How-to guide to Rgb

Last edition February 23rd 2017

Sylvain Mareschal

http://bioinformatics.ovsa.fr/Rgb

http://bioinformatics.ovsa.fr/Rgb

About

This document describes how to use the R Genome Browser, from general concepts to practical user cases.
Questions and feedback may be sent to maressyl@gmail.com, news and updates will be made available on the
package web page.

Reference

Mareschal S, Dubois S, Lecroq T, Jardin F.
Rgb: a scriptable genome browser for R.
Bioinformatics. 2014 Aug 1;30(15):2204-5.

doi: 10.1093/bioinformatics/btu185

Acknowledgements

Many thanks to Sydney Dubois for her consciencious copy-editing, to Christian Bastard for his implication in
Rgb development, and to Bioinformatics’ peer reviewers for their useful suggestions on the current manual.

mailto:maressyl@gmail.com
http://bioinformatics.ovsa.fr/Rgb

Contents

1 Quick start

L1 PUurpose e e e e
1.2 Track building
1.2.1 Usual annotation trackso
1.2.2 Custom annotation tracks
123 Custom Rdatatracks L
1.2.4 Next Generation Sequencing tracks o
1.3 Genome browsing e
1.3.1 Interactive genome browsing
1.3.2 Scripted genome browsing
1.4 Working with genomic data
1.4.1 slice: subset by coordinates
1.4.2 cross: intersect two tables L Lo L
1.43 draw: plot asingletable

2 Manipulating the objects

2.1 Reference classes reminder L
2.1.1 Methods are called from objects, using the $sign
2.1.2 Objects are only copied on explicit demand L.
2.1.3 Classes are self-documented objects L.
2.1.4 Classes inherit methods and parameters

2.2 Rgbclass hierarchy

2.3 refTable: tabular datastorage

2.4 track.table: genomically located tabulardata

2.5 drawable: drawing management L. L

3 User case : ATM mutations in human

3.1 Objectives
3.2 Interactive browsing L
3.2.1 Launch the interactive browser L
3.2.2 Add standard annotation
3.2.3 Customize the representation
3.2.4 Add annotation from UCSC
3.25 Manual check of theexons
3.3 Automation
3.3.1 Produceasingleplot
332 LoOpoOnexonso

4 User case : Gene expression mapping in A. thaliana

4.1 Objectives
4.2 Micro-array data from GEO
421 Aggregatethedataset
422 Customize the representation
4.3 Annotation from TAIR
4.3.1 Note on assembly versions L
4.3.2 Tab-separated genetic markers oL
433 GFF3exons e
4.4 Integrated analysis
441 \Visualization
442 Computation. e

5 Extending Rgb capabilities

5.1 New representations of tabular content L.
5.2 New drawing parameter defaults o
53 New datastorage

O NSN~NOODOTOTOT A WWWwwWw

el o e e e e
NN OOOOO

—
E

NNDODNNRFERFRER 2 -
NOOoOON~NODODO OO

WWWWNNNNMNNNNN
GO bpoOoOoOO~NOGTIOO O

w
o

1 Quick start

1.1 Purpose

Rgb, the "R genome browser", aims to provide native genome browsing solutions for the R language.
Genomes are usually organized in independent chromosomes, each of them consisting in a long sequence of
nucleotides in which strips of biological interest (genes, introns, exons ...) can be localized using integer
coordinates. Working with this specific paradigm requires dedicated tools, usually called "Genome browsers".

As a member of this family, Rgb provides classes to store such genomically located data, and methods to
perform common tasks on them (subset, edit, draw ...). These classes transparently integrate a generic drawing
system able to produce publication-grade representations of a locus of interest, which can be controlled either
by direct R commands or by a Graphical User Interface that requires no specific R knowledge to be operated.

In most genome browsers (including Rgb), data is handled as tracks, which consist of collections of genomic
features of the same kind (genes, transcripts ...) and from the same organism. Rgb provides R classes to
handle them, and a specific file format (.rdt) to store them from one session to another. Numerous parameters
can be customised in such tracks to control the way the data will be represented, and great care has been
taken to allow R developers to implement entirely new representation systems in Rgb.

1.2 Track building

Full documentation on track object building can be found in the R manuals:

> help("Annotation")

1.2.1 Usual annotation tracks

A few functions are provided to build annotation tracks from data available in remote repositories (NCBI,
UCSC ...). First download the appropriate file, call the parsing function to produce the object and export it
as a .rdt file:

download.file(
"http://hgdownload.cse.ucsc.edu/goldenPath/hgl9/database/cytoBand. txt.gz",
destfile = "cytoBand.txt.gz"

)

track <- track.bands.UCSC(
file = "cytoBand.txt.gz",
.organism = "Human",
.assembly = "hg19"

)

saveRDT (track, file="cytoBands.rdt")

V+ + ++ VvV + + +V

The full list of handled datasets and links to download the corresponding files are described in the Anno-
tation help page:

> help("Annotation")

1.2.2 Custom annotation tracks

Annotation data can be downloaded from the UCSC Table Browser in the "Gene Transfert Format" (GTF),
parsed, and saved as a RDT track. The following example is derived from the user case 3.2.4, in which we
were interested in the COSMIC mutations in the ATM gene region:

http://www.genome.ucsc.edu/cgi-bin/hgTables

Table Browser

Use this program to retrieve the data associated with a track in text format, to calculate intersections between tracks, and to
retrieve DNA sequence covered by a track. For help in using this application see Using the Table Browser for a description of
the controls in this form, the User's Guide for general information and sample queries, and the CpenHelix Table Browser tutorial
for a narrated presentation of the software features and usage. For more complex gueries, you may want to use Galaxy or our
public MySQL server. To examine the biclogical function of your set through annotation enrichments, send the data to GREAT.
Refer to the Credits page for the list of contributors and usage restrictions associated with these data. All tables can be
downloaded in their entirety from the Seguence and Annotation Downloads page.

clade: Mammal ¥ | genome: |Human v | assembly: Feb. 2009 (GRCh37/hgl9) ¥

group: |All Tables v| database: hgl9 v add custom tracks track hubs

table: | cosmic v | | describe table schema

region: " genome * ' ENCODE Filot regions @ position chr11:108100000-108600000 lookup || define regions

identifiers (names/accessions): pastelist | upload list
filter: | create
intersection: | create

correlation: | create

output format: | GTF - gene transfer format v | Send outputto 1 Galaxy GREAT
output file: | Cosmic_ATM.gtf (leave blank to keep output in browser)

file type returned: plaintext @ gzip compressed

get output summary/statistics

To reset all user cart settings (including custom tracks), click here.

The downloaded GTF file can be parsed using the track.table.GTF function. Notice this function handles
gzipped GTF files, so it is preferable to download them in such a format in order to minimize download time
and disk usage. To make the example run, the following commands rely on the same file which is included in
the Rgb package for testing purposes.

> file <- system.file("extdata/Cosmic_ATM.gtf.gz", package="Rgb")
> tt <- track.table.GTF(file)
> saveRDT(tt, file='"custom.rdt'")

As the tables supplied by the Table Browser may need some reshaping, such files can also by parsed into
data.frames by the read.gtf function, updated manually according to your needs, and exported as RDT
tracks (see 1.2.3 for the generic method, and 3.2.4 for the more specific user case).

1.2.3 Custom R data tracks

Custom datasets can easily be converted from data.frame to track.table objects, then exported as .rdt
files for Rgb. The table can hold as many columns as you want, as long as the few required columns are
provided: chrom (factor), strand ("+" or "-"), start (integer), end (integer) and name (character). For more
information on the track.table class and constructor, see 2.4.

> data (hsGenes)
> class(hsGenes)

[1] "data.frame"
> head(hsGenes)

name chrom start end strand

WASH7P 1 14362 29370 -
FAM110C 2 38814 46588 -
ZNF595 4 53227 88099 +
OR4G11P 1 63016 63885 +
DEFB125 20 68351 77296 +

TUBBS8 10 92828 95178 -

tt <- track.table(hsGenes)
saveRDT(tt, file="custom.rdt")

vV v OO0 wWwN -

1.2.4 Next Generation Sequencing tracks

BAM files are currently supported as an experimental feature, by the track.bam function which relies on a
de novo R implementation of BAM querying based on SAM 1.4 specification sheet. Due to the size of the
datasets handled in such formats, the track produced does not contain the dataset but rather links it to R.

track <- track.bam(
bamPath = system.file("extdata/ATM.bam", package="Rgb"),
.organism = "Human",
.assembly = "hgl19"

)

>
+
+
+
+
> saveRDS(track, file="sequencing.rds")

Notice the file format for such a track is slightly different: we use the RDS file format provided by R here,
which is also plainly supported by Rgb.

1.3 Genome browsing

1.3.1 Interactive genome browsing

The genome browser can be summoned in an interactive session by a single call to tk.browse. It requires the
tcltk package (available at the CRAN for most operating systems).

> tk.browse ()

Rgb - Genome browser

Chromosome| 11 |vfrom | 108.22545 Mbto[10822566 Mb Jump ” Find “ ATMin| lonXpress_001_rawlib_PTRIM |v| using regexp v

‘ Tracks

ATH PGH 001

GAGAGTATACAGATARAGATATGTTGACAACATT GGTGT GTAACA ARATEC GTATTT ATARTGTGTTT GACTCT AGATGE TETGA GAARACCATGGAAGTGATGAGAARCTCTCABGAARCTCTG TTAACCATTGTAGAGGTARAGTATTTTATARGGARGACTT TATTTT TTTTCT TACCAGGTAGACTGTGT

5 [Am (166315 |

108, 22545 108,22548 108,225 108,22552 108,2255¢ 108,22555 108,22558 108.2256 108,22562 108.22564 108.2256,

0005 exens

UCSC bands
GRCRET

Track files can be selected by clicking the "Tracks" button in the top left hand corner, via the track
management interface presented below. Tracks can be hidden by ticking the corresponding "Hidden" box,
edited or reordered. Drawing parameters of all loaded tracks can be edited, replacing their values by valid R
code (most parameters are single values). For more information on the drawing parameters, please refer to
the appropriate drawing function manual (summoned by the "drawFun" parameter).

http://samtools.github.io/hts-specs/SAMv1.pdf

Track management

File path File name Class Hidden Action
Jhome/sylvain/Documents/Projets/Rgb/current PGM 1.rds track.bam l_ I
/home/sylvain/Data/Genomes GRCh37.CCDS5_exons.rdt track.exons [0
/home/sylvain/Dataj/Genomes GRCh37.UCSC_bands.rdt track.bands [i

Add file | Done | Edit Move up Move down Remove

Rgb = Drawing parameters
CCDS exons - ylab -
"CCDS exons”
Save in memory Save in file Close and discard

The plotted window can be moved by entering genomic coordinates, or via keyboard shortcuts: use the
left and right arrows to move along the chromosome and the up and down arrows to zoom in and out (or
the mouse wheel if available). Zooming in can also be achieved with the mouse, holding a left click from the
desired left border to the desired right border. Finally the "R" key can prove useful to force a plot refresh.

