
Manual-PDF-Xtract.odt PDF::Extract, Version 0.08 1 of 7

PDF::Xtract version 0.08 Date: 2005/04/16

• NAME
• SYNOPSIS
• DESCRIPTION
• OVERVIEW AND RELEVANCE
• VARIABLES

PDFDoc
PDFSaveAs
PDFPages
PDFCache
PDFErrorPage
PDFExtract
PDFPagesFound
PDFPageCount
PDFFileName
PDFError
PDFErrorLevel
PDFErrorSize
PDFPageCountIn
PDFPageCountOut
PDFPageCountErr
PDFPagesFound
PDFPagesNotFound
PDFVerbose
PDFReadSize(new!)
PDFWriteSize(new!)
PDFClean

• METHODS
• o new PDF::Xtract
• o getPDFExtract
• o savePDFExtract
• o getVars/getPDFExtractVariables
• o setVars/setPDFExtractVariables

• AUTHOR
• SUPPORT
• LICENSE
• DISCLAIMER

Manual-PDF-Xtract.odt PDF::Extract, Version 0.08 1 of 7

Manual-PDF-Xtract.odt PDF::Extract, Version 0.08 2 of 7

NAME

PDF::Xtract - Extracting sub PDF documents from a multi page PDF document.

SYNOPSIS

use PDF::Xtract;
$pdf=new PDF::Xtract;
@pages=(500..600,1..3,20,40,700..1000); # Put page numbers to be extracted in an array
$pages=\@pages; # Get the reference to the above array.
$pdf->savePDFExtract(PDFDoc=>"c:/Docs/my.pdf", PDFSaveAs=>”out.pdf”, PDFPages=>$pages);

OR

use PDF::Xtract;
$pdf = new PDF::Xtract(PDFDoc=>'C:/my.pdf');
$extract=$pdf->getPDFExtract(PDFPages=>$pages);
print "Content-Type text/plain\n\n<xmp>", $pdf->getcwPDFExtract;

OR

Extract and save, in the current directory, all the pages in a PDF document with nice names.
use PDF::Xtract;
$pdf=new PDF::Xtract(PDFDoc=>"test.pdf");
@tmp=$pdf->getPDFExtractVariables(PDFPageCountIn);
$PageCount=${$tmp[0]};
print STDERR "Total Pages = $PageCount\n";
$tmp=length($PageCount);
for ($CurPage=1; $CurPage <= $PageCount; $CurPage++) {

@CurPage=($CurPage); $CurRef=\@CurPage;
$index=sprintf("%0${tmp}d",$CurPage); # This will hold the current output file name.
$pdf->savePDFExtract(PDFPages=>$CurRef,PDFSaveAs=>"$index.pdf");

}

DESCRIPTION

• PDF Xtract module is derived from Noel Sharrok's PDF::Extract module. It is a group of methods that allow the user
to extract required pages as a new PDF document from a pre-existing PDF document. It is much more faster than
PDF::Extarct.

• PDF::Xtract is published as a separate module, because of some significant differences with PDF::Extract in variables
and functions implemented. While the code, for most part is a shameless copy of PDF::Extract, there are certain
changes in the logic that allow this module to be much much faster with large PDF files.

• Notable differences between Xtract and Extract are also highlighted in this document for the benefit of users of
PDF::Extract, who wish to use PDF::Xtract.

• With PDF::Xtract one can:-
Associate a PDF document to a PDF::Xtract object.
Get total number of pages in PDF document.
Extract required pages from a PDF document , as a new PDF document, in any specified page number order.
Specify name of file to save extracted PDF document.

Manual-PDF-Xtract.odt PDF::Extract, Version 0.08 2 of 7

Manual-PDF-Xtract.odt PDF::Extract, Version 0.08 3 of 7

OVERVIEW, RELEVANCE (and some Test Results!)

• PDF::Xtract modules reads an assigned PDF document and stores information required to reproduce sub pages of it in
a set of hashes. When the user specify the page numbers to be extracted as an array reference, a new document is
immediately generated which will contain pages of original document in the same order as requested. Generated
document is written to a disk file. If the variable PDFSaveAs is specified, that will be used as the name of the disk file,
otherwise a temporary file name is used.

• If document specified by PDFSaveAs exist, it will be over-written. So, one should assign PDFSaveAs before or along
with a request to extract sub-pages.

• Methods available from this module can be called with or without arguments. However, they may not work unless
they know the location of the original PDF document and the pages to extract. There are no default values.

This module has been tested with Active State Corp's Perl binary distribution 5.8.4 on MS windows XP. It is NOT
tested on any other platform/environment (but I suppose it should work!).

