
Package ‘adaptr’
August 21, 2023

Title Adaptive Trial Simulator

Version 1.3.2

Date 2023-08-21

Description Package that simulates adaptive (multi-arm, multi-stage) clinical
trials using adaptive stopping, adaptive arm dropping, and/or adaptive
randomisation. Developed as part of the INCEPT (Intensive Care Platform
Trial) project (<https://incept.dk/>), which is primarily supported by a
grant from Sygeforsikringen ``danmark'' (<https://www.sygeforsikring.dk/>).

License GPL (>= 3)

Imports stats, parallel, utils

Encoding UTF-8

Language en-GB

NeedsCompilation no

URL https://inceptdk.github.io/adaptr/,

https://github.com/INCEPTdk/adaptr/, https://incept.dk/

BugReports https://github.com/INCEPTdk/adaptr/issues/

RoxygenNote 7.2.3

Suggests ggplot2, covr, rmarkdown, knitr, testthat, vdiffr

VignetteBuilder knitr

Config/testthat/edition 3

Author Anders Granholm [aut, cre] (<https://orcid.org/0000-0001-5799-7655>),
Benjamin Skov Kaas-Hansen [aut]

(<https://orcid.org/0000-0003-1023-0371>),
Aksel Karl Georg Jensen [ctb] (<https://orcid.org/0000-0002-1459-0465>),
Theis Lange [ctb] (<https://orcid.org/0000-0001-6807-8347>)

Maintainer Anders Granholm <andersgran@gmail.com>

Repository CRAN

Date/Publication 2023-08-21 12:10:04 UTC

1

https://incept.dk/
https://www.sygeforsikring.dk/
https://inceptdk.github.io/adaptr/
https://github.com/INCEPTdk/adaptr/
https://incept.dk/
https://github.com/INCEPTdk/adaptr/issues/
https://orcid.org/0000-0001-5799-7655
https://orcid.org/0000-0003-1023-0371
https://orcid.org/0000-0002-1459-0465
https://orcid.org/0000-0001-6807-8347

2 adaptr-package

R topics documented:
adaptr-package . 2
calibrate_trial . 3
check_performance . 11
check_remaining_arms . 16
extract_results . 17
find_beta_params . 20
plot_convergence . 22
plot_history . 25
plot_metrics_ecdf . 27
plot_status . 29
print . 31
run_trial . 34
run_trials . 37
setup_cluster . 40
setup_trial . 42
setup_trial_binom . 51
setup_trial_norm . 56
summary . 61
update_saved_trials . 64

Index 66

adaptr-package adaptr: Adaptive Trial Simulator

Description

The adaptr package simulates adaptive (multi-arm, multi-stage) randomised clinical trials using
adaptive stopping, adaptive arm dropping and/or response-adaptive randomisation. The package
is developed as part of the INCEPT (Intensive Care Platform Trial) project, funded primarily by a
grant from Sygeforsikringen "danmark".

Details

The adaptr package contains the following primary functions (in order of typical use):

1. The setup_cluster() initiates a parallel computation cluster that can be used to run simu-
lations and post-processing in parallel, increasing speed. Details on parallelisation and other
options for running adaptr functions in parallel are described in the setup_cluster() doc-
umentation.

2. The setup_trial() function is the general function that sets up a trial specification. The sim-
pler, special-case functions setup_trial_binom() and setup_trial_norm() may be used
for easier specification of trial designs using binary, binomially distributed or continuous, nor-
mally distributed outcomes, respectively, with some limitations in flexibility.

https://incept.dk/
https://www.sygeforsikring.dk/

calibrate_trial 3

3. The calibrate_trial() function calibrates a trial specification to obtain a certain value for
a performance metric (typically used to calibrate the Bayesian type 1 error rate in a scenario
with no between-arm differences), using the functions below.

4. The run_trial() and run_trials() functions are used to conduct single or multiple simu-
lations, respectively, according to a trial specification setup as described in #2.

5. The extract_results(), check_performance() and summary() functions are used to ex-
tract results from multiple trial simulations, calculate performance metrics, and summarise re-
sults. The plot_convergence() function assesses stability of performance metrics according
to the number of simulations conducted. The plot_metrics_ecdf() function plots empirical
cumulative distribution functions for numerical performance metrics. The check_remaining_arms()
function summarises all combinations of remaining arms across multiple trials simulations.