Centering the view on track features searched by "name" can also be achieved by using the top right hand
fields, selecting the track to be searched and entering the searched pattern aside. The default behavior is to
return only exact matches, but regular expressions can be used by checking the "using regexp" box. If multiple
hits are found, a message window pops up and reminds the user which match is currently viewed, switching
each time the "Find" button is hit.

1.3.2 Scripted genome browsing

Genome browser representations can also be produced by scripts, calling the browsePlot on which tk.browse
relies for its renderings. This function needs the track list to be passed as a drawable.list object:

data(hsBands)

data(hsGenes)

dl <- drawable.list()

dl$add(file=NA, track=hsBands)
dl$add(file=NA, track=track.table(hsGenes))
browsePlot(dl, chrom="1", start=0, end=10e6)

vV V.V Vv Vv Vv

Drawable lists provide a common interface for scripts and GUI, allowing users to edit their content inter-
actively even while scripting. Notice tracks should be passed with their paths to allow updates to be stored,
in the examples presented here updates can only be stored in memory:

> dl$fix.files()

> dl$fix.param()
As it relies on R plot, it can be redirected to a file (PNG, PDF ...):
> pdf("Rgb_tests.pdf")
> browsePlot(dl, chrom="1", start=0, end=10e6)
> browsePlot(dl, chrom="8", start=50e6, end=60e6)
> dev.off()
pdf
2

1.4 Working with genomic data

The track-table class developed for Rgb can prove very useful when computationally intensive operations are
to be performed on genomic data.

1.4.1 slice: subset by coordinates

Aside from the draw method extensively used by the genome browser, a fast and memory efficient slice
method is proposed for the most common task in genomic data manipulation: extracting rows in a given
genomic window.

> data(hsGenes)
> genes <- track.table(hsGenes)
> genes$slice(chrom="12", start=45e6, end=48e6)

name chrom start end strand
1 DBX2 12 45408539 45444882 -
2 RACGAP1P 12 45456401 45459194 -
3 RPL13AP21 12 46397809 46398468 -
4 (ORTA19P 12 46986357 46987089 +
5 SLC38A4 12 47158544 47219780 -
6 AMIGO2 12 47469490 47473734 -
> system.time(
+ for(i in 1:10000) genes$slice("12", 25e6, 118e6)
+)
utilisateur systéme écouleé

0.180 0.002 0.182

1.4.2 cross: intersect two tables

The cross method, which makes direct use of the slice one presented above, can also prove particularly useful
to annotate genomic tables or count overlaps between tables:

> data(hsBands)
> data(hsGenes)
> print(hsBands)

"track.table" reference class object
organism : Human
assembly : GRCh37

Extends "drawable"
name : UCSC bands

Extends "refTable"

name chrom strand start end stain
1 1p36.33 1 + 1 2300000 gneg
2 1p36.32 1 + 2300000 5400000 gpos25
3 1p36.31 1 + 5400000 7200000 gneg
860 Yql11.223 Y + 22100000 26200000 gposb50

861 Yq11.23 Y
862 Yq12 Y

+

26200000 28800000 gneg
28800000 59373566 gvar

+

> genes <- track.table(hsGenes)
> hsBands$cross (genes, type="count")[1:5]

[1] 17 4 8 6 13

> hsBands$cross(genes, colname="genes", type='"name", maxElements=5)
> print(hsBands)

"track.table" reference class object
organism : Human
assembly : GRCh37

Extends "drawable"
name : UCSC bands

Extends "refTable"

name chrom strand start end stain
1 1p36.33 1 + 1 2300000 gneg
2 1p36.32 1 + 2300000 5400000 gpos25
3 1p36.31 1 + 5400000 7200000 gneg
860 Yq11.223 Y + 22100000 26200000 gpos50
861 Yql1.23 Y + 26200000 28800000 gneg
862 Yq12 Y + 28800000 59373566 gvar
genes
1 (17 elements)
2 WRAP73, TP73-AS1, Clorfi74, AJAP1
3 (8 elements)
860 (24 elements)
861 (17 elements)
862 TCEB1P24, ILOSR

For further details on the track.table class, please refer to the next chapter.

1.4.3 draw: plot a single table

The multi-track genome browsing system described above may be quite heavy to visualize a single track. In
this case, one should consider using the drawable features directly:

Drawable data format

data(hsGenes)

genes <- track.table(hsGenes)

Draw

genes$draw(chrom="8", start=15e6, end=20e6)

vV VvV Vv Vv Vv

FGLL NAT2

CNDT7 MTUBL NATL RPL30PY
PPMILAP1 FGF20 MRPSL8CP3 NSAP11 CSGALNACT1

Drawing parameters may be changed for a single call:
> print(genes$defaultParams()[1:5])

$height
[1]1 1

$mar
[1] 0.2 5.0 0.2 1.0

$new
[1] FALSE

$panel
[1] FALSE

$drawFun
[1] "draw.boxes"

> genes$draw(chrom="8", start=15e6, end=20e6, colorVal='"blue'")

FGLL NAT2

CNPT7 MTUSL NATL RPL30P9
PPMILAP1 FGF20 MRPS{L8CP3 NSAP11 CSGALNACTL1

Or in a more persistent way:

> # Session persistent
> print(genes$defaultParams() [["mar"]])

[1] 0.2 5.0 0.2 1.0

> genes$setParam("mar", c(1.5, 5.0, 0.2, 1.0))
> genes$draw(chrom="8", start=15e6, end=20e6)
> # Save to file with custom parameters
> saveRDT(genes, file="genes.rdt")
FAL1 NAT2
CNDT7 MTUS1 NAT1 RPL30P9
PPMILAP1 FGF20 MRPSI8CP3 NSAP11 CSGALNACT1

15 155 16 16.5 17 17.5 18 18.5 19 195 20

2 Manipulating the objects

2.1 Reference classes reminder

All the classes used by Rgb are defined as "reference classes" (not to be confused with "S3" and "S4" systems).
Complete documentation on this system can be found in the R manuals, however here is a quick reminder on
this system, more similar to Java's Object-Oriented paradigm than R's "Function-Oriented" one.

> help("setRefClass")

2.1.1 Methods are called from objects, using the $ sign

> data(hsBands)
> hsBands$fill(1:5, "stain", LETTERS[1:5])
> hsBands$getColNames ()

[1] "name" "chrom" "strand" "start" "end" "stain"

2.1.2 Objects are only copied on explicit demand

> data(hsBands)
> a <- hsBands
> a$getColNames ()

[1] "name" "chrom" "strand" "start" "end" "stain

> a$delColumns("stain")
> hsBands$getColNames ()

[1] "name" "chrom" "strand" "start" "end"
> hsCopy <- hsBands$copy ()

2.1.3 Classes are self-documented objects

> classDefinition <- getRefClass("sliceable')
> classDefinition$methods ()

[1] ".objectPackage" ".objectParent" "callParams"
[4] "callSuper" "check" "chromosomes"
[7] "copy" "defaultParams" "defaultParams#drawable"
[10] "draw" "draw#drawable" "drawPanel"
[13] "export" "field" "fix.param"
[16] "getChromEnd" "getChromEnd#drawable" '"getClass"
[19] "getName" "getParam" "getRefClass"
[22] "import" "initFields" "initialize"
[25] "setName" "setParam" "show"

[28] "show#drawable" "show#envRefClass" "slice"

[31] "trace" "untrace" "usingMethods"

> classDefinition$help ("draw")

Call:
$draw(chrom, start = , end =, ...)

Draws the object content corresponding to the defined genomic window, usually in a single plot area

- chrom : single integer, numeric or character value, the chromosomal location. NA is not required
- start : single integer or numeric value, inferior boundary of the window. NA is not required to
- end : single integer or numeric value, superior boundary of the window. NA is not required to

- ... : additionnal drawing parameters (precede but do not overwrite parameters stored in the ob

10

2.1.4 Classes inherit methods and parameters

> # All "track.table'" objects are 'drawable' objects

> class(hsBands)

[1] "track.table"

attr(,"package")

[1] "R.gb"

> is(hsBands, "drawable'")

[1] TRUE

> # Many 'track.table' methods are defined by ''drawable" class

> dw <- getRefClass("drawable")

> tl <- getRefClass('"track.table'")

> intersect(dw$methods(), tl$methods())
[1] ".objectPackage" ".objectParent" "callParams" "callSuper"
[5] "check" "chromosomes" "copy" "defaultParams"
[9] "draw" "drawPanel" "export" "field"

ix.param etChromEn etClass etName

[13] llf 1 p n llg Ch E dll llg Cl " llg N n

[17] "getParam" "getRefClass" "import" "initFields"

[21] "initialize" "setName" "setParam" "show"

[25] "show#envRefClass" "trace" "untrace" "usingMethods"

11

2.2 Rgb class hierarchy

refTable
. name
fill(...)
extract(...) parameters
addColumn(...) draw(chrom, start, end)
callParams(...)
addDataFrame(...) draw.bg(...)

JAN ﬁ& draw.hist(slice)

—>| draw.boxes(slice)
draw.points(slice)
draw.pileup(slice)

draw(chrom, start, end)

L

track.bam
; bam
S o) organism
ﬁl assembly
| slice(chrom, start, end)
track.table
index
organism
assembly

slice(chrom, start, end)

UML class diagram

Rgb heavily relies on class inheritance to avoid code duplication. As can be seen on the UML diagram
above, objects from the track.table class (most of the objects manipulated in Rgb) are a convergence
between the refTable class (that stores tabular data in an efficient way) and drawable-inheriting classes
(managing all the drawing process, independently from the data type).

The sliceable class in the drawable inheritance tree only implements the straight-forward way to plot
genomic data: in most cases, the dataset must first be "sliced" (only data located in the queried genomic
window are extracted), then the slice must be provided to the suitable drawing function. As a result, all classes
inheriting from sliceable only need to implement an appropriate slice method to make use of the existing
drawing engine (track.table and track.bam are two examples of very dissimilar data types that benefit
from the same drawing system).