This module significantly outperforms PDF::Extract in speed. I have a 7,781,888 bytes document “test.pdf” of 238
pages. I ran the following code on my Desktop (Intel P-IV 2.8 GHz, 760MB RAM, winXP Pro, SP-1):

use Time::HiRes qw(gettimeofday);
use PDF::Xtract;
use PDF::Extract;

my $start=<
$pdf=new PDF::Xtract(PDFDoc=>"test.pdf", PDFErrorLevel=>2, PDFVerbose=>0);

@pages=(1..119); $pages=\@pages;
$pdf->setVars(PDFSaveAs=>"output-01.pdf", PDFPages=>$pages);
print STDERR "Timer says : PDF::Xtract : ",<-$start,"\n";

my $start=<
@pages=(120..238); $pages=\@pages;
$pdf->setVars(PDFSaveAs=>"output-02.pdf", PDFPages=>$pages);
print STDERR "Timer says : PDF::Xtract : ",<-$start,"\n";

my $start=<
$pdf1=new PDF::Extract(PDFDoc=>"test.pdf");
$pdf1->setVars(PDFPages=>"1..119"); $pdf1->savePDFExtract(PDFSaveAs=>"output-11.pdf");
print STDERR "Timer says : PDF::Extract : ",<-$start,"\n";
my $start=<
$pdf1->setVars(PDFPages=>"120..238"); $pdf1->savePDFExtract(PDFSaveAs=>"output-12.pdf");
print STDERR "Timer says : PDF::Extract : ",<-$start,"\n";

sub lt{
Stuff used while debugging and performance checks
my @timer=gettimeofday();
my $timeNow=$timer[0]+$timer[1]/1000000;
return $timeNow;

}

Here is the Result : (format edited)
Timer says : PDF::Xtract : 0.33763313293457
Timer says : PDF::Xtract : 0.06195712089538
Timer says : PDF::Extract : 41.299989938736
Timer says : PDF::Extract : 26.859375

First and the 3rd lines in the result includes time taken by respective modules to read the assigned PDF document apart
from the time taken to extract first 119 pages. In this case, Xtract was about 125 times faster than Extract.

Second and fourth line is the result of just extracting pages 120-238, after already having read the input PDF. If
compared, we can see that Xtract was about 450 times faster than Extract!! (makes me happy!).

When tested with larger PDF files (100s of MB), PDF::Extract did not give any result till my patience ran out
(Hours!!), but Xtract always finished in seconds.

Manual-PDF-Xtract.odt PDF::Extract, Version 0.08 3 of 7

Manual-PDF-Xtract.odt PDF::Extract, Version 0.08 4 of 7

VARIABLES

PDFDoc (set and get)

$file=$pdf->getVars("PDFDoc");

This variable contains the path to the original PDF document PDF::Xtract object refers to. This assignment
makes PDF::Xtract read and store information from the document to recreate any page within it as a PDF
document.

PDFSaveAs (set and get) [note : differences with PDF::Extract]

This variable is set to path-file name to which savePDFExtract will save extracted document. (Note: If you do
not change the value of PDFSave as before calling savePDFExtract, you might be over-writing a possibly
existing file. For example, suppose you are trying to burst a PDF file to separate files – each containing a
single page of original PDF. If you miss out changing the file name to save in PDFSaveAs when you change
PDFPages in a loop, you may end up with just one file containing only the last page of original file.)

PDFPages (set and get) [note : differences with PDF::Extract]

This is set to an array reference of page numbers (to be) extracted from PDF::Xtract object. It should not be a
string or an array – only an array reference.

@pages=(reverse(1..55),10,reverse(150..200)); $ref_pages=\@pages;
@tmp=$pdf->setVars(PDFPages =>$ref_pages); # Returns an array

print “Pages are”, join(“,”,@{$tmp[0]}); # Value for PDFPages is an array reference.

Notes :

➢ When you set PDFPages, module will immediately extract those pages in the same order and place in the file
specified by PDFSaveAs. If it is not set, it will use a temporary file name. You can use
getPDFExtract/savePDFExtract to retrieve the document from the temporary file. However, it more efficient
to just set the PDFSaveAs beforehand.

➢ Xtract retrieves pages in the same order as specified in the request PDFPages, not in their natural order. For
example specifying page numbers as (1,2,3) is different from specifying as (3,2,1).

➢ If user specifies a set of pages of which only some of the pages are present in the original document, then
those pages which are present in the original document will get extracted. Those page numbers which failed
to get extracted will be in array PDFPagesNotFound.

PDFCache (set and get) [note : differences with PDF::Extract] This variable is not used by the Xtract module.

PDFErrorPage (set and get) [note : differences with PDF::Extract] This variable is not used by the Xtract module.

PDFExtract (get only) [note : differences with PDF::Extract] This variable is not used by the Xtract module.

PDFPagesFound (get only)

This variable contains an array reference of the page numbers that were selected and found within the original
PDF document. PDFPagesFound will be a undefined if no page got selected.

$pagesFound=@{($pdf->getVars("PDFPagesFound"))[0]}; # getVars returns an array and PDFPagesFound
is an array reference.
or
@pages = @{($pdf->getVars("PDFPagesFound"))[0]};

Manual-PDF-Xtract.odt PDF::Extract, Version 0.08 4 of 7

Manual-PDF-Xtract.odt PDF::Extract, Version 0.08 5 of 7

• PDFPageCount (get only) [note : differences with PDF::Extract] This variable is not used by the Xtract module.

