
The Reactos Project

An Open Source OS Platform for
Learning

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

Speaker Info

• Alex Ionescu

• Lead Kernel Developer for ReactOS Project.
Have been working on the project for almost 3
years.

• Software Engineering Student in Montreal,
Quebec (Concordia) and Technical Microsoft
Student Ambassador.

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

Outline

• About the Project
– Description
– Motivation and Goals
– Current Status

• ReactOS Architecture
– Kernel
– Native + Subsystems
– User (Win32)

• ReactOS for Academia
– The OS Perspective
– The Software Engineering Platform
– Google Summer of Code 2007

• Roadmap for 2007
• Getting Involved

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

ABOUT REACTOS
Implementation, Motivation, Goals, and Current Status

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

Description

• ReactOS is an operating system written from scratch.
• It is an NT-based kernel and closely follows NT architecture.
• NT is a 32-bit Windows-family OS written in the early 90ies

by Microsoft and constantly updated by new releases.
Windows 2000, XP, 2003, Vista are different versions of NT.

• ReactOS targets Windows XP/2003 (NT 5.1/5.2).
• ReactOS has been in development for 10 years, some code

is based on NT 4 architecture, while some APIs support
extensions added by NT 6 (Vista).

• ReactOS includes the kernel, Win32 libraries, system
libraries and drivers, base applications, system
components, subsystem support and window manager.

• ReactOS excludes anything not part of an NT installation.

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

License and Shared Code

• ReactOS is GPL 2.0 licensed, but it includes 3rd-party code under its
respective compatible licenses.

• 3rd party code includes:
– Wine makes up the bulk of ReactOS’s Win32 Libraries, which are

mostly left untouched.
– Freetype provides font rendering support for the window manager.
– libxml, libpng, bzlib, adns provide support for specialized Win32

libraries and applications.
– MESA provides software OpenGL rendering.

• In return, ReactOS code has been used by:
– Captive, for NTFS write support in Linux.
– Some patches went upstream into Wine.
– NDISWrapper.
– LinuxBIOS support for booting NT.

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

More on Cooperation

• Due to the large size of our codebase and Win32
requirements, several patches and improvements
have been made by our developers:
– MinGW DDK Headers.
– Patches to MinGW GCC and Binutils.
– Patches to QEmu and KQEmu.

• As we begin supporting more Win32 specialized
APIs, more libraries will probably by imported,
especially for security APIs and GDI+ support.

• However, we will never include whole
applications or APIs not present in Windows.

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

Motivation

• NT 5.2 provides a rich and extensible architecture
with a highly scalable and optimized set of
components.

• A secure and reliable OS, written for C2 security
level certification, and updated to B1 for Vista.

• Also a great learning opportunity and research
material for students and academia.

• Runs 95%+ of all computer software and drivers,
most pervasive consumer OS on the planet.

• But…

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

Motivation

• Plagued by bad design decisions made early-on in 16-bit Windows
9x history but kept for compatibility.

• Plagued by a myriad of hacks to support badly written applications
and drivers from 3rd party developers.

• Plagued by bad design decisions still being made to maintain
corporate agenda (DRM, Driver Signing, etc).

• Plagued by bugs in bundled software (Internet Explorer/Windows
Media Player/Outlook Express) and bad security decisions (users
run as Administrators, etc) which undermined architectural security
and reliabilty.

• Closed source, costly, poorly documented in regards to system
architecture and undocumented functionality (compared to
competing FOSS operating systems).

• Most extensibility features kept undocumented and not open to 3rd

party modification.

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

Goals

• ReactOS aims to offer all of the features and performance
of NT without all the hacks, restrictive design decisions and
license restrictions.

• It aims to offer no-cost Windows compatibility at a level no
other solution can.

• It aims to document the undocumented, and to provide
binary-compatible components which would be used to
provide extensibility.

• Great teaching platform for academia. UNIX/Linux are good
to learn from, but NT does some interesting and different
things that deserve the same attention.

• Will not include applications such as IE, OE or WMP. Users
will be encouraged to install FireFox, ThunderBird,
OpenOffice, Mplayer, etc.

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

Current Status

• Large parts of the kernel are now fully compatible with
Windows 2003 SP1: Executive, Kernel Core (Scheduling,
Dispatching, Interrupts, etc), HAL, Local Procedure Call,
Process and Thread Management, and most of I/O support
(except PnP).