6. The plot_status() and plot_history() functions are used to plot the overall trial/arm
statuses for multiple simulated trials or the history of trial metrics over time for single/multiple
simulated trials, respectively.

For further information see the documentation of each function or the Overview vignette (vignette("Overview",
package = "adaptr")) for an example of how the functions work in combination. For further exam-
ples and guidance on setting up trial specifications, see the setup_trial() documentation, the Ba-
sic examples vignette (vignette("Basic-examples", package = "adaptr")) and the Advanced
example vignette (vignette("Advanced-example", package = "adaptr")).

If using the package, please consider citing it using citation(package = "adaptr").

References

Granholm A, Jensen AKG, Lange T, Kaas-Hansen BS (2022). adaptr: an R package for sim-
ulating and comparing adaptive clinical trials. Journal of Open Source Software, 7(72), 4284.
doi:10.21105/joss.04284

Granholm A, Kaas-Hansen BS, Lange T, Schjørring OL, Andersen LW, Perner A, Jensen AKG,
Møller MH (2022). An overview of methodological considerations regarding adaptive stopping,
arm dropping and randomisation in clinical trials. J Clin Epidemiol. doi:10.1016/j.jclinepi.2022.11.002

Website/manual

GitHub repository

See Also

setup_cluster(), setup_trial(), setup_trial_binom(), setup_trial_norm(), calibrate_trial(),
run_trial(), run_trials(), extract_results(), check_performance(), summary(), check_remaining_arms(),
plot_convergence(), plot_metrics_ecdf(), print(), plot_status(), plot_history().

calibrate_trial Calibrate trial specification

https://doi.org/10.21105/joss.04284
https://doi.org/10.1016/j.jclinepi.2022.11.002
https://inceptdk.github.io/adaptr/
https://github.com/INCEPTdk/adaptr/

4 calibrate_trial

Description

This function calibrates a trial specification using a Gaussian process-based Bayesian optimisa-
tion algorithm. The function calibrates an input trial specification object (using repeated calls to
run_trials() while adjusting the trial specification) to a target value within a search_range in
a single input dimension (x) in order to find an optimal value (y).
The default (and expectedly most common use case) is to calibrate a trial specification to adjust
the superiority and inferiority thresholds to obtain a certain probability of superiority; if used
with a trial specification with identical underlying outcomes (no between-arm differences), this
probability is an estimate of the Bayesian analogue of the total type-1 error rate for the outcome
driving the adaptations, and if between-arm differences are present, this corresponds to an estimate
of the Bayesian analogue of the power.
The default is to perform the calibration while varying single, constant, symmetric thresholds for
superiority / inferiority throughout a trial design, as described in Details, and the default val-
ues have been chosen to function well in this case.
Advanced users may use the function to calibrate trial specifications according to other metrics -
see Details for how to specify a custom function used to modify (or recreate) a trial specification
object during the calibration process.
The underlying Gaussian process model and its control hyperparameters are described under De-
tails, and the model is partially based on code from Gramacy 2020 (with permission; see Refer-
ences).

Usage

calibrate_trial(
trial_spec,
n_rep = 1000,
cores = NULL,
base_seed = NULL,
fun = NULL,
target = 0.05,
search_range = c(0.9, 1),
tol = target/10,
dir = 0,
init_n = 2,
iter_max = 25,
resolution = 5000,
kappa = 0.5,
pow = 1.95,
lengthscale = 1,
scale_x = TRUE,
noisy = is.null(base_seed),
narrow = !noisy & !is.null(base_seed),
prev_x = NULL,
prev_y = NULL,
path = NULL,
overwrite = FALSE,
version = NULL,
compress = TRUE,

calibrate_trial 5

sparse = TRUE,
progress = NULL,
export = NULL,
export_envir = parent.frame(),
verbose = FALSE,
plot = FALSE

)

Arguments

trial_spec trial_spec object, generated and validated by the setup_trial(), setup_trial_binom()
or setup_trial_norm() function.

n_rep single integer, the number of simulations to run at each evaluation. Values < 100
are not permitted; values < 1000 are permitted but recommended against.

cores NULL or single integer. If NULL, a default value/cluster set by setup_cluster()
will be used to control whether simulations are run in parallