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approx_horseshoe Run approximate MCMC algorithm for horseshoe prior

Description

In this function, The algorithm introduced in Section 2.2 of Johndrow et al. (2020) is implemented,
and is a horseshoe estimator that generally considers the case where p >> N . The assumptions and
notations for the model are the same as those in Mhorseshoe. This algorithm introduces a threshold
and uses only a portion of the total p columns for matrix multiplication, lowering the computational
cost compared to the existing horseshoe estimator. According to Section 3.2 of Johndrow et al.
(2020), the approximate MCMC algorithm applying the methodology constructs an approximate
Markov chain Pε that can converge to an exact Markov chain P , and acceptable results were con-
firmed through empirical analysis of simulation and real data. The "auto.threshold" argument in
this function is an adaptive probability algorithm for threshold developed in this package, which is
an algorithm that estimates and updates a new threshold through updated shrinkage parameters.

Usage

approx_horseshoe(
X,
y,
burn = 1000,
iter = 5000,
auto.threshold = TRUE,
threshold = 0,
tau = 1,
s = 0.8,
sigma2 = 1,
w = 1,
alpha = 0.05,
a = 0.2,
b = 10,
t = 10,
adapt_p0 = 0,
adapt_p1 = -4.6 * 10^(-4)

)

Arguments

X Design matrix, X ∈ RN×p.

y Response vector, y ∈ RN .

burn Number of burn-in samples. Default is 1000.

iter Number of samples to be drawn from the posterior. Default is 5000.

auto.threshold Argument for setting whether to use an algorithm that automatically updates the
threshold using adaptive probability.
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threshold Threshold to be used in the approximate MCMC algorithm. If you select auto.threshold
= FALSE, and threshold = 0(This is the default value for the threshold argu-
ment), the threshold is set according to the sizes of N and p. if p < N ,
δ = 1/

√
Np, else δ = 1/p. Or, you can set your custom value directly

through this argument. For more information about δ, see Mhorseshoe and 4.1
of Johndrow et al. (2020).

tau Initial value of the global shrinkage parameter τ when starting the algorithm.
Default is 1.

s s2 is the variance of tau’s MH proposal distribution. 0.8 is a good default. If set
to 0, the algorithm proceeds by fixing the global shrinkage parameter τ to the
initial setting value.

sigma2 error variance σ2. Default is 1.

w Parameter of gamma prior for σ2. Default is 1.

alpha 100(1− α)% credible interval setting argument.

a Parameter of the rejection sampler, and it is recommended to leave it at the
default value, a = 1/5.

b Parameter of the rejection sampler, and it is recommended to leave it at the
default value, b = 10.

t Threshold update cycle for adaptive probability algorithm when auto.threshold
is set to TRUE. default is 10.

adapt_p0 Parameter p0 of adaptive probability, p(t) = exp[p0 + p1t]. default is 0.

adapt_p1 Parameter a1 of adaptive probability, p(t) = exp[p0 + p1t]. default is −4.6 ×
10−4.

Value

BetaHat Posterior mean of β.

LeftCI Lower bound of 100(1− α)% credible interval for β.

RightCI Upper bound of 100(1− α)% credible interval for β.

Sigma2Hat Posterior mean of σ2.

TauHat Posterior mean of τ .

LambdaHat Posterior mean of λj , j = 1, 2, ...p..

ActiveMean Average number of elements in the active set per iteration in this algorithm.

BetaSamples Samples from the posterior of β.

LambdaSamples Lambda samples through rejection sampling.

TauSamples Tau samples through MH algorithm.

Sigma2Samples Samples from the posterior of the parameter sigma2.

ActiveSet Matrix indicating active elements as 1 and non-active elements as 0 per iteration
of the MCMC algorithm.
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Approximate algorithm details

Approximate algorithm has the following changes:

Dδ = diag
(
η−1
j 1

(
ξ−1η−1

j > δ, j = 1, 2, ..., p.
))
,

Mξ ≈Mξ,δ = IN + ξ−1XDδX
T ,

Where ηj = λ−2
j , λj are local shrinkage parameters, ξ = τ−2, τ is a global shrinkage parameter,

1(·) is an indicator function that returns 1 if the conditions in the parentheses are satisfied, and 0
otherwise, and δ is the threshold. The set of X’s columns: {xj : ξ−1η−1

j > δ, j = 1, 2, ..., p} is
defined as the active set, and let’s define S as the index set of the active set:

S = {j | ξ−1η−1
j > δ, j = 1, 2, ..., p.}.