• Other parts are totally foreign compared to NT design,
notable the Cache Controller, Configuration Manager
(Registry backend) and Memory Manager.

• Win32 application support largely depends on two
components:
– Win32k – Kernel-mode GUI Server, analogous to X.
– Win32 libraries (gdi32, user32, kernel32, advapi32) – Taken from

Wine.

• Some Win32 functionality depends on kernel behavior.

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

Current Status

• User-mode applications are currently supported in a limited fashion –
specific apps targeted: Firefox, Thunderbird, OpenOffice, etc.

• 90% of application compatibility problems are due to Win32K or subtle
kernel bugs.

• Theoretically, ReactOS should run at least what Wine runs.
• Drivers have not been fully tested, but several problems exist:

– Some drivers use hacks that depend on offsets, memory locations and
variables specific to NT.

– Other drivers depend on subtle PnP implementation differences (synchronous
vs asynchronous behavior).

– File-system support is bad due to deep Memory Manager/Cache Controller
differences.

• On the other hand, the Windows 2003 USB Stack works nearly perfectly
out of the box, as does, for example, the Named Pipe File System driver.

• NVidia video drivers hack deep into kernel variables, so they need binary
patching.

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

REACTOS ARCHITECTURE
Kernel, Native and User Mode – Subsystem Paradigm

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

NT Kernel Mode Design

• Kernel-mode NT is implemented by one large module (ntoskrnl), a
hardware abstraction layer (HAL), and a set of loadable kernel
modules (drivers and other kernel libraries).

• The kernel is written in portable C, and ports exist (or once existed)
for MIPS, Alpha, AXP64, Sparc, i810, IA64, x86, x86-64, PowerPC.
Some low-level parts are written in assembly for each architecture.

• Therefore a HAL is required to manage hardware-specific
implementations: interrupts, processor initialization, DMA, PCI/ISA
bus access, timers, etc.

• Some drivers are specialized for a type of hardware (PCI driver,
ATAPI driver, IDE driver, etc).

• Other drivers are generic modules, or file systems (Partition
Manager, Volume Manager, NTFS, Mailslot Driver, Kernel Debugger
Library, etc).

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

15hardware interfaces (buses, I/O devices, interrupts,
interval timers, DMA, memory cache control, etc., etc.)

System Service Dispatcher

Task Manager

Explorer

SvcHost.Exe

WinMgt.Exe

SpoolSv.Exe

Service
Control Mgr.

LSASS

O
b

je
ct

M
gr.

Windows
USER,

GDI

File
Syste

m
C

ach
e

I/O Mgr

Environment
Subsystems

User
Application

Subsystem DLLs

System Processes Services Applications

Original copyright by Microsoft Corporation.
Used by permission.

System
Threads

User
Mode

Kernel
Mode

NTDLL.DLL

Device &
File Sys.
Drivers

WinLogon

Session Manager
Services.Exe POSIX

Windows DLLs

P
lu

g an
d

P
lay M

gr.

P
o

w
e

r
M

gr.

Se
cu

rity
R

e
fe

re
n

ce
M

o
n

ito
r

V
irtu

al
M

e
m

o
ry

P
ro

ce
sse

s
&

Th
re

ad
s

Lo
ca

l
P

ro
ce

d
u

re
C

all Graphics
Drivers

Kernel

Hardware Abstraction Layer (HAL)

(kernel mode callable interfaces)

Windows Architecture

C
o

n
figu

ra-
tio

n
 M

gr
(re

gistry)

OS/2

Windows

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

ReactOS Kernel Mode Design

• Nearly identical to NT.
• Current tree has \ntoskrnl directory implementing the

kernel itself. CONFIG_SMP switch exists, mimicking NT’s
NT_UP, to build an SMP-compatible kernel (due to some
tiny differences in dispatching code related to
synchronization – especially spinlocks).

• Also have a \hal directory, with \halx86 and \halxbox.
\halx86 also has UP vs SMP specific code (spinlocks and
interrupts are implemented in the HAL). Main difference
here is that SMP machines have APICs, UP machines have a
PIC, usually.

• No ACPI support yet – HAL uses PIC and legacy timer
hardware.

• Currently the only port being worked on is PowerPC.