The crossable class in the drawable inheritance tree offers a cross method to classes implementing a
slice method, allowing one track to be annotated according to its overlaps with a second one.

2.3 refTable: tabular data storage

Rgb defines a new class to store tabular data: the refTable class. Such objects are very similar to R classical
data.frames, and differ mainly in the way data is stored and extracted. The purpose of this class is to handle
such data in a more efficient way, avoiding frequent copies due to R copy-on-write paradigm, within the strict
context of object oriented programming. Please refer to the "Reference classes" chapter above for a quick
reminder on reference class pitfalls in R.

12

Data can be imported in such objects using the refTable constructor, with a single data.frame or a
collection of vectors:

library(Rgb)

df <- data.frame(colA=letters[1:5], colB=5:1)
rt <- refTable(df)

rt <- refTable(colA=letters[1:5], colB=5:1)
print(rt)

vV VvV Vv Vv Vv

"refTable" reference class object

colA colB
1 a 5
2 b 4
3 c 3
4 d 2
5 e 1

Extraction from refTable objects is handled by the extract method, which returns data.frames or
vectors. As with the R classical "[", lines can be extracted using several vector types: integers for row indexes,
(recycled) logicals, or characters if row names were provided to refTable. Additionaly, an expression using
column names and returning such a vector can be used, similarly to with behavior in data.frames:

library(Rgb)
data(hsGenes)

rf <- refTable(hsGenes)
rf$extract(1:5)

vV Vv Vv Vv

name chrom start end strand
WASHT7P 1 14362 29370 -
FAM110C 2 38814 46588 -
ZNF595 4 53227 88099
OR4G11P 1 63016 63885
DEFB125 20 68351 77296

Gl W N R
+ + +

> rf$extract(c(TRUE, rep(FALSE, 799)))

name chrom start end strand
1 WASHTP 1 14362 29370 -
801 C190rf38 19 10959106 10980360 +
1601 HMGCL 1 24128367 24151949 -
2401 DLGAP4 20 34995444 35157040 +
3201 LINCO0O316 21 46758505 46761910 -
4001 PRR11 17 57232860 57284070 +
4801 TAF13P2 2 74578213 74578546 +
5601 GPR183 13 99946789 99959749 -
6401 ROPN1 3 123687878 123710199 -
7201 HMGN3P1 1 152371939 152376159 +
> rf$extract (expression(name == "RDX"))

name chrom start end strand

6001 RDX 11 110100166 110167437 -
> rf$extract(expression(chrom == "X" & grepl("~AR", name)))

name chrom start end strand
258 ARSD X 2822011 2847392 -
268 ARSF X 2958275 3030770
3256 ARAF X 47420516 47431320
4523 ARR3 X 69488185 69501690
5647 ARMCX4 X 100673266 100788446
6597 ARHGAP36 X 130192216 130223857

+ 4+ + + +

13

To mutate refTable objects, several methods are provided: addList, addVectors and addDataFrame to
add new rows, addColumn and delColumns to update whole columns, and £i11 to modify single cells. Finally
the rowOrder method can prove useful to play with row ordering or subsetting (keep in mind that track.table
objects require rows to be genomically ordered, but refTable does not). See the refTable-class manual
page for examples.

> example(topic="refTable-class", package="Rgb")

2.4 track.table: genomically located tabular data

The track.table inherits most of its methods from refTable, please have a look at the previous section to
know how to handle such data. Objects from this class can be produced using the track.table constructor,
in the same way as the refTable constructor presented above. Notice though the few required columns:
chrom (factor), strand ("+" or "-"), start (integer), end (integer) and name (character). Notice the following
example raises warnings about meta-data missingness (organism, assembly ...), they can be provided or silenced
by warn = FALSE in the track.table constructor.

> library(Rgb)
> tl <- track.table(name=letters[1:5], chrom=1:5, strand="+", start=1:5, end=2:6)
> df <- data.frame(chrom=1:5, strand="+", start=1:5, end=2:6)
> tl <- track.table(df, .makeNames=TRUE, .organism="Human", warn=FALSE)
> print(tl)
"track.table" reference class object
organism : Human
assembly : NA

Extends "drawable"
name : NA

Extends "refTable"

name chrom strand start end

1 chrl.0 1 + 1 2
2 chr2.0 2 + 2 3
3 chr3.0 3 + 3 4
4 chr4.0 4 + 4 5
5 chr5.0 5 + 5 6

The most valuable features of track.table are the slice and cross methods, which are presented in
the "Quick start" section of the current manual. Notice chromosomes can be armed (e.g. "1p" and "1q" in
humans) or not, and two methods are provided to switch from one representation to the other (eraseArms
and addArms, the former needing centromere positions as provided by the track.bands.UCSC function).

2.5 drawable: drawing management

The drawable class implements some features to be added to inheriting classes, such as track.table. It
provides a common mechanism to manage drawing parameters, mainly through the getParam and setParam
methods, and requires inheriting classes to define a draw method to plot its content in a given genomic window.
track.table and track.bam both rely on the sliceable virtual class to implement such a method, itself
requiring only a slice method to extract data in the given genomic window, and a drawing function to plot
this slice of data.

> library(Rgb)
> data(hsBands)
> hsBands$draw("1", 0, 150e6)

E: E |

14

UCSC bands
GRCh37

> hsBands$getParam("drawFun")
[1] "draw.boxes"

> hsBands$setParam('"label", FALSE)
> hsBands$draw("1", 0, 150e6)

UCSC bands
GRCh37

Drawing parameters can be set at many levels, and are collated following a strict hierarchy: drawing
parameters passed as additional arguments to draw have the top-most priority, preceding parameters set in
objects (using the setParam method), which precede class-specific defaults (defined at class definition, see 5)
following the inheritance order (track.table defaults are prioritary over drawable and so on). At the lowest
priority are the default values of the R drawing functions (named in the "drawFun" parameter).

> library(Rgb)

> data(hsBands)

> hsBands$setParam('"label", FALSE)

> hsBands$draw("1", 0, 150e6, label=TRUE)

I — _
B i A R e

If a parameter was not defined specifically in an object, a call to getParam will rely on defaultParams
to return a value. To erase an object-level setting (and thus turn back to class-specific default), just call
setParam without value. Notice default parameters returned by defaultParams depend on the drawing
function currently defined by the "drawFun" drawing parameter itself:

UCSC bands
GRCh37

> library(Rgb)
> data(hsBands)
> hsBands$getParam("drawFun")

[1] "draw.boxes"

> names (hsBands$defaultParams())

[1] "height" "mar" "new" "panel"
[56] "drawFun" "ylab" "ylab.horiz" "ysub"

[9] "yaxt" "ant" "anS" "ylim"

[13] '"cex.lab" "cex.axis" "mgp" "tck"

[17] "gel" "Xaxp" "anp" "bty"

[21] "las" "xgrid" "bg" "bg.inner"

[25] "fg" "maxElements" "maxDepth" "label"

[29] "labelStrand" "labelCex" "labelSrt" "labelAdj"

[33] "labelOverflow" "labelFamily" "labelColor" "fillColor"
[37] "border" "spacing" "groupBy" "groupPosition"
[41] "groupSize" "groupLwd" "normalize.y"

> hsBands$setParam("drawFun', '"draw.points'")
> names (hsBands$defaultParams())

[1] "height" "mar" "new" "panel" "drawFun"
[6] "ylab" "ylab.horiz" "ysub" "xaxt" "yaxt"
[11] "yaxs" "ylim" "cex.lab" "cex.axis" "mgp"
[16] "tck" "gel" "Xaxp“ nyaxpn "bty"
[21] "lag" "xgrid" "bg" "bg.inner" nfgu

[26] "column" "pointColor" "cex" "pch"

15

3 User case : ATM mutations in human

This user case introduces the handling of BAM files in a well annotated organism, for which custom annotation
tracks can be found at the UCSC. It makes extensive use of the interactive genome browser, but also describes
an automation scheme.

3.1 Objectives

The ATM gene was sequenced by the lon Torrent technology in a tumoral sample, and we would like to
visualize the mutations found. The resulting BAM file and its BAI index, as processed and aligned by the
Torrent Suite, are provided with the Rgb package:

> library(Rgb)
> system.file("extdata/ATM.bam", package="Rgb")

[1] "/tmp/RtmpFyEbnl/Rinst21a677aa2a33/Rgb/extdata/ATM.bam"
> system.file("extdata/ATM.bam.bai", package="Rgb")
[1] "/tmp/RtmpFyEbnl/Rinst21a677aa2a33/Rgb/extdata/ATM.bam.bai"

To minimize their impact on the Rgb package size, they were downsampled to 2000 reads from chromosome
11. However Rgb can handle standard-sized BAMs as well, and users are encouraged to use one of them if
available.

3.2 Interactive browsing
3.2.1 Launch the interactive browser

As a first approach to the dataset, we will begin to browse it interactively. First a track file must be produced
from the data, and saved as a file that can be imported in the interactive genome browser:

> track <- track.bam(

+ bamPath = system.file("extdata/ATM.bam", package="Rgb"),
+ .organism = "Human",

+ .assembly = "hg19"

+)

> saveRDS(track, file="ATM.rds")

Then the genome browser can be launched:
> tk.browse()

Hit the "Tracks" button, "Add file" and select the "ATM.rds" file produced above (you may need to
change the extensions shown as by default only ".rdt" files are displayed). Wait for the track to appear in the
list, and hit "Done" to go back to the main window.

As no region was defined, there is currently nothing drawn. However to get a first idea of our data, let's
have a look at the "chr11:108225450-108225660" region: write "11", "108.22545" and "108.22566" in the
coordinate boxes (notice the coordinates are expected in megabases, Mb). Hit the "Enter" key or the "Jump"
button.

Data is represented as a pileup, an histogram of all nucleotide frequences at each position of the genome.
The arrow keys can be used to zoom in and out, and to move left and right. Zooming in will allow the
nucleotide letters to appear, while zooming out may disable the representation ("maxRange reached").

3.2.2 Add standard annotation

To make the interpretation simpler, let's gather some basic annotation, beginning with datasets already handled
by Rgb. This can be achieved in the R terminal while the genome browser is running. Firstly the cytogenetic
banding, to be downloaded from UCSC:

16

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/cytoBand.txt.gz

track <- track.bands.UCSC(
file = "cytoBand.txt.gz",
.organism = "Human",
.assembly = "hg19"

)

saveRDT (track, file="cytoBands.rdt")

V o+ + + + Vv

Then the coding sequences (exons), to be downloaded from the CCDS database:

track <- track.exons.CCDS(
file = "CCDS.current.txt",
.organism = "Human",
.assembly = "hg19"

)

saveRDT (track, file="exons.rdt")

V o+ + + + Vv

Both can be added from the "Tracks" interface of the genome browser seen previously. After closing the
"Tracks" window with the "Done" button, hit the "R" key or an arrow key to refresh the plot.

3.2.3 Customize the representation

The order of the tracks may not be optimal. Try to move the cytoband track to the top: open the "Tracks"
window, check the radio button in the "Action" column for the "cytoBands.rdt" file, and hit "Move up".
When finished, hit "Done", and refresh the plot as previously.

The exon track may be too large for the small content it has to offer in this genomic location. Hit the
"Tracks" window, check the "exons.rdt" line as previously and hit "Edit". The first menu on the left allows
switching the track currently edited, while the menu on the right lists the parameters that can be edited. Search
"height", and replace "1" by "0.5". Hit "Save in memory" or "Save in file", according to your preference (in
the first case, changes will be lost at the closure of the genome browser). Hit "Close and discard" to close
this window, "Done", and refresh the plot. This parameter is particularly important, as it controls the relative
sizes of tracks: by default most are set to 1, which means that every track with such a value must have the
same height, equally sharing the window size. A value of 0.5 will result in a track twice as short as the others,
and so on. Fixed heights can also be obtained, defining the height in centimeters ("3 cm").

As you may have noticed, zooming out quickly results in "maxRange reached" messages. The maximum
range at which the plot is no longer displayed is a parameter that can be changed. As for the "height" updated
previously, try to replace the "5000L" by a larger value (the "L" is optional and only enforces the value as an
integer). Beware however as the drawing time will increase exponentially when large pileups are to be plotted

By default, the Y axis is dynamic, which can make the comparison of depth of coverage tricky. As
previously, try to replace the "NA" value of the "ylim" parameter by "c(0, 50)" (a vector of two values
defining the minimum and maximum to use). If you are familiar with R, this syntax should be evident: each
parameter actually supports any valid R expression as a value.

3.2.4 Add annotation from UCSC

As we are looking for mutations in a cancer sample, the location of all known COSMIC mutations may prove
particularly valuable to interpret our data. The UCSC Table Browser allows such data to be downloaded from
its Table Browser, let’s have a look at it:

17

http://ftp.ncbi.nlm.nih.gov/pub/CCDS/current_human/CCDS.current.txt
http://cancer.sanger.ac.uk/cancergenome/projects/cosmic/
http://www.genome.ucsc.edu/cgi-bin/hgTables

Table Browser

Use this program to retrieve the data associated with a track in text format, to calculate intersections between tracks, and to
retrieve DNA sequence covered by a track. For help in using this application see Using the Table Browser for a description of
the controls in this form, the User's Guide for general information and sample queries, and the CpenHelix Table Browser tutorial
for a narrated presentation of the software features and usage. For more complex gueries, you may want to use Galaxy or our
public MySQL server. To examine the biclogical function of your set through annotation enrichments, send the data to GREAT.
Refer to the Credits page for the list of contributors and usage restrictions associated with these data. All tables can be
downloaded in their entirety from the Seguence and Annotation Downloads page.

clade: Mammal ¥ | genome: |Human v | assembly: Feb. 2009 (GRCh37/hgl9) ¥

group: |All Tables v| database: hgl9 v add custom tracks track hubs

table: | cosmic v | | describe table schema

region: " genome * ' ENCODE Filot regions @ position chr11:108100000-108600000 lookup || define regions

identifiers (names/accessions): pastelist | upload list
filter: | create
intersection: | create

correlation: | create

output format: | GTF - gene transfer format v | Send outputto 1 Galaxy GREAT
output file: | Cosmic_ATM.gtf (leave blank to keep output in browser)

file type returned: plaintext @ gzip compressed

get output summary/statistics

To reset all user cart settings (including custom tracks), click here.

The region was restrained to the ATM gene location to minimize download time and disk usage, however
feel free to download the whole COSMIC dataset. The resulting file is available in Rgb for testing purposes:

> file <- system.file("extdata/Cosmic_ATM.gtf.gz", package="Rgb")
> track <- track.table.GTF(file, .organism="Human'", .assembly="hg19")

As GTF is a very generic file format, it usually requires a few modifications to produce statisfying visual-
izations. Let’s have a look at it, using the draw method in a random region directly:

> print(track)

"track.table" reference class object
organism : Human
assembly : hgl9

Extends "drawable"
name : hgl9_cosmic

Extends "refTable"

name chrom strand start end feature score frame
1 chr11.0 11 <NA> 108100018 108100018 exon 0 NA
2 chril.1 11 <NA> 108100018 108100018 exon 0 NA
3 chril1l.2 11 <NA> 108106424 108106424 exon 0 NA
1497 chri1.1496 11 <NA> 108594090 108594090 exon 0 NA
1498 chri1.1497 11 <NA> 108594137 108594137 exon 0 NA
1499 chri11.1498 11 <NA> 108594174 108594174 exon 0 NA

gene_id transcript_id
1 COSM1585373 COSM1585373
C0SM922697 COSM922697
3 COSM1289449 COSM1289449

N

18

1497 COSM922828 C0SM922828
1498 COSM1203207 COSM1203207
1499 COSM922829 C0SM922829

> track$draw("11", 108.5e6, 108.6e6)

'maxElements' reached (54)

hg19 cosmic
hg19

It seems that the track contains many records, so the "maxElements" limit that prevents overcrowded
tracks to be plotted is suboptimal. Before making more permanent changes in the file or manual changes in
the interactive browser, let’'s find a more optimal value by temporarly setting it in the draw call:

> track$draw("11", 108.5e6, 108.6e6, maxElements=100)

chrll

hg19_cosmic
hg19

44 :
gﬁrﬁ;ﬁgﬁg |

Once the appropriate value is found, we can edit it more permanently using the setParam method:

> track$setParam('"maxElements", 100)
> track$draw("11", 108.5e6, 108.6e6)

hg19

hg19_cosmic

M

Now let's focus on record names. As Rgb is unable to predict which column of the table contains the
data you wish to display as feature names, it generates names concatenating the chromosome location and
an order number. As you can see using print, the "gene id" and "transcript_id" columns seem to offer
more interesting information (the COSMIC ID). As Rgb always use the "name" column to label features, all
we have to do is replace its content by the content of the column of our choice:

> newNames <- track$extract(, "gene_id")
> track$fill(, '"name", newNames)
> track$draw("11", 108.5e6, 108.6e6)

19

hgl9 cosmic
hgl9
VA

To finish with a more cosmetic change, let's give a neater name to the track that the one extracted from
the file:

> track$name <- "COSMIC ATM"
> track$draw("11'", 108.5e6, 108.6e6)

$53898 VEE
8 1
= : g4
T 3 193
S o = 530
8 < —;f% 2
©)

Keep in mind that all the modifications we made here only apply to the object stored in R memory, it must
be saved in an ".rdt" file to avoid the hassle of rerunning all these commands in each new R session. Once
saved, we can import it in our current interactive browser window, using the "Tracks" button as previously.

> saveRDT(track, file="COSMIC_ATM.rdt")

3.2.5 Manual check of the exons

Zooming out with the down arrow key, we are able to zoom into each exon to visualize the data, even if the
"maxRange reached" message masks them at the gene level zooming. To zoom into a particular exon, just
click the left mouse button at its start, move it to the ending position and release the button ("drag and

drop™).

3.3 Automation

3.3.1 Produce a single plot

All the operations manually performed above can be achieved using the browsePlot equivalent of the
tk.browse function, in order to automatically generate representations of the 62 exons rather than man-
ually jump to each of them. First the tracks must be collected in a drawable.list object:

dl <- drawable.list(
files = c(
"cytoBands.rdt",
"ATM.rds",
"exons.rdt",
"COSMIC_ATM.rdt"
)
)

Here they can be edited interactively by the fix.param method, and expanded using fix.files in the
same way as in the interactive genome browser.

+ + + + + + + Vv

> dl$fix.param()
> dl$fix.files()

20

However to make the whole process automatic, we will edit them using commands only. Tracks in drawable
lists may be selected using one of the following methods: getByNames, getByClasses and getByPositions,
each of them returning tracks as an R list (which means further subsetting is required).

> print(dl)
"drawable.list" reference class object

class
track.bands
track.bam

name
1 UCSC bands
2 ATM.bam
3 CCDS exons
4 COSMIC ATM

track.exons
track.table

> dl$getByNames ("UCSC bands')

[[11]

"track.bands" reference class object

Extends "track.table"

organism : Human

assembly : hgl9

Extends "drawable"

name : UCSC bands

Extends "refTable"

name chrom strand start end stain

1 1p36.33 1 + 1 2300000 gneg
2 1p36.32 1 + 2300000 5400000 gpos25
3 1p36.31 1 + 5400000 7200000 gneg
860 Yql11.223 Y + 22100000 26200000 gposb50
861 Yql1.23 Y + 26200000 28800000 gneg
862 Yq12 Y + 28800000 59373566 gvar

To obtain a list of handled parameters as the interactive browser offers, the defaultParams method may
prove useful:

> target <- dl$getByNames ("UCSC bands")[[1]]
> names (target$defaultParams())

[1] "height" "mar" "new" "panel"

[6] "drawFun" "ylab" "ylab.horiz" "ysub"

[9] "yaxt" "ant" "anS" "ylim"

[13] "cex.lab" "cex.axis" "mgp" "tck"

[17:] l|tcll| "XaXp" l|yaxpl| "bty"

[21] "las" "xgrid" "bg" "bg.inner"
[256] "fg" "maxElements" "maxDepth" "label"
[29] "labelStrand" "labelCex" "labelSrt" "labelAdj"
[33] "labelOverflow" "labelFamily" "labelColor" "fillColor"
[37] "border" "spacing" "groupBy" "groupPosition"
[41] "groupSize" "groupLwd" "normalize.y"

Then the setParam method can be called to update the parameters. As reference classes are used here,
feel free to store getByNames output in an intermediary variable, any modification applied to the intermediate

will also apply to the drawable list:

21

d1$getByNames ("CCDS exons")[[1]]$setParam("height", 0.5)
target <- dl$getByNames ("ATM.bam")[[1]]
target$setParam("maxRange', 8000)
target$setParam("ylim", c(0, 50))

vV Vv Vv Vv

Finally the drawable list can be handed to browsePlot for plotting:

> browsePlot(dl, chrom="11", start=108225450, end=108225660)

UCSC bands
hg19

o]
<
£
©
2
=
g 87
| |-|
o
(2]
c
2 |
3 9 |
o B [ATM (31669.1) > |
0 |
]
- COSM21930
= COSM1579174
()]
g B COSM1579173
<
3 COSM1470374
]
CcosM1470373
108.22546 108.2255 108.22554 108.22558 108.22562 108.225

Keep in mind that tk.browse also handles drawable lists as input, a feature that can prove useful for
script debugging or to launch the browser with a predefined set of tracks.

> tk.browse(dl)

3.3.2 Loop on exons

While automating a single representation may make its future modification easier, its strength resides in its
ability to save a lot of manual manipulations. Let’s try to generate representations using the previous settings
on the 62 exons of ATM.

First we need to collect the coordinates of the exons to loop on. More than an input for tk.browse and
browse.plot, the track files we produced are also easy to query datasets. Let's have a look at the exon track:

> exons <- readRDT("exons.rdt')
> print(exons)

"track.exons" reference class object
Extends "track.table"

organism : Human
assembly : hgl9

22

Extends "drawable"
name : CCDS exons

Extends "refTable"

name chrom strand start end transcript
1 CCDS5.114 1 - 934438 934811 HES4 (5.1)
2 CCDS5.113 1 - 934905 934992 HES4 (5.1)
3 CCDS5.112 1 - 935071 935166 HES4 (5.1)
191 CCDS6752.1]1 9 - 104133220 104133685 BAAT (6752.1)
192 CCDS14487.1]1 X + 100807913 100809274 ARMCX1 (14487.1)
193 CCDS14772.1]1 Y - 2655029 2655643 SRY (14772.1)

groupPosition groupSize

1 4 4

3 4
3 2 4
191 1 3
192 1 1
193 1 1

As you can see, the track is basically a table with more than 300 000 rows and a few columns. The gene
symbol in which to look for ATM is held in the "transcript" column, which can be queried in-situ using the
extract method:

> loci <- exons$extract(expression(grep("~ATM ", transcript)))
> print(head(loci))

name chrom strand start end transcript groupPosition

38 CCDS31669.1(1 11 + 108098351 108098422 ATM (31669.1) 1

39 CCDS31669.112 11 + 108098502 108098614 ATM (31669.1) 2

40 CCDS31669.1(3 11 + 108099904 108100049 ATM (31669.1) 3

41 CCDS31669.114 11 + 108106396 108106560 ATM (31669.1) 4

42 CCDS31669.115 11 + 108114679 108114844 ATM (31669.1) 5

43 CCDS31669.1(6 11 + 108115514 108115752 ATM (31669.1) 6
groupSize

38 62

39 62

40 62

41 62

42 62

43 62

However R users not familiar with reference classes may find it easier (but slower) to convert the whole
track to a data.frame and use base R mechanisms:

> exonTable <- exons$extract()
> print(head(exonTable))

name chrom strand start end transcript groupPosition
1 CCDS5.114 1 - 934438 934811 HES4 (5.1) 4
2 CCDS5.113 1 - 934905 934992 HES4 (5.1) 3
3 CCDS5.112 1 - 935071 935166 HES4 (5.1) 2
4 CCDS5.111 1 - 935245 935352 HES4 (5.1) 1
5 CCDS44469.111 10 + 99344460 99344670 HOGA1l (44469.1) 1
6 CCDS44469.112 10 + 99361613 99361746 HOGA1 (44469.1) 2
groupSize
1 4

23

O WN
ww A D

A\

loci <- subset(exonTable, grepl("~ATM ", transcript))

Looping throught the loci is now straight-forward, and resulting representations can be derived to a plotting
device such as a PDF file:

> pdf ("ATM.pdf", width=12)

> for(i in 1:nrow(loci)) {

+ browsePlot (d1,

+ chrom = loci[i,"chrom"],

+ start = loci[i,"start"] - 150,
+ end = loci[i,"end"] + 150

+)

+ 2

> dev.off()

24

4 User case : Gene expression mapping in A. thaliana

This user case shows how Rgb can be used on more confidential organisms, for which annotation data must
be processed manually from heterogeneous data sources.

4.1 Objectives

In this user case, we are interested in visualizing gene expression mapping data in Arabidopsis thaliana. The
dataset we are going to use is freely available in the Gene Expression Omnibus database of the NCBI, under
the accession number GSM589609. As most micro-array datasets published nowadays are stored in GEO, it
may prove valuable to know how to process data from this repository.

While some R packages from Bioconductor (GEOquery) propose downloading and pre-formatting data
from the GEO database, we will process it manually to avoid Bioconductor’s cumbersomeness and understand
the whole process.

As the data files handled here can be very large (hundreds of Mo) and could not be distributed with the
package, the current vignette was designed with files manually subset to a predefined window (chr1:16123000-
16158000). However feel free to download the full data sets and run the commands on them, rather than
using the distributed ones.

4.2 Micro-array data from GEO
4.2.1 Aggregate the dataset

On GEO, records are from two main types: platforms, documenting probesets, their annotations and locations
in the genome, and sample data. The first step will be to download the two datasets, and merge them into
a single track that can be handled by Rgb.

Many file formats are provided, however the "Full table" proposed by GEO has the advantage of being
platform-independent. The sample (70 Mo) and platform (215 Mo) tables can be found on the dedicated
webpages, and parsed using R basic mecanisms:

> gpl <- read.table(
+ file = "GPL10855-34953.txt",
+ sep = "\t",
+ header = TRUE,
+ stringsAsFactors = FALSE
+)
> gsm <- read.table(
+ file = "GSM589609-38201.txt",
+ sep = "\t",
+ header = TRUE,
+ stringsAsFactors = FALSE
+)

Printing the first lines, notice that both rely on a single "ID" column to identify probes:
> head(gpl)

ID PROBE_TYPE SEQUENCE RANGE_GB

1 X241_Y500_.1_16124444_C_G SNP AGGATCTGGAAACTAGAGGATAGAG NC_003070.9
2 X518.Y332_.1.16124444_C_G SNP CTCTATCCTCTAGTTTCCAGATCCT NC_003070.9
3 X241.Y499_1_16124444_C_G SNP AGGATCTGGAAAGTAGAGGATAGAG NC_003070.9
4 X518_.Y331_1_16124444_C_G SNP CTCTATCCTCTACTTTCCAGATCCT NC_003070.9
5 X1007_Y26_1_16124498_T_G SNP TTCCAGTTTGATTTTGACCATGAGA NC_003070.9
6 X237_Y626_1_16124498_T_G SNP TCTCATGGTCAAAATCAAACTGGAA NC_003070.9

RANGE_STRAND RANGE_START RANGE_END REFERENCE_ALLELE SNP_ALLELE
1 - 16124432 16124456 C G
2 + 16124432 16124456 C G
3 - 16124432 16124456 C G
4 + 16124432 16124456 C G
5 - 16124486 16124510 T G
6 + 16124486 16124510 T G

25

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM589609
http://www.bioconductor.org/packages/release/bioc/html/GEOquery.html
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM589609
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL10855

\

head (gsm)

ID_REF VALUE
X241.Y500_1_16124444_C_G 37.
X518.Y332_1_.16124444_C_G 37.
X241.Y499_1_16124444_C_G 59.
X518_Y331_1_16124444_C_G 50.
X1007_Y26_1_16124498_T_G 58.
X237_Y626_1_16124498_T_G 132.

OO WN -
N O = O O Ww

A quick check can confirm that the two tables are ordered in the same way, and thus can be merged
side-by-side without further processing. Consider the merge function for cases where these conditions fail (it
may take a few minutes of computation on datasets of this size):

> nrow(gpl) == nrow(gsm)
(1] TRUE

> all(gpl$ID == gsm$ID_REF)
(1] TRUE

The track can now be constructed using the generic track.table function, providing columns as vectors
as for data.frame. Arguments beginning by dots are reserved for annotation meta-data to store along the
dataset, which can be retrieved from the GEO webpage. Optional columns can also be picked from gpl, as
long as the 5 mandatory columns (name, chrom, start, end, strand) are provided. Notice "start" and "end"
requires columns to be of class "integer", and it may have to be enforced using as.integer if read.table
didn't guess it while parsing:

cgh <- track.table(
name = gpl$ID,
chrom = gpl$RANGE_GB,
start = as.integer (gpl$RANGE_START),
end = as.integer (gpl$RANGE_END),
strand = gpl$RANGE_STRAND,
value = gsm$VALUE,
.name = "GSM589609",
.organism = "Arabidopsis thaliana',
.assembly = "TAIR9"

+ + + + + + + + + + Vv

)

Printing the object, noticed that chromosome names are not very informative, which may cause conflicts
with the future annotation sets:

> cgh
"track.table" reference class object
organism : Arabidopsis thaliana
assembly : TAIRO

Extends "drawable"
name : GSM589609

Extends "refTable"

name chrom strand start end value
1 X694_Y1231_1_16124101 NC_003070.9 + 16124089 16124113 91.5
2 X1324_Y1096_1_16124170 NC_003070.9 - 16124158 16124182 137.1
3 X575_Y1359_1_16124302 NC_003070.9 + 16124290 16124314 66.1
708 X95_Y257_1_16157855_A_G NC_003070.9 - 16157843 16157867 48.0
709 X1498_Y5_1_16157855_A_G NC_003070.9 + 16157843 16157867 74.8
710 X1360_Y1192_1_16157919 NC_003070.9 - 16157907 16157931 68.5

26

The coderefTable class proposes the getLevels and setLevels to its offspring, which can prove useful
in this situation (correspondance between sequence accessions used here and general chromosome numbering
can be found by querying Nucleotide at NCBI). To enforce compatibility with tracks produced in 4.3.3, we
will also define levels for the chloroplastic (C) and mitochrondrial (M) genomes:

> cgh$getLevels("chrom")
[1] "NC_003070.9"

> cgh$chromosomes ()

[1] "NC_003070.9"

> cgh$setLevels("chrom", newLevels=c(1:5, "C", "M"))
> cgh$chromosomes ()

[1] lllll l|2ll |l3ll ll4l| ll5l| llCll IIMII
> cgh

"track.table" reference class object
organism : Arabidopsis thaliana
assembly : TAIRO

Extends "drawable"
name : GSM589609

Extends "refTable"

name chrom strand start end value
1 X694_Y1231_1_16124101 1 + 16124089 16124113 91.5
2 X1324_Y1096_1_16124170 1 - 16124158 16124182 137.1
3 X575_Y1359_1_16124302 1 + 16124290 16124314 66.1
708 X95_Y257_1_16157855_A_G 1 - 16157843 16157867 48.0
709 X1498_Y5_1_16157855_A_G 1 + 16157843 16157867 74.8
710 X1360_Y1192_1_16157919 1 - 16157907 16157931 68.5

4.2.2 Customize the representation

Now that the dataset is ready, let's have a look at how Rgb plots it:

> cgh$draw(chrom="1", start=16125e3, end=16127e3)

X450_Y669LC01_16

X5 V48951161357 ;éé%&%éﬁg c60
s

ngs%?iﬁ Py
i1 161é%é%%ﬁ§ 3.Y140
i gf

X1374_Y120 f'16£§g;

Pretty disappointing isn't it ? As a default, Rgb considers features in tracks as boxes, which is nice for
most datasets (genes, exons, CNV ...) but suboptimal in this case. However it offers solutions to switch the
representation mode, which relies on the drawing function. Three of them are provided for generic plotting:
draw.boxes (default), draw.hist (for histograms) and draw.points (for scatter plots), but custom functions
are also handled (see 5.1). The selected drawing function sets the other parameters that can be changed, so
have a look at the corresponding manual page for an exhaustive list of them and their signification. Notice

the three of them rely on draw.bg to plot the background, so parameters proposed by this function are always
handled:

e

i 01 16126616
?ﬁ% 6126651

69 Y1233 1 16126949

GSM589609
TAIR9

27

http://www.ncbi.nlm.nih.gov/nuccore

help(draw.boxes)
help(draw.points)
help(draw.hist)
help(draw.bg)

vV Vv Vv Vv

The scatter plot seems the most fitting for our dataset, let's give it a try. Parameters can be changed
using the setParam method:

> cgh$setParam("drawFun'", '"draw.points")
> cgh$draw(chrom="1", start=16125e3, end=16127e3)

GSM589609
TAIR9

The queried region seems empty, but a quick look at the track content can confirm it is not. Actually
there are features in the region, but parameters that were set for draw.boxes don't really fit the new drawing
function. Comparing the handled parameters (as described in draw.points) and the current values can help
pinpoint the problem:

> cgh$defaultParams()$ylim
[1] 01

"ylim", which controls the Y axis boundaries, does not fit the data we used here (the "value" column ranges
from units to thousands). Let's redefine it to a more suitable value. While setParam was used previously
to make the change permanent, we are here tuning without really knowing the optimal value, so temporary
changes may be more practical. Parameters can be passed directly to the draw method to be forgotten after
the call:

> cgh$draw(chrom="1", start=16125e3, end=16127e3, ylim=c(0, 500))

o)
2
o)
8 &
s & i
[9)] . +
0] : 4 . . . !
When satisfied by the value, the change can be made permanent:
> cgh$setParam("ylim", c(0, 500))
> cgh$draw(chrom="1", start=16125e3, end=16127e3)
o
3
o)
8
s £ !
)] N *+
(D + * + + + N

28

While the Y axis is of better use like this, it still lacks an explicit legend. This parameter is handled by
draw.bg, and to comply with R standards it is named "yaxt" (see the documentation of par, which describes
many standard parameters that are also handled by drawing functions):

> cgh$setParam("yaxt", "s'")
> cgh$draw(chrom="1", start=16125e3, end=16127e3)

o
O_
(o)) <
o
©
(o]
B
o
= O :
2] N +
(O] M + . +
+ + + 4 * *
+ o+ n ++ + o, + + o+ + 4
O_

Once finalized, the track can be saved to a file for further use:

> saveRDT(cgh, file="GSM589609.rdt")

4.3 Annotation from TAIR

To interpret this data, we now need some annotation. As for many species, biologists working on Arabidopsis
thaliana have gathered into a community with a dedicated website, The Arabidopsis Information Resource
(TAIR). On such species-specific websites, you can generally browse the data directly and download it in
various file formats.

4.3.1 Note on assembly versions

When browsing the web for annotation data, a critical point must be kept in mind: genome assemblies vary,
so take care to always compare data from the same assembly. For Arabidopsis thaliana, releases are numbered
as TAIR7, TAIR8, TAIR9 and so on by the TAIR cited above. As the platform annotation we have downloaded
refers to TAIR9, we need to download TAIR9 compliant annotation. Notice the sequences of the probes
are available, so remapping them using Next-Generation Sequencing aligners like bowtie, bwa or simply blat
can be considered, but it falls outside of this user case scope (consider the cghRA package to apply such
methodology).

4.3.2 Tab-separated genetic markers

Let’s begin with the genomic markers, which can be downloaded from the TAIR FTP. The ".data" extension
seems very unfamiliar, so a first approach would be to open the file with a notepad, just as a first approach
(or read the associated README file if it exists, it usually does on FTP servers). It seems to be a tabulation-
separated file, a good point as R can easily parse them, with the minimal information required: chromosome
number, starting and ending positions.

> tab <- read.table(

+ file = "TAIR9_AGI_marker.data'",
+ sep = "\t",

+ header = FALSE,

+ stringsAsFactors = FALSE

+)

As previously, the data.frame can be turned into track.table without major difficulty. As no strand
information is present but track.table requires it, we can use the NA value provided by R:

mrk <- track.table(
name = tab$V2,
chrom = tab$Vs,
start = tab$V3,
end = tab$V4,

+ + + + Vv

29

http://www.arabidopsis.org/
http://bowtie-bio.sourceforge.net/index.shtml
http://bio-bwa.sourceforge.net/
http://genome.ucsc.edu/FAQ/FAQblat.html#blat3
ftp://ftp.arabidopsis.org/home/tair/Maps/mapviewer_data/TAIR9_AGI_marker.data
ftp://ftp.arabidopsis.org/home/tair/Maps/mapviewer_data/README

.assembly = "TAIR9"

+ strand = NA,

+ .name = '"Genetic markers",

+ .organism = "Arabidopsis thaliana',
+

+

)

As previously, the track can be customised, but its content fits well with the default draw.boxes behavior,
so it is ready to be saved to a track file. We will only enforce chromosome levels as for CGH data for future
compatibility:

> mrk$setLevels('chrom", newLevels=c(1:5, "C", "M"))
> mrk$draw(chrom="1", start=16124e3, end=16130e3)
> saveRDT(mrk, file="GeneticMarkers.rdt")

o)
E o SGCSNP109
E SGCSINP226

g g I GAPB.2 I
% SGCSINP378 | GAPB

4.3.3 GFF3 exons

In the TAIR FTP, another file seems to fit our needs: the gene track. It is particularly interesting for this user
case as it introduces two specificities: the widely spread GFF format, and the drawing of exonic tracks.

While Rgb does not provide an explicit GFF3 parser, users familiar with such file formats should have
noticed that GTF is an extension of GFF3, and thus the read.gtf and track.table.GTF functions from
Rgb are able to parse such files.

GFF3 files can store highly hierarchized content, describing relationships between genes, transcripts, exons,
CDS, UTR ... The data is stored in a tabulation-separated file, which is nice to handle with R, but its
"attributes" column which allows row-specific data makes them hard to parse with read.table. Let's use
Rgb's read.gtf function without subsetting to get an idea of the file complexity:

> gtf <- read.gtf("TAIR9_GFF3_genes.gff")
> head(gtf)

segname source feature start end score strand frame
1 Chrl TAIRO chromosome 1 30427671 NA . NA
2 Chrl TAIR9 gene 16125782 16127288 NA + NA
3 Chrl TAIR9 mRNA 16125782 16127288 NA + NA
4 Chrl TAIR9 protein 16125863 16127080 NA + NA
5 Chrl TAIR9 exon 16125782 16125929 NA + NA
6 Chrl TAIR9 five_prime_UTR 16125782 16125862 NA + NA
ID Name Note Parent Index
1 Chri Chril <NA> <NA> NA
2 AT1G42960 AT1G42960 protein_coding_gene <NA> NA
3 AT1G42960.1 AT1G42960.1 <NA> AT1G42960 1
4 AT1G42960.1-Protein AT1G42960.1 <NA> <NA> NA
5 <NA> <NA> <NA> AT1G42960.1 NA
6 <NA> <NA> <NA> AT1G42960.1 NA
Derives_from
1 <NA>
2 <NA>
3 <NA>
4 AT1G42960.1
5 <NA>
6 <NA>
> dim(gtf)
[1] 193 14

30

ftp://ftp.arabidopsis.org/home/tair/Maps/gbrowse_data/TAIR9/TAIR9_GFF3_genes.gff

>

Records in such files are typed, according to the content of the "feature" column:

table(gtf$feature)
CDS chromosome exon five_prime_UTR gene
73 1 73 8 8
mRNA protein three_prime_UTR
11 11 8

In this user case, we will focus on exons. While parsing the whole table is interesting to get an idea of the

file, keep in mind that read.gtf and track.table.GTF can subset on features earlier to make parsing faster:

V+ + 4+ 4+ + 4+ + VoV

2
3

71

72
73

N

71

72
73

gtf <- read.gtf("TAIR9_GFF3_genes.gff", features="exon")
trk <- track.table.GTF(
file = "TAIR9_GFF3_genes.gff",
name = "Exons",
attr = "split",
features = "exon",
.organism = "Arabidopsis thaliana',
.assembly = "TAIR9"
)
trk

"track.table" reference class object
organism : Arabidopsis thaliana
assembly : TAIRO

Extends "drawable"
name . Exons

Extends "refTable"

name chrom strand start end source feature score frame
chrChr1.0 Chri + 16125782 16125929 TAIR9 exon NA NA
chrChri.1 Chri + 16126227 16126347 TAIR9 exon NA NA
chrChri1.2 Chri + 16126521 16126617 TAIR9 exon NA NA
chrChr1.63 Chrl + 16157246 16157374 TAIR9 exon NA NA
chrChr1.47 Chrl + 16157456 16157911 TAIR9 exon NA NA
chrChr1.64 Chrl + 16157461 16157911 TAIR9 exon NA NA

Parent
AT1G42960.1
AT1G42960.1
AT1G42960.1

AT1G43020.3
AT1G43020.1
AT1G43020.3

As GTF enforces a few columns that are not used in this dataset, let's begin with freeing some wasted

memory:

>
>

trk$delColumns (c("source",'"feature", "score", "frame'"))
trk

"track.table" reference class object
organism : Arabidopsis thaliana
assembly : TAIRO

31

Extends "drawable"

name

. Exons

Extends "refTable"

name
1 chrChri1.0
2 chrChri.1
3 chrChril.2
71 chrChr1.63
72 chrChrl.47
73 chrChrl.64

chrom strand start
Chri + 16125782
Chr1l + 16126227
Chr1l + 16126521
Chri + 16157246
Chri + 16157456
Chril + 16157461

end Parent

16125929 AT1G42960.
16126347 AT1G42960.
16126617 AT1G42960.

1
1
1

16157374 AT1G43020.3

16157911 AT1G43020.

[E

16157911 AT1G43020.3

As previously, chromosomes have to be recoded to be consistent with other tracks:

> trk$setLevels("chrom", c(1:5,

HC”, HM”))

While the track is now functional, it is pretty unsatisfying:

> trk$draw (chrom="1", start=16150e3, end=16158e3)

Exons
TAIR9

chrChrl.

Clirl.34

chr%%@ggm.%

chr . 37

TCHarL. Z
el oheE g
rChrl. ch .

Exons are usually drawn side-by-side and grouped by transcript to make the reading easier. The draw.boxes
function can handle such representations, as long as a littke more information is precomputed and passed to
the function as drawing parameters:

groupBy The name of the column that stores transcript names

groupPosition The name of the column that stores exon number

groupSize The name of the column that stores exon count

While "groupBy" can be directly set to "Parent", the two others need to be computed first. The
track.exons class was designed to handle such datasets and provide convenient methods to build them,
so let's begin with converting the generic track.table to the inheriting class track.exons. The second
advantage to converting to track.exons is that it enforces several other drawing parameters that we no
longer need to be concerned about, such as "maxElements" or "maxDepth".

> exn <- new('"track.exons'")
> exn$import (trk)

> exn

"track.exons" reference class object

Extends "track.table"

organism
assembly

: Arabidopsis thaliana
: TAIRO

32

Extends "drawable"
name : Exons

Extends "refTable"

name chrom strand start end Parent

1 chrChr1.0 1 + 16125782 16125929 AT1G42960.1
chrChri.1 1 + 16126227 16126347 AT1G42960.1

3 chrChril.2 1 + 16126521 16126617 AT1G42960.1
71 chrChrl.63 1 + 16157246 16157374 AT1G43020.3
72 chrChrl.47 1 + 16157456 16157911 AT1G43020.1
73 chrChrl.64 1 + 16157461 16157911 AT1G43020.3

Now the methods can be called, passing the grouping column:

> exn$buildGroupSize ("Parent", "exonCount')
> exn$buildGroupPosition("Parent", "exonNumber")
> exn

"track.exons" reference class object
Extends "track.table"
organism : Arabidopsis thaliana

assembly : TAIRO

Extends "drawable"
name . Exons

Extends "refTable"

name chrom strand start end Parent exonCount exonNumber

1 chrChr1.0 1 + 16125782 16125929 AT1G42960.1 5 1
chrChril.1 1 + 16126227 16126347 AT1G42960.1 5 2

3 chrChril.2 1 + 16126521 16126617 AT1G42960.1 5 3
71 chrChr1.63 1 + 16157246 16157374 AT1G43020.3 10 9
72 chrChrl.47 1 + 16157456 16157911 AT1G43020.1 10 10
73 chrChrl.64 1 + 16157461 16157911 AT1G43020.3 10 10

These new columns may be useful to define more informative row names:

A\

newNames <- paste(exn$extract(,"Parent"), exn$extract(, "exonNumber"), sep="#")
exn$fill(, '"name", newNames)

A\

Finally the three drawing parameters cited above have to be updated to reflect our naming convention:

exn$setParam("groupBy", "Parent'")
exn$setParam("groupPosition", "exonNumber')
exn$setParam("groupSize", "exonCount')

exn$draw (chrom="1", start=16150e3, end=16158e3)
saveRDT (exn, file="TAIR9 exons.rdt'")

vV VvV Vv Vv Vv

33

[I O s N s I o I O oy
| AT1G43020.4 > |
S| S S Iy
(00 7 F

| AT1G43020.2 > |
5 [S S S—

I I o O O |

AT1G43020.3 >
S

I s o o O O o N

| i —|
[AT1G43010.1 > | AT1G43020.1 > |
| I iy — OO &0 e

Exons
TAIR9

ImE 1 e
1> |

| AT1G43005
J 5 J P 1 |

4.4 Integrated analysis
4.4.1 Visualization

As for the previous user case, browsing the datasets conjointly is now straight-forward, and can be achieved
interactively by using commands. While tk.browse offers interfaced solutions to select tracks, both methods
can be initiated from the same drawable list:

dl <- drawable.list()

dl$add (file="GeneticMarkers.rdt")

dl$add(file="TAIR9 exons.rdt")

dl$add (file="GSM589609.rdt")

browsePlot(dl, chrom="1", start=16123e3, end=16158e3)

vV VvV Vv Vv Vv

34

SAPB
%]
) GAPB.2
=
] o
£z secslwplog
g g
o
3 SGCSI\1P226
SGCSI\1P378
AT1G43020.4 >
AT1G43020.3 >
9 o AT1G43020.2 >
= o
g <_(onn
w F | AT1G43000.1 > | AT1G43020.1 >
oo
i 1107 T /| /m orm
[AT1G42970.1 > | [< AT1G42990.1 | | AT1G43010.1 > |
LI [18]5) || |y | o
0 nnom 20010 0IONIA [[inlln]
AT1G42960.1 > | | AT1G42980.1 > | | AT1G43005.1 > |
T o3 LLLLLURLLLL L) o
L 2
o + o+ . &
o - + + N
< + + + +—+
2 : * : *
8 + o+ = + +
o] & o + + * + +F
g o 3 vt oo T . ' e :
n & 7 .
O w7 + :** + - ++*+ + AR +++L++ +
S b A R + 4+t T ot @:‘ I«;
ek : +§ Ho0* +++ﬂ++:++ i ”J;ﬁ - +¢+++#+i . i * b P Htﬁ#§¢
t‘}t+ﬁ++ +%:{+ i ﬁ;:%r pji k3 + ++++$ {ﬁf ;;1:411 * T +£t ?%‘%t tr:t%ﬁq}u %ﬁ
o —]
16.125 16.13 16.135 16.14 16.145 16.15 16.155

> tk.browse(dl)

4.4.2 Computation

The gene expression data used here is mapped to the genome rather than individual genes, but Rgb can
help solving this issue. As RNA was hybridized during this experiment, it is judicious to limit our analysis to
probes located in exons of genes of interest. Given the size of the exon track (roughly 200 000 rows), using
refTable-inherited methods rather than converting to data.frame is recommended to minimize computing
time and memory consumption. Let’s focus on the gene homing the most expressed probe as an example:

gsm <- readRDT("GSM589609.rdt")

exn <- readRDT("TAIR9 exons.rdt")

gen <- gsm$extract (expression(which.max(value)), asObject=TRUE)
gen$cross(exn, type="Parent'", colname="gene")

gen

vV V. Vv Vv Vv

"track.table" reference class object
organism : Arabidopsis thaliana
assembly : TAIRO

35

Extends "drawable"
name : GSM589609

Extends "refTable"

name chrom strand start end value gene
1 X1234_Y1220_1_16128818 1 - 16128806 16128830 53079.3 AT1G42970.1
> exn$extract (expression(Parent == gen$extract(,'"gene")))
name chrom strand start end Parent exonCount

6 AT1G42970.1#1 1 + 16127381 16127653 AT1G42970.1 9
7 AT1G42970.1#2 1 + 16127744 16127839 AT1G42970.1 9
8 AT1G42970.1#3 1 + 16127919 16128083 AT1G42970.1 9
9 AT1G42970.1#4 1 + 16128153 16128320 AT1G42970.1 9
10 AT1G42970.1#5 1 + 16128412 16128572 AT1G42970.1 9
11 AT1G42970.1#6 1 + 16128657 16128718 AT1G42970.1 9
12 AT1G42970.1#7 1 + 16128795 16128844 AT1G42970.1 9
13 AT1G42970.1#8 1 + 16128947 16129353 AT1G42970.1 9
14 AT1G42970.1#9 1 + 16129452 16129843 AT1G42970.1 9

exonNumber
6 1
7 2
8 3
9 4
10 5
11 6
12 7
13 8
14 9

While extract’s default behavior is to return data.frame, it may be more interesting in our case to profit
from track.table-inherited methods. As an example, the cross method may prove valuable to count probes
overlapping with the exons of interest:

> atg <- exn$extract (expression(Parent == gen$extract(,'"gene")), asObject=TRUE)
> atg$cross(gsm, type="count")

(1] 8 3 7 8 9 5 717 9

> atg$cross(gsm, type="count'", colname='"probeCount")
> atg

"track.exons" reference class object

Extends "track.table"
organism : Arabidopsis thaliana
assembly : TAIRO

Extends "drawable"
name : Exons

Extends "refTable"

name chrom strand start end Parent exonCount

1 AT1G42970.1#1 1 + 16127381 16127653 AT1G42970.1 9
AT1G42970.1#2 1 + 16127744 16127839 AT1G42970.1 9

3 AT1G42970.1#3 1 + 16127919 16128083 AT1G42970.1 9
7 AT1G42970. 1#7 1 + 16128795 16128844 AT1G42970.1 9

36

N

0]

V + 4+ 4+ + +++V ++ 4V

© ~ -

AT1G42970.1#8 1 + 16128947 16129
AT1G42970.1#9 1 + 16129452 16129

exonNumber probeCount

1 8
2 3
3 7
7 7
8 17
9 9

As can be seen in the previous example, cross can be used to perform temporary computation or to output
its computation in a new column. All exons seem to be covered, and it would be interesting to compute the
mean expression for each of them. While cross proposes diverse computations, more custom schemes need
to be scripted, using the slice method cross relies on:

atg$addColumn (

353 AT1G42970.1
843 AT1G42970.1

content = rep(as.double(NA), atg$getRowCount()),

name = "expr'
)
for(i in 1:atg$getRowCount()) {
probes <- gsm$slice(
chrom = atg$extract (i, "chrom"),
start = atg$extract(i, "start"),
end = atg$extract(i, "end")
)
atg$fill(i, "expr", mean(probes$value))
}
atg