• PDFFileName (get only) [note : differences with PDF::Extract] This variable is not used by the Xtract module.

• PDFError (get only) [note : differences with PDF::Extract]

• @error=@{($pdf->getVars("PDFError"))[0]};
• This variable contains an array reference; each element of the array holding a string describing the errors if

any in processing the original PDF file. More recent errors will have higher index. In case of PDF::Extract,
this varable used to hold a single string. PDFErrorSize fixes maximum size of the array.

• PDFErrorLevel (get/set)

Module will log those stuff of greater sensitivity than PDFErrorLevel. Default is 3 (errors). Other possible levels are
0(silly), 1(Info), 2 (warning).

• PDFErrorSize (get/set)

Holds the size of the PDFError array. Default is 20 elements.

• PDFDebug (get/set) Not very significant....

• PDFDocStat (get) Internally used for checking whether there is a re-assignment of PDFDoc to same input file!

• PDFPageCountIn (get)

Stores number of pages in the original PDF document.
$InputPages=$pdf->(getVars(PDFPageCountIn))[0];

• PDFPageCountOut (get) Number of pages successfully extracted in the last extraction operation.

• PDFPageCountErr (get) Number of pages that failed to get extracted.

• PDFPagesFound (get) Reference to the array containing successfully extracted pages.

• PDFPagesNotFound (get) Reference to array of pages that could not be extracted.

• PDFVerbose (get/set)

Make the module talkative! Module will print all that goes to PDFError array to STDERR too. Usable as a debugging
feature or to know that something is going on when you are working with very lare PDF files.

• PDFReadSize (get/set)

Modules reads in the PDF file in chunks, PDFReadSize specify the chunk size in bytes. Default is 1024000 bytes.
Setting larger values should be OK if you have a lot of RAM, but setting it too high may cause the module to fail
without any message. Earlier versions of Xtract read the complete input PDF in one shot, but this approach was failing
in case of PDF files larger than 450MB. Version 0.07 was tested successfully, with a 1200MB PDF and PDFReadSize
of 102,400,000 bytes.

• PDFWriteSize (get/set)

Module writes extracted pages to disk file after accumulating PDFWriteSize bytes of data in memory. Default is

Manual-PDF-Xtract.odt PDF::Extract, Version 0.08 5 of 7

Manual-PDF-Xtract.odt PDF::Extract, Version 0.08 6 of 7

1024000. This does not seem to have any significant impact on performance. It is just there!

• PDFClean

If set to a positive number, PDF::Xtract will fail if any error occur (such as a requested page not found) during
extraction. This behavior is PDF::Extract.

METHODS

$pdf=new PDF::Xtract;
new PDF::Xtract(PDFDoc=>"c:/Docs/my.pdf", PDFPages=>$array_ref , PDFSaveAs=”c:/out.pdf”)

This will create a new PDF::Xtract object and assign specified module variables. However, it can also be
called without any argument.

$output=$pdf->getPDFExtract; # Returns the last extracted PDF sub document. This sub document is created
immediately on user specifying PDFPages.

$pdf->savePDFExtract; # This method saves its output to the file defined for PDFSaveAs.
Not setting PDFSaveAs results in an error.

$pdf->getVars OR $pdf->getPDFExtractVariables;
$pdf->setVars OR $pdf->setPDFExtractVariables;

Above methods, obviously, retrieves OR sets values of public variables associated with th PDF::Xtract object.
GetVars returns an array who's individual elements might be references to arrays (for example, in case of
PDFPagesFound it will be reference to an array, for PDFPagesCountIn it will be a scalar.) See below:

unless ($pdf->getPDFExtract) {
Suppose there was an error
@error=@{($pdf->getVars("PDFError"))[0]};

}
Arguments for setVars is an array of key-value pairs for public variables, which will be set.

If you set a variable not specified in this documentation but name starting with “My”, it will be set as a public
variable and can subsequently be get from the Xtract object. But, there is no guarantee that these may be
available to future versions. [note : differences with PDF::Extract]

AUTHOR

SunilS <mailto:sunils_AT_hpcl_DOT_co_DOT_in>

Copyright (c) 2005 by Sunil S. All rights reserved.

LICENSE

This package is free software; you can redistribute it and/or modify it under the same terms as Perl itself, i.e., under the terms of
the ``Artistic License'' or the ``GNU General Public License''.

The C library at the core of this Perl module can additionally be redistributed and/or modified under the terms of the ``GNU
Library General Public License''.

DISCLAIMER

This package is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

See the ``GNU General Public License'' for more details.

Manual-PDF-Xtract.odt PDF::Extract, Version 0.08 6 of 7

mailto:sunils_at_hpcl

Manual-PDF-Xtract.odt PDF::Extract, Version 0.08 7 of 7

Manual-PDF-Xtract.odt PDF::Extract, Version 0.08 7 of 7