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

Kernel Design Differences

• As mentioned earlier, the Cc, Cm APIs are incompatible,
even at the application level. This is a show stopper for
many drivers.

• Mm APIs are more compatible, but internally implemented
differently. This is currently hurting performance and
stability.

• PnP Manager communicates with drivers through IRPs (I/O
Request Packets) and offers notifications/events/operations
in a specific order – ReactOS doesn’t have this fully
compatible yet.

• NT Boot Loader sets up paged mode, IDT, GDT, TSS and low-
level system structures. ReactOS boot loader works in
protected mode only, and the kernel is responsible for
system structures. This is currently being addressed.

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

Native Design - Subsystems

• Microsoft wasn’t originally sure of the target API that the NT platform
would support; original plan was OS/2.

• This later changed to Win32; designers needed to find a way to support
this change, as well as implement POSIX compatibility.

• NT Subsystem model was created, similar to BSD’s architecture.
• NT exposes system calls (Native APIs) that are at the core of the kernel.
• One Session Manager process, written in “native” mode, loads subsystem

processes.
• Subsystem processes register non-native applications, such as Win32 or

POSIX, which come with their own DLLs.
• These DLLs wrap the Native APIs, and sometimes need to call the

subsystem process for functionality not accessible/available through
Native APIs.

• Win32 supports consoles, NT doesn‘t -> subsystem process handles this.

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

19

NtDll.Dll

OS/2
Windows

POSIX

Environment Subsystems

Windows
User/GDI

User
Mode

Executive

Device Drivers Kernel

Hardware Abstraction Layer (HAL)

Kernel
Mode

System
& Service
Processes

1 3 2

KiSystemService

User
Application

Subsystem DLL

LPC

Windows Simplified Architecture

û most Windows Kernel APIs

û most Windows User and GDI APIs (these were formerly part of CSRSS)

û a few Windows APIs3

2

1

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

Native Design - Subsystems

• Some functionality cannot be emulated by subsystem processes in user-
mode alone -> a kernel-mode subsystem server is further required.

• Case in point: NT doesn’t natively support the concept of a GUI, so
Win32K acts as the subsystem server for gdi32 and user32. Kernel32 on
the other hand can wrap native APIs (except for Console API).

• The only DLL NT comes with is ntdll, which has the system call entrypoints
for all the Native APIs, as well as a Runtime Library, with over 600 Rtl* APIs
for various operations (similar to the C runtime library/standard library).

• NTDLL also contains the loader for all PE files, but it doesn’t know how to
register a non-native application with its subsystem server.

• Kernel32 does this, by looking at the subsystem header in the PE file,
which identifies it as POSIX, OS/2, WinCE, WinNT, etc.

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

ReactOS Native Design

• Closely follows NT but allows more extendibility.
• Session Manager allows custom-made subsystems, and

doesn’t have any hardcoded assumptions like NT’s
– SkyOS subsystem was made to run SkyOS applications.

• Win32 subsystem server (Win32K) is present, as well as
the client (csrss), however Win32K APIs are not
compatible (not required to).

• CSRSS communication with Win32 DLLs is done
differently, but this is also not really required from a
compatibility standpoint.

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

Win32 User Mode Design on NT

• Base API located in kernel32. Handles subsystem-
part of loading applications and registering with
subsystem client.

• Console API is also located in kernel32, talks with
subsystem client for functionality.

• Graphical functionality is located in user32 and
gdi32, which talk directly with the subsystem
server through system calls.

• Other DLLs wrap more complex functionality
directly in user-mode, or by calling kernel32
(advapi32, netapi32, winsock, etc).

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

23

OS/2
Windows

POSIX

Environment Subsystems

User
Application

Subsystem DLL

Windows
User/GDI

User
Mode

Executive

Device Drivers Kernel

Hardware Abstraction Layer (HAL)

Kernel
Mode

System
& Service
Processes

Subsystem Components
û API DLLs

ó for Windows: Kernel32.DLL, Gdi32.DLL, User32.DLL, etc.

û Subsystem process

ó for Windows: CSRSS.EXE (Client Server Runtime SubSystem)

û For Windows only: kernel-mode GDI code

ó Win32K.SYS - (this code was formerly part of CSRSS)

3

2

1

3

2

1

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

Win32 User Mode Design on ROS

• Can’t use Wine for kernel32. Our implementation
needs to call ntdll, which then performs the system
calls, while Wine implements the APIs directly in the
DLL.