"track.exons'" reference class object

Extends "track.table"
organism : Arabidopsis thaliana
assembly : TAIRO

Extends "drawable"
name : Exons

Extends "refTable"

name chrom strand start end Parent exonCount
AT1G42970.1#1 1 + 16127381 16127653 AT1G42970.1 9
AT1G42970.1#2 1 + 16127744 16127839 AT1G42970.1 9
AT1G42970.1#3 1 + 16127919 16128083 AT1G42970.1 9
AT1G42970. 1#7 1 + 16128795 16128844 AT1G42970.1 9
AT1G42970.1#8 1 + 16128947 16129353 AT1G42970.1 9
AT1G42970.1#9 1 + 16129452 16129843 AT1G42970.1 9
exonNumber probeCount expr

1 8 4904.113

2 3 4327.533

3 7 4382.314

7 7 T7679.214

8 17 13055.794

9 9 5390.611

37

In the same spirit, expression by exon can easily be plotted using R functions:

}
boxplot (expr, varwidth=TRUE, log="y")

> expr <- list()

> for(i in 1:atg$getRowCount()) {

+ probes <- gsm$slice(

+ chrom = atg$extract (i, "chrom"),
+ start = atg$extract (i, "start"),
+ end = atg$extract(i, "end")

+)

+ expr[[i]] <- probes$value

+

>

o
8 o
o
o '
[e) ' ! O
o '
'
o ! - ©
o ! '
o ' J—
— ' '
] - [!
—] ' ' ' '
' ! ' '
' ' ' '
' ' '
o ' ' '
S | ' ! .
o ' ' '
N ' ' '
' ' '
S ' ' '
—] ' ' '
' ' '
! ' —_ '
(@) L ' ' '
o | ! 1 '
o ' —_— ' _
| ! |
' . '
' ' ' -
—] . ' ' T |
' ' '
' - ' '
o ' ' '
o ! — .
— T ! .
f ! —_ :
o _| . - '
3 '
I I I I I I I I I
1 2 3 4 5 6 7 8 9

It suggests an interesting splicing pattern: exons 1, 2, 3, 6 and 9 seem to be expressed roughly at the same
levels, exons 4, 5 and 8 at a higher level and exon 7 to not be expressed (value nearing the background level).

38

5 Extending Rgb capabilities

5.1 New representations of tabular content

Most genomic data is currently stored as a table of features, a format already handled by the track.table
class. New data representations can thus be added to Rgb by expanding this class, and notably by developing
new drawing functions. In the current implementation, a track.table that needs to be drawn in a given
genomic window is first "sliced", then the slice is passed as a data.frame to the drawing function named in the
"drawFun" parameter. Defining a new drawing function that takes such a slice and the genomic coordinates
as arguments is enough to allow Rgb to draw it, whether with the interactive genome browser or with the
scripted interface.

It is heavily recommended that drawing function developers take a look at existing ones’ code before
starting (draw.points, draw.hist and draw.boxes). For track.table drawing functions, at least the "slice",

"start", "end" and "..." arguments are mandatory, and the background of the plot should be drawn by a call
to draw.bg.

> # Really simple drawing function, just drawing lines

> draw.custom <- function(slice, start, end, ...) {

+ draw.bg(start=start, end=end, ...)

+ segments (x0=slice$start, xl=slice$end, y0=0:1, y1=1:0)
+ }

> # Edit a track to use it

> data(hsBands)

> hsBands$setParam('drawFun", "draw.custom'")

> # Let's draw

> hsBands$draw("1", 0, 100e6)

UCSC bands
GRCh37

5.2 New drawing parameter defaults

As the available drawing functions are quite generic, it can prove useful to define standard behaviors for certain
data types, and avoid a long series of setParam calls at each track construction. To achieve this, it is strongly
recommended to define classes inheriting from track.table, enforcing new drawing parameters defaults by
overloading the defaultParams method. As default parameters are collated along the inheritance tree from
the children to the mothers (see 2.5), only new defaults are to be defined, superseding defaults defined in
mother classes.

Notice class definitions are not stored in .rdt files, so class defaults can be updated without updating all the
objects created from it: just redefine a class with the same name before the call to readRDT. Unfortunately,
this behavior is not retrieved with drawable objects exported with saveRDS and this format may be abandoned
in the future.

Define a new class, just drawing red boxes
setRefClass(
Class = "track.custom",
contains = '"track.bands",
methods = list(
defaultParams = function(...) {
params <- callSuper(...)
params$colorVal <- "red"
params$colorFun <- function(slice) NULL
return (params)

}

+ + 4+ 4+ ++ + 4+ + + + VvV

39

Class switch

data (hsBands)

obj <- new("track.custom")
obj$import (hsBands)

Let's draw

obj$draw("1", 0, 100e6)

vV VvV Vv Vv Vv

B
c ™~ o
ol o (oo v || -
S 2 [plaEREl g |S g e o ol o lalel e - -
O SIS S8 S8 § |0|o|0] @ | @x @ ool © o o~
O B BIRB BIB| RIB| B |alala = [2|2 o |alel =2 =3 =1
o 1 e T = = = |4l = - —
w0 =1 = =1 =1 BRI A I B]
o O
)

5.3 New data storage

The track.table class should fit most of your needs, but you may be confronted with data that cannot be
stored efficiently as a single table of features. This is typically the case with external data sources like huge
files or web services.

A first example of such a need is illustrated in Rgb by the track.bam class, designed lately to provide
pileup representations of BAM files. As bioinformaticians may know, such files may be huge, and it is faster
to query them directly via SAMtools in-situ than to preprocess their content to produce a tabular track.
Such is designed track.bam, implementing a slice method relying on R binary file processing capabilities
to generate pileups in the queried window on-the-fly. The pileup slice is then passed to a custom drawing
function, draw.pileup, making use of the whole system described earlier. In most of the cases extending the
sliceable or crossable classes is the simplest solution, only requiring you to define an inheriting class with
a slice method and possibly some custom drawing functions (see Rgb source code for examples).

One can also be interested in defining more atypical tracks, for which "slicing" is not pertinent. This can
englobe tracks without embedded data such as scales, designed only to facilitate the reading. In such a case,
the drawable class may be directly extended, providing a custom draw method. Such method should rely
on the callParams method to handle drawing arguments in a consistent way, as sliceable’'s draw method
does. Consider also using the draw.bg function to plot a background consistent with other tracks:

> setRefClass(

+ Class = "track.scale',

+ contains = ''drawable",

+ methods = list(

+ defaultParams = function(...) {

+ # Define new class defaults

+ params <- callSuper(...)

+ params$col <- "lightblue"

+ params$points <- 500L

+ return (params)

+ },

+ draw = function(chrom, start=NA, end=NA, ...) {
+ # Aggregate and prioritize drawing parameters
+ argList <- callParams(chrom, start, end, ...)
+

+

+

+

+

+

+

+

+

+

+

+

Plot background, using drawing parameters
do.call (what=draw.bg, args=argList)

Data points
x <- seq(from=start, to=end, length.out=argList$points)

y <- cos(x)

Plot, using drawing parameters
lines(x=x, y=y, col=argList$col)

40

+)

> object <- new("track.scale")
> object$draw("11", 0, 10e6)

> object$defaultParams ()
$height

(11 1

$mar

[1] 0.2 5.0 0.2 1.0

$new
[1] FALSE

$panel
[1] FALSE

$col
[1] "lightblue"

$points
[1] 500

In the simple example above, notice that draw.bg arguments seem not to be handled as drawing pa-
rameters. Actually they do, but it is up to you to make them returned by defaultParams, as this behavior
is implemented in sliceable. This is quite optional, but keep in mind that only parameters detected by
defaultParams are editable via the GUI interface.

defaultParams = function(...) {
Get inherited defaults
params <- callSuper(...)

>
+
+
+
+ # Get draw.bg defaults

+ form <- formals("draw.bg")

+ form <- form[setdiff (names(form), c("start", "end", "..."))]

+ for(fname in names(form)) params[[fname]] <- eval(form[[fname]])
+

+

+

+

+

+

+

Define new class defaults
params$col <- "lightblue"
params$points <- 500L

return (params)

}

As a good habit and to ensure consistent behavior, consider overloading the following virtual methods of
the drawable class: draw, defaultParams, show, check, chromosomes and getChromEnd.I4omeverascan
be seen in the example above, only the draw one is mandatory as most of them are provided as stubs by
drawable

To conclude with such custom classes, notice the saveRDT export function works only with track.table
inheriting objects, so instanciated tracks need to be exported with saveRDS. This function is defined in R base
and is supported by the Rgb interface.

> saveRDS(object, '"custom.rds")
> dl <- drawable.list(files="custom.rds")
> browsePlot(dl, chrom="1", start=10e6, end=100e6)

41

10

20

30

40

50

42

60

70

80

90

100

	Quick start
	Purpose
	Track building
	Usual annotation tracks
	Custom annotation tracks
	Custom R data tracks
	Next Generation Sequencing tracks

	Genome browsing
	Interactive genome browsing
	Scripted genome browsing

	Working with genomic data
	slice: subset by coordinates
	cross: intersect two tables
	draw: plot a single table

	Manipulating the objects
	Reference classes reminder
	Methods are called from objects, using the $ sign
	Objects are only copied on explicit demand
	Classes are self-documented objects
	Classes inherit methods and parameters

	Rgb class hierarchy
	refTable: tabular data storage
	track.table: genomically located tabular data
	drawable: drawing management

	User case : ATM mutations in human
	Objectives
	Interactive browsing
	Launch the interactive browser
	Add standard annotation
	Customize the representation
	Add annotation from UCSC
	Manual check of the exons

	Automation
	Produce a single plot
	Loop on exons

	User case : Gene expression mapping in A. thaliana
	Objectives
	Micro-array data from GEO
	Aggregate the dataset
	Customize the representation

	Annotation from TAIR
	Note on assembly versions
	Tab-separated genetic markers
	GFF3 exons

	Integrated analysis
	Visualization
	Computation

	Extending Rgb capabilities
	New representations of tabular content
	New drawing parameter defaults
	New data storage

