Why Programming is a Good Medium
for Expressing Poorly Understood
and Sloppily Formulated Ideas

title originally by
Marvin Minsky, 1967
in Design and Planning

title reused by
Gerald Jay Sussman

My Essential Points
* Programming is a linguistic phenomenon,
like mathematics or English.

* Programming provides novel means for us
to express ourselves, as individuals.

* Programming helps clarify ideas:
we must be precise and unambiguous.

* In programming there is both

Poetry and Prose

In programs we can express

* knowledge of the world
* models of possible worlds
*structures of beauty

* emotional content

In this talk I want to illustrate this range of
expression with fragments of programs
*that I have written,
* for practical use,
* for scientific research,
* for the instruction of students at MIT.

—/ WV
Py
O
o |

Cout

VOUt

QA

A subroutine to advance the positions
and velocities of particles using a
’Leap-Frog’ method.

SUBROUTINE step

CALL get_forces

CALL get_time_step

DO 1 = 1, nbodies
vx(i) = vx(i) + time_step*ax(i)
vy(i) = vy(i) + time_step*ay(i)
vz(i) = vz(i) + time_step*az(i)
x(1) = x(i) + time_step*vx (i)
y(i) = y(i) + time_step*vy(i)
z(i) = z(i) + time_step*vz(i)

END DO

time = time + time_step

RETURN

END

;;, Force law takes two particles pl, and p2.
;55 1t returns a pair:

N the acceleration of pl due to p2

N the acceleration of p2 due to pl

(define (gravitation pl p2)
(let* ((dx (- (position pl) (position p2)))
(rcube (cube (euclidean-norm dx)))
(am (/ (* G dx) rcube)))
(cons (* -1 (mass p2) am)
(x +1 (mass pl) am))))

;5 For a 2-body force law produces a procedure
;55 that for many bodies returns the acceleration
;55 of each body due to all of the others.

(define (force-law->acc force-law)
(define (accelerations bodies)
(let ((p (first bodies)) (r (rest bodies)))
(if (= (length r) 1) ; A 2-body interaction
(let ((inc (force-law p (car r))))
(list (car inc) (cdr inc)))
(let ((incs
(map (lambda (other)
(force-law p other))
r)))
(cons (reduce + (map car incs))
(map + (map cdr incs)
(accelerations r)))))))
accelerations)

;55 Glven a force law produces a procedure that
;;, takes a system state and returns the
; 5, derivative of the state.

(define (system-derivative force-law)
(let ((accelerations
(force-law->acc force-law)))
(lambda (system-state)
(make-system 1 ; dt/dt
(map (lambda (p a)
(make-particle (name p)
0 ; dm/dt
(velocity p)
a))
(particles system-state)
(accelerations
(particles system-state)))))))

;55 Given an integrator to use, an initial state
;;; and a step size h produces a stream of future
;55 States.

(define (integrate integrator initial-state h)
(let ((step
(integrator
(system-derivative gravitation)
h)))
(define (next state)
(cons-stream state (next (step state))))
(next initial-state)))

355 A Typical Integrator: RK4

;55 Glven a system derivative function f and a
;5 step size h, returns a procedure that given a
;55 System state produces an advanced state.

(define (runge-kutta-4 f h)
(let ((h* (scale-by h))

(2% (scale-by 2))

(1/2% (scale-by 1/2))

(1/6*% (scale-by 1/6)))

(lambda (y)
(letx ((k0 (hx (f y)))

(k1 (hx (£ (+ (1/2% kO) y))))
(k2 (hx (£ (+ (1/2% k1) y))))
(k3 (hx (f (+ k2 y)))))

(+ (1/6% (+ k0 (2% k1) (2% k2) k3))

y)))))

Euler-Lagrange Equations

Traditional Leibnitz Notation

dOL OL _
dtoq oqt

0.

What are we doing here?
1

Consider the Lagrangian L = §mx'2 — V(x).
OL oL oV
o mx and 5 T OK, since

x and z are independent variables in L.
Now & = dx/dt, & = di/dt so we get:
d

So the equations of motion are:

oV
oxr

mx =

What could this mean?

————=0 A type error!

What it really means!

. dw(t) - dw(?)
q= g 9= o

where w is a path through the configuration
space.