• Same principle applies for GDI and USER32 libraries. NT
design dictates going through kernel-mode (Win32K) –
Wine does this inline.

• Other DLLs are directly shared from Wine with minimal
changes to support our headers and build system.

• DLLs are supposed to work and be binary compatible
with Windows.

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

REACTOS AND ACADEMIA
Learning with, and from, ReactOS

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

The OS Perspective

• Why is learning about Operating Systems
important?
– Complex challenges.

– Extreme code coverage.

– No assumptions.

– Optimizations are a double-edged sword.

– Gateway to user’s data, privacy and security.

– Reentrancy and concurrency.

– Access to all of machine’s hardware.

– Used on everything from critical live-saving devices to
cars to cell phones.

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

Complex Challenges in an OS

• Defining the number of services to expose can be time-
consuming. How many APIs to write? What should be up to
3rd party developers? What should be native to the kernel?
What should go into user-mode?

• An OS can be deployed on millions of machines very
quickly, but patching can take months/years. Sometimes an
OS is on a ROM – patching is unfeasible. One mistake can
kill your OS in the market.

• Dependencies and backwards compatibility. Eventually, you
will have to change things… will the application base from
3rd party developers break down?

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

Complex Challenges in an OS

• Communicating with the industry: hundreds
of thousands of applications may have been
written for your OS. Do you keep in touch with
the developers, or is your OS a free-for-all?

• Hardware changes. Your CPU architecture may
become obsolete (eg. Apple PPC). Is your code
portable? Did you properly abstract away
hardware implementation details?

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

Extreme Code Coverage

• Code coverage means: how much of the code
that you’ve written is actually executed. A large
function can support 15 flags and 10 code paths
which execute different code. A normal app
might only use 15% of that code.

• In an OS, likely 90%+ will be used at some time or
another, due to the sheer amount of applications.

• Profilers and tracers will usually only show you
the most typical code paths: you need to write
test cases!

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

Extreme Code Coverage

• But even your test cases are done by you. You might
miss bizarre behavior or calling contexts.

• It’s hard to optimize code that has near-100% coverage
(more on that later).

• Finding bugs is also hard: race conditions might only
happen in one path of your code, and only when called
from within another of your functions.

• Are you going to support those three applications that
use a flag nobody else does, or remove the flag and
optimize the routine?

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

No Assumptions

• Making assumptions when writing an OS will
make your code worthless.

• As mentioned, code usage makes it hard to
assume things: everyone is using all your
code.

• There are still cases when some flags/routines
are severely underused. Can something be
done?

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

No Assumptions

• Yes! Large-scale profiling and tracing (instrumentation). Microsoft
case study:
– Checked Build of the OS for developers. Ships with “assertions”.

Assumptions the developers are making, which, if violated, will crash
the OS with the code actually printed. Eg: “Assertion failed: Thread-
>State == Running. Line 285 File ntos\ke\thredsup.c

– Code Coverage builds of Server 2003: Instrumented routines that
logged all calls and flags and calling contexts, then sent the data back
for analysis.

– Internal test labs of up to 10 000 machines, with various
configurations.

– Events such as “Plug Fests”, where 3rd party developers bring in their
drivers and plug them into new kernel functionality. Usually result in
multiple kernel bugs being found.

– Events such as Vista Compatibility Workshops, where developers
brought their apps and tested them under Vista, and received help
from actual Microsoft developers.

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

Optimizations

• Optimizations can be generic (eg. Using a merge sort to sort a
linked list) but this is now rarely the case.

• Specific optimizations are usually done by improving one path of
the code, for one (or maybe a couple) of specific usages.

• But again, an OS has all the code coverage problem.
• You can optimize your heap algorithm to be low-fragmentation, and

this will provide large speed increases to applications making
repeated, small allocations.

• However it will slow down applications making large allocations.
• An OS will have both kinds of applications. What if large allocations

are only made by 3% of applications? What if one of those
applications is made by a partner ISV with 200 000 users in the
largest financial organizations? What if applications are 50/50 on
heap usage?

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

Optimizations

• Instrumentation will give you some answers
related to usage patterns, but the economical
aspect is an unfortunate aspect of commercial
development.