Recalling the posterior distribution for β, it is as follows:

β|y,X, η, ξ, σ ∼ N
((

XTX +
(
ξ−1D

)−1
)−1

XT y, σ2
(
XTX +

(
ξ−1D

)−1
)−1

)
.

If ξ−1η−1
j is very small, the posterior of β will have a mean and variance close to 0. Therefore, let’s

set ξ−1η−1
j smaller than δ to 0 and the size of inverse Mξ,δ matrix is reduced as follows.

length(S) = sδ ≤ p,XS ∈ RN×sδ , DS ∈ Rsδ×sδ ,M−1
ξ,δ =

(
IN + ξ−1XSDSX

T
S

)−1
.

M−1
ξ,δ can be expressed using the Woodbury identity as follows.

M−1
ξ,δ = IN −XS

(
ξD−1

S +XT
SXS

)−1
XT
S .

M−1
ξ,δ , which reduces the computational cost, is applied to all parts of this algorithm, β samples are

extracted from the posterior using fast sampling(Bhattacharya et al.,2016) as follows.

u ∼ Np(0, ξ−1D), f ∼ NN (0, IN ), v = Xu+f, v? =M−1
ξ,δ (y/σ−v), β = σ(u+ξ−1DδX

T v?).

Adaptive probability algorithm for threshold update

If the auto.threshold argument is set to TRUE, this algorithm operates every t iteration to estimate
the threshold and decide whether to update. In this algorithm, the process of updating a new thresh-
old is added by applying the properties of the shrinkage weight kj , j = 1, 2, ..., p proposed by
Piironen and Vehtari (2017). In the prior of βj ∼ N(0, σ2τ2λ2j ) = N(0, σ2ξ−1η−1

j ), the variable
meff is defined as follows.

kj = 1/
(
1 + nξ−1s2jη

−1
j

)
, j = 1, 2, ..., p,meff =

p∑
j=1

(1− kj).
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The assumptions and notations for the model are the same as those in Mhorseshoe, and sj , j =
1, 2, ..., p are the diagonal components of XTX . For the zero components of β, kj is derived close
to 1, and nonzero’s kj is derived close to 0, so the variable meff , the sum of 1 − kj , is called
the effective number of nonzero coefficients. In this algorithm, the threshold δ is updated to set
sδ = ceiling(meff ).

Adaptive probability is defined to satisfy Theorem 5(diminishing adaptation condition) of Roberts
and Rosenthal (2007). at T th iteration,

p(T ) = exp[p0+p1T ], p1 < 0, u ∼ U(0, 1), if u < p(T ), update δ so that sδ = ceiling(meff ).

The default is p0 = 0, p1 = −4.6× 10−4, and under this condition, p(10000) < 0.01 is satisfied.

References

Bhattacharya, A., Chakraborty, A., & Mallick, B. K. (2016). Fast sampling with Gaussian scale
mixture priors in high-dimensional regression. Biometrika, asw042.

Johndrow, J., Orenstein, P., & Bhattacharya, A. (2020). Scalable Approximate MCMC Algorithms
for the Horseshoe Prior. In Journal of Machine Learning Research (Vol. 21).

Piironen, J., & Vehtari, A. (2017). Sparsity information and regularization in the horseshoe and
other shrinkage priors. Electronic Journal of Statistics, 11, 5018-5051.

Roberts G, Rosenthal J. Coupling and ergodicity of adaptive Markov chain Monte Carlo algorithms.
J Appl Prob. 2007;44:458–475.