Expressions to Functions

d
pndl

Lt Tlu](t) = (t,w(t), Saw(t)

%«@LKWM@D%—@lﬂ[M@»:o

L) (1, w(t), Taw(t))) — L)t w(t), Ta(t)) = 0

and let (Df)(t) = %f(a;))

D((9,L) o (N[w])) — (61L) o (I'[w]) = 0

Lagrange Equations as a Program

D((9:L) o (I'w])) = (01 L) o (N[w]) = 0

(define ((Lagrange-equations Lagrangian) w)
(- (D (compose ((partial 2) Lagrangian)
(Gamma w)))
(compose ((partial 1) Lagrangian)
(Gamma w))))

(define ((Gamma w) t)
(up t (wt) (Dw t)))

Precise, unambiguous, understandable, and
usable: no hidden functions or magic steps!

Maxwell’s Equations—Poetry in Physics

div E = 4mp.
div B = 0.

curl B = lﬁ—E 4—7TJ
c Ot

—10B
curl E = ———

c Ot

Electrical charges are conserved:

dp
divJ+—=0
1V —I—(%

(1.1)
(1.2)

(1.3)

(1.4)

(1.5)

The Wave Equation

The curl of equation (1.4) is

—10
curl curl E = 5 curl B. (1.6)

Expand the left-hand side

—10
v E— Y% o |
grad div E — Lap E 5 W B, (1.7)

and substitute from equations (1.3)
and (1.1).

Get the inhomogeneous wave equation:

1 0°E 1

EVAL/APPLY—Poetry in Programs

(define (eval exp env)
(cond ((self-evaluating? exp) exp)
((variable? exp) (var-lookup exp env))
((quoted? exp) (text-of-quotation exp))
((if? exp) (eval-if exp env))
((assignment? exp) (assignment exp env))
((definition? exp) (definition exp env))
((lambda? exp)
(make-procedure (lambda-parameters exp)
(lambda-body exp)
env))
((cond? exp) (eval (cond->if exp) env))
((application? exp)
(apply (eval (operator exp) env)
(eval-list (operands exp) env)))
(else (error "Unknown expression" exp))))

(define (apply proc args)
(cond ((primitive-proc? proc)
(apply-primitive-proc proc args))
((compound-proc? proc)
(eval-sequence (proc-body proc)
(extend-environment
(proc-parameters proc)
args
(proc-environment proc))))
(else (error "Unknown proc" proc))))

(define (eval-list exps env)
(if (no-operands? exps)
>0
(cons (eval (first-operand exps) env)
(eval-list (rest-operands exps)

env))))

(define (eval-if exp env)
(if (true? (eval (if-predicate exp) env))
(eval (if-consequent exp) env)
(eval (if-alternative exp) env)))

(define (eval-sequence exps env)
(cond ((last-exp? exps)
(eval (first-exp exps) env))
(else (eval (first-exp exps) env)
(eval-sequence (rest—-exps exps)

env))))

(define (assignment exp env)
(set-variable-value! (assignment-variable exp)
(eval (assignment-value exp) env)
env)
’ok)

(define (definition exp env)
(define-variable! (definition-variable exp)
(eval (definition-value exp) env)
env)
’ok)

Wiring diagrams can be programs

(define (half-adder a b s c)
(let ((d (make-wire)) (e (make-wire)))
(or-gate a b d)
(and-gate a b c)
(inverter c e)
(and-gate d e s)))

(define (full-adder a b c—-in sum c-out)
(let ((s (make-wire))
(c1 (make-wire))
(c2 (make-wire)))
(half-adder b c-in s c1)
(half-adder a s sum c2)
(or-gate cl c2 c-out)))

This was a revelation!

;55 Nondeterminism (implicit search),
;55 can use lambda-calculus glue.

(define (require p)
(if (not p) (amb)))

(define (an-element-of list)
(require (not (null? list)))
(amb (car list)
(an-element-of (cdr list))))

(define (prime-sum-pair listl list2)
(let ((a (an-element-of listl))
(b (an-element-of 1list2)))
(require (prime? (+ a b)))
(list a b)))

From: Edgar Allen Poe, (1846)
The Philosophy of Composition,

“I select “The Raven’ as most generally known.
[t is my design to render it manifest that no
one point in its composition is referable ei-

ther to accident or intuition—that the work
proceeded step by step, to its completion,

\Nnﬁlthe;precnﬂon_and.r&yd_consequence<1f
a mathematical problem.”

From: James Boyk, Concert Pianist

“A work of art 1s a machine with an aes-
thetic purpose.”