• Decreasing performance for a key ISP might
mean hundreds of millions in lost revenues
and a switch to Linux.

• Therefore, you need to optimize all cases and
use dynamic code.

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

Optimizations

• Eg: Low-Fragmentation Heap added in Server 2003.
Can be enabled by the application at run-time, or by
the developer at compile-time. The OS doesn’t choose,
the developer does. A simple but not very elegant
solution for legacy applications.

• In Vista, however, the OS now has algorithms to detect
your usage. The OS actually profiles the application,
and determines if the LFH would help. Perfect
engineering solution, but highly complex to
implement… and this is only one scenario!

• Apple is only starting to take this seriously.

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

Optimizations

• On the other hand, some more generic optimizations can provide
large performance improvements.

• Windows XP added Pushlocks, a pointer-sized reader-writer lock
(patented). Uses simple CPU interlocked operations for
locking/unlocking. Waits and large code only done in contention
cases.

• Previous lock implementation used 50 bytes per lock, and required
complex API routines just to check the state of the lock and acquire
it.

• Handle implementation was rewritten in part to use pushlocks.
• Result: 30% improvement in handle usage, and since almost all of

Windows relies on handles, this is one of the most visible (to the
user) improvements between 2000 and XP.

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

Trust, Privacy, Reliability

• Word is responsible for not losing your documents, and IE
keeps your web privacy safe. But not vice-versa; as a
developer, you don’t need to worry about someone else’s
data files.

• As an OS, you do. Every read/write command goes through
you; crash, and the entire disk might become unusable.

• When an OS crashes, the system goes down, the state is
unsaved, data is lost, and hardware damage can occur.
When an application crashes, only the local data is lost.

• Applications should never make the OS crash (Windows 9x
anyone?)

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

Trust, Privacy, Reliability

• It’s very hard for Word to get your credit card
numbers stored in Firefox, because of memory
address space protection and user credentials.

• It’s trivial for code running in kernel-mode:
there’s no “user”, there’s no memory protection.
If the OS has a bug which allows malicious kernel
code to execute, your entire computer becomes
unsafe.

• When such a bug can be exploited through a web
page or remotely through an open port, things
get really bad.

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

Trust, Privacy, Reliability

• Rootkits: Malware which installs itself in kernel-mode
and hides information from user-mode, or lies.
Remember that almost every user-mode API needs to
call the kernel. What if the kernel returns invalid data?
The application has no (simple) way of
knowing/detecting this.

• How can an OS protect against rootkits? Microsoft uses
PatchGuard in Vista/2003 64-bit editions, but paid a
heavy price with 3rd-party developers. In 64-bit Vista,
kernel-mode drivers need to be signed by Verisign,
which caused even greater unrest in the community.

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

Trust, Privacy, Reliability

• In recent server environments, an OS can be
running 16 instances of VMWare ESX Server,
which emulate 16 different servers: Web, DNS,
Email, Terminal Services, etc. If the OS on the
host machine crashes, that’s 16 servers down.

• All this to say that your OS code, especially in
kernel-mode, needs to be nearly perfect, and
when mistakes happen, they’re usually pretty
bad.

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

Concurrency Issues

• An OS needs to be ready to handle SMP (Multi-Processor)
machines. In the past this wasn’t such a big issue except on high-
end machines, but dual-core is now becoming pervasive.

• A really good scheduler needs to differentiate between true SMP
(multi-core) and SMT (HyperThreading). The latest scheduler
algorithms can even tell between multi-core and multi-chip.

• NUMA: Non-Uniform Memory Access. On very large servers, the
2GB of memory that an application needs might be near CPU 16.
CPU 16 might have 15% load, and CPU 54 might be idle, but not as
close to memory. Up until recently, most schedulers would pick CPU
54.

• Windows 2003 has a fully SMT, SMP, NUMA compatible O(1)
scheduler.

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

Concurrency Issues

• Your application may only be using one thread,
since you don’t want the complexity of multi-
threading, or don’t need it.

• The OS uses dozens of threads, and also has to
manage yours. Ever since the first versions of NT,
this was an issue.

• In NT, threads can be pre-empted even on single-
processor machines, so race conditions can still
occur if proper mechanisms are not used.

