jar SystemML.jar -f foo.pydml -python

An example debug session:

First, you need to call SystemML using –debug flag.

$ hadoop jar SystemML.jar -f test.dml –debug -python
You can see the line numbers in your PyDML script by “list” (or simply “l”) command:

(SystemMLdb) l

line 1: A = matrix("[1 2; 3 4; 5 6]")

line 2:

line 3: B = cumsum(A)

line 4: #print(B)

line 5: print(B.sum())

The next step is usually to set a breakpoint where we need to analyze the state of our variables:
(SystemMLdb) b 5

Breakpoint added at .defaultNS::main, line 5.
Now, that we have set a breakpoint, we can start running our DML script:

(SystemMLdb) r

Breakpoint reached at .defaultNS::main instID 15: (line 5).

(SystemMLdb) p B

1.0000 2.0000

4.0000 6.0000

9.0000 12.0000

3 | Page