Examples

# Making simulation data.
set.seed(123)
N <- 200
p <- 100
true_beta <- c(rep(1, 10), rep(0, 90))

X <- matrix(1, nrow = N, ncol = p) # Design matrix X.
for (i in 1:p) {

X[, i] <- stats::rnorm(N, mean = 0, sd = 1)
}

y <- vector(mode = "numeric", length = N) # Response variable y.
e <- rnorm(N, mean = 0, sd = 2) # error term e.
for (i in 1:10) {

y <- y + true_beta[i] * X[, i]
}
y <- y + e

# Run with auto.threshold option
result1 <- approx_horseshoe(X, y, burn = 0, iter = 100)

# Run with fixed custom threshold
result2 <- approx_horseshoe(X, y, burn = 0, iter = 100,
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auto.threshold = FALSE, threshold = 1/(5 * p))

# posterior mean
betahat <- result1$BetaHat

# Lower bound of the 95% credible interval
leftCI <- result1$LeftCI

# Upper bound of the 95% credible interval
RightCI <- result1$RightCI

exact_horseshoe Run exact MCMC algorithm for horseshoe prior

Description

The exact MCMC algorithm introduced in Section 2.1 of Johndrow et al. (2020) was implemented
in this function. This algorithm is the horseshoe estimator that updates the global shrinkage param-
eter τ using Metropolis-Hastings algorithm, and uses blocked-Gibbs sampling for (τ, β, σ). The
local shrinkage parameter λj , j = 1, 2, ..., p is updated by the rejection sampler.

Usage

exact_horseshoe(
X,
y,
burn = 1000,
iter = 5000,
a = 1/5,
b = 10,
s = 0.8,
tau = 1,
sigma2 = 1,
w = 1,
alpha = 0.05

)

Arguments

X Design matrix, X ∈ RN×p.

y Response vector, y ∈ RN .

burn Number of burn-in samples. Default is 1000.

iter Number of samples to be drawn from the posterior. Default is 5000.

a Parameter of the rejection sampler, and it is recommended to leave it at the
default value, a = 1/5.
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b Parameter of the rejection sampler, and it is recommended to leave it at the
default value, b = 10.

s s2 is the variance of tau’s MH proposal distribution. 0.8 is a good default. If set
to 0, the algorithm proceeds by fixing the global shrinkage parameter τ to the
initial setting value.

tau Initial value of the global shrinkage parameter τ when starting the algorithm.
Default is 1.

sigma2 error variance σ2. Default is 1.

w Parameter of gamma prior for σ2. Default is 1.

alpha 100(1− α)% credible interval setting argument.

Details

See Mhorseshoe or browseVignettes("Mhorseshoe").

Value

BetaHat Posterior mean of β.

LeftCI Lower bound of 100(1− α)% credible interval for β.

RightCI Upper bound of 100(1− α)% credible interval for β.

Sigma2Hat Posterior mean of σ2.

TauHat Posterior mean of τ .

LambdaHat Posterior mean of λj , j = 1, 2, ...p..

BetaSamples Samples from the posterior of β.

LambdaSamples Lambda samples through rejection sampling.

TauSamples Tau samples through MH algorithm.

Sigma2Samples Samples from the posterior of the parameter sigma2.

References

Johndrow, J., Orenstein, P., & Bhattacharya, A. (2020). Scalable Approximate MCMC Algorithms
for the Horseshoe Prior. In Journal of Machine Learning Research (Vol. 21).

Examples

# Making simulation data.
set.seed(123)
N <- 50
p <- 100
true_beta <- c(rep(1, 10), rep(0, 90))

X <- matrix(1, nrow = N, ncol = p) # Design matrix X.
for (i in 1:p) {

X[, i] <- stats::rnorm(N, mean = 0, sd = 1)
}
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y <- vector(mode = "numeric", length = N) # Response variable y.
e <- rnorm(N, mean = 0, sd = 2) # error term e.
for (i in 1:10) {

y <- y + true_beta[i] * X[, i]
}
y <- y + e

# Run
result <- exact_horseshoe(X, y, burn = 0, iter = 100)

# posterior mean
betahat <- result$BetaHat

# Lower bound of the 95% credible interval
leftCI <- result$LeftCI

# Upper bound of the 95% credible interval
RightCI <- result$RightCI
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