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

Concurrency Issues

• Imagine the following piece of code:
– *Pointer++;

if (*Pointer == 4) doSomething();

• Suppose the value before increment was 3. What if the thread gets
pre-empted before the condition, but after the increment? A new
thread could be scheduled, and run the same routine again,
incrementing the pointer to 5, and failing the check. Back to the
original thread, the value is now 5, also failing the check.
doSomething(); never executes!

• Another thread could be scheduled in different code, which also
touches this pointer, if the pointer is a global variable accessible to
other modules.

• On 64-bit SMP machines, such as an IA64 (Itanium), even the act of
reading the pointer can cause a race condition! Specialized C
macros exist to protect for this.

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

Concurrency Issues

• Solutions?
– Synchronization objects. NT exposes mutex, fast mutex,

spinlock, resource, pushlock, fast reference, rundown,
semaphore, event, timer, queued spinlock, IRQL levels as
various methods of protection.

– Some are generic, others are specific for a special kind of
problem. Some are CPU-level locks, others are OS-implemented
and allow multi-reader-single-writer locks, etc.

– Caching values when reading from a pointer to make sure the
original value was kept.

– Using interlocked APIs/macros, such as InterlockedIncrement.
The operation is guaranteed atomic and the previous result is
returned.

– InterlockedCompareExchange allows most locking code to
function properly on x86 CPUs.

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

Direct Hardware Access

• Unlike applications, the kernel of an OS runs in Ring 0,
which means it has direct access to hardware.

• Interrupts and Port Access, DMA access is all possible.
• The OS can flash the BIOS, and even do CPU Microcode

Updates.
• Recent CPUs support “MSRs”, or Machine Specific

Registers, which can control everything from debugging
features to power throttling (it would be trivial to burn a
CPU by disabling the fan and power-saving features, then
looping at 100% CPU usage, on a laptop).

• Not sending the right commands to a piece of hardware
could irreparably damage it.

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

Direct Hardware Access

• Hardware access isn’t only about damage or risk, but
also a programming problem.

• Some technologies are standardized: IDE, PCI, ATAPI…
• Vendors don’t always follow them. VESA (for video

cards) has over a dozen different implementation
differences between various video card manufacturers.

• The Keyboard Driver for PS/2 in Windows NT has ten
hacks just for different things like NEC Japanese
keyboards. The Disk driver has an entire table for
various manufacturers.

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

Finally…

• As a student, working on an OS exposes you to all
those issues, and more.

• People that can not only understand those issues, but
find creative solutions to them have their career set
ahead of them.

• Average developers may have never even bothered
about multi-threading until it hits them in 2010 and
their code breaks down.

• In today’s scalable and maintainable world, code
monkeys don’t cut it anymore.

• Once you’ve worked on an OS, you can pretty much
work on any other software project.

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

ReactOS as a SOEN Platform

• The challenges behind the development of an operating system are not
limited to technical/code challenges.

• A build of NT takes a whole night on more then a hundred machines in a
build farm. ReactOS can take up to 2 hours on an average low-end P4, but
we only have 1% of NT’s codebase.

• Some headers are used by every single component in the source tree. One
structure change can break a very unrelated small command-line
application.

• Source tree is so large that the repository is de-synchronized, sometimes
up to months (ReactOS doesn’t do this).

• An OS project requires people, lots of people. How do you manage such a
large development team?

• ReactOS uses 3rd-party build compilers and libraries. How do you handle
bugs in those components which you don’t own?

• ReactOS can be built on both Windows and Linux, supports 4 different
emulators, and lots of hardware. How do you test?

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

Building Issues

• A build can take a lot of time for a simple change
such as fixing the name of a member in a public
structure, since the entire tree must be rebuilt.
The last application in the build list may still be
using the old name. You just wasted 2 hours.

• You’re lazy and commit immediately. You’ve just
wasted 2*n users/developers hours and broke
the build for everyone.

• Testing, testing, testing!

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

More Building Issues!

• GCC is currently our compiler, but some people want to use
MSVC, CodeBlocks, Dev C++. We have over 2000 makefiles,
how to support all those other environments?

• OS needs to be built from scratch. Notepad requires
kernel32. Kernel32 requires ntdll. Ntdll requires
ntoskrnl.exe. Ntoskrnl.exe requires the CRT and other
libraries.

• The CRT is mother, the CRT is father. It is the first
component that must be built, and all other libraries are
either independent and build on that. Once ntoskrnl and
ntdll are ready, drivers and user-mode applications can
start compiling.

• How to handle these dependencies? Do you keep a list?
What if a new developer adds some app?

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

Some Building Solutions

• Create a building platform with a backend and
frontend. Microsoft uses Build/Dazzle. ReactOS uses
“rbuild”.

• rbuild does dependency checking, and uses a native
.xml makefile format. Each development environment
has an rbuild frontend, which converts the .xml files to
a 3rd party format (makefile, .vcproj, etc).

• Interesting chicken-and-egg problem: To build the OS,
you need rbuild… but to build, you need…rbuild. (We
don’t ship any binaries, it must be built from source).

• rbuild is fully cross-platform (Linux/Windows).

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

Build Breakage

• Because of rbuild, if a header changes, rbuild can
detect which applications were using it, and only
rebuild those applications: saving compile time.

• If a broken commit is still made, how do you protect
against wasting everyone’s time? BuildBot!

• BuildBot is an open source project that monitors
commits and starts up the build environment for the
project. It comes with a web interface and various
monitoring utilities (including an IRC bot).

• To be useful, BuildBot needs to be FAST!

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

Build Breakage

• Since last week, Build Server is now running on
an Dual Quad-Core Xeon machine with 4GB of FB-
DIMM DDR2. Plans set in motion for ~4GB of
flash memory for instant disk access when
building.

• A build should hopefully take < 3 minutes when
the system is ready, giving enough time to catch
any build errors before people start building.

• But what about Regression Testing?

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

Regression Testing

• A commit may build fine, but break a subtle part of the
OS. We don’t ship with 3rd party applications, so maybe
FireFox is broken. How to detect that? Maybe the 2nd-
stage installer broke on ASUS Motherboards.

• SysReg is a new utility being worked on that allows
automatic regression testing under a variety of
emulators (not hardware, unfortunately).

• Will automatically use an .ISO from BuildBot and
attempt installation, setup and boot to desktop, as well
as downloading, installing and executing various
applications in our test suite.

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

Interaction with other projects

• A bug in zlib (unlikely!) might be breaking your installer. The
zlib developers might have dropped the project, or maybe a
bug fix will take a couple of weeks. How do you handle 3rd

party code in the first place?
• SVN Vendor Drops! Allow you to “drop” a vendor library in

a special part of the repository, and then “import” it into
your source tree. You can then make local modifications to
your copy (such as a non-official fix), but still have the
official vendor drop.

• When a fix is available, you do a new drop, and import the
official version.

• Vendor dropping is essential to our imports of Wine code,
in which we often find multiple bugs/incompatibilities with
the way NT does things.

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

Interaction with Wine

• Because Wine will never merge some of our changes (for
multiple reasons), we always need to have a modified
version of the drop. This can be time consuming.

• Wine also uses a different build system, with their own
hacked set of incorrect headers. We use PSDK/DDK
compatible headers.

• Solution: wine2ros.diff. An automated SVN bot
automatically does periodic vendor drops of Wine code,
and reads a human-generated diff file that is generic. In
99% of cases, the proper ROS-compatible rbuild.xml file is
generated, headers are modified, and local code is patched.

• I keep bringing up “after a commit”. How?

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

SVN and CIA

• SVN allows pre and post-commit hooks, which
allow a variety of powerful add-ons to the build
system.

• Post-commit hooks we use:
– ros-diffs mailing list mailer: Generates an email

message for each commit.

– CIA: notifies the IRC channel of a new commit, with
appropriate information, and adds a new entry to the
CIA repository.

– BuildBot: Tells it to start a new build.

– More internal hooks for various usages.

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

Development Community

• ReactOS has thousands of users around the
world.

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

Development Community

• Dozens of developers from around the world
contribute to ReactOS, with different time zones,
languages and interests.

• IRC is our main development hub. Channel
regularly has 120+ visitors, including developers,
testers, translators, enthusiasts and trolls.

• Website receives tens of thousands of hits each
day and provides rich services such as a forum,
bugzilla database, wikipedia, application
compatibility database, CMS, online translation
utility, etc.

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

Development Community

• Managing such a community requires more then smart developers,
and must include people from a variety of backgrounds and with
different interests.

• It’s hard to set hard goals like “Implement Sound support”. Many
developers might have no idea how to do this, and may want to
work on their own stuff.

• But without goals, the OS expands like an octopus with many legs in
every direction, but no clear goal.

• ReactOS is currently suffering a bit from this problem as well as
major regressions and instability issues. 0.3.1 has been delayed by
months already, and trunk is full of rich new features, but only
boots on Qemu.

• Good PR and media people are required, as well as intelligent
testers, media artists, translators, webmasters and moderators to
keep the whole wheel turning.

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

Teaching and Learning ReactOS

• Now that you’ve seen the excitement and challenges
behind writing an OS, maybe you’re interested in
ReactOS/NT and how to get involved.

• It’s also a great teaching platform, from everything to
scheduling, dispatching, inter-process communication
to drawing routines.

• Start with these two resources:
– Windows Internals, 4th Edition by Mark Russinovich.

– Windows Curriculum Kit (CRK), available on MSDN
Academic Repository (not MSDNAA, this one is public).

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

Google Summer of Code

• ReactOS will be having 4 (tentative) projects for this
summer. Successful students will receive 4500$ USD
from Google, as well as a T-Shirt and certificate. Each
student will be mentored by a ReactOS developer and
will receive adequate training to keep working on
ReactOS after GSoC is over.

• The projects are:
– Implementing PDB support for GCC.
– Implementing SEH support for GCC.
– Rewriting our Explorer clone from scratch, in C.
– Writing a clone of the MMC (Microsoft Management

Console).

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

ROADMAP AND CALL TO ACTION
Anticipated progress and usability

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

2007 Roadmap

• We’re hoping that the kernel will be entirely complete
and compatible for 90% of drivers out there, by year’s
end.

• Also hoping for Base/Core APIs to be fully working and
regression tested.

• 2007 will feature heavy work on Memory Manager,
Cache Controller, FS support, PnP Support, Win32K,
DirectX, Sound support and Windows Networking.

• Largest focus will be on stability and usability however;
2006 suffered from too many rewrites and changes
without proper testing and regression checks.

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

ReactOS and Google

• Google Summer of Code 2006 was a great success for
us:
– Clipboard support was implemented.
– Terminal Services Client was implemented.
– WinLogon project abandoned but picked up by another

developer, so it was completed as well.

• Google fosters a variety of FOSS projects:
– Wine
– Subversion (SVN)
– GCC

• ReactOS could be a very interesting platform for
Google.

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

Call to Action

• ReactOS needs help!
– Financial: Fundraising campaign is now in effect,

hoping to raise 4000 Euros.
– Manpower: Desperately require more developers

familiar with Windows development, either Win32 or
kernel mode.

– Testers: Regressions need to be caught sooner and
faster; automated systems aren’t always perfect.

– Awareness: Project is very popular in some European
countries (notably Germany) but has poor penetration
in US/Canada. We could reach out and help a lot of
people!

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

Getting Involved

• Google Summer of Code 2007 would be a great
way to help with some of the more
involved/specific projects, and make
money/experience during the summer.

• Writing a couple of good patches, being involved
on the IRC channel/mailing list will grant you SVN
commit access to the entire tree.

• Also looking for translators, artists, testers.

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

Software Projects

• User-mode Applications
– Graphical (mmc.exe, syskey.exe, etc)
– Command-line (at.exe, cipher.exe, etc)

• Kernel-mode Drivers
– Storage stack (partmgr.sys, ftdisk.sys, etc)
– Audio stack (wdmaudio.sys, ks.sys, etc)
– Hardware drivers (NICs, Sound Cards, etc)

• APIs in DLLs, Kernel
– Most user-mode DLLs come from Wine, but not:

• gdi32, user32, kernel32.

– Some Kernel APIs are still unimplemented: Wmi* for example.

• Build Tools
– Dependency Map for rbuild
– PDB, SEH support for GCC
– Speedups/improvements for rbuild
– Bind.exe clone with Linux support.

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

Questions and Comments

• http://www.reactos.org

• ReactOS IRC Channels on Freenode – #reactos,
#reactos-dev

• ReactOS Mailing Lists – ros-dev, ros-diffs, ros-
general

• My blog: http://www.alex-ionescu.com

• My email: alex.ionescu@reactos.org

Generated by Foxit PDF Creator © Foxit Software
http://www.foxitsoftware.com For evaluation only.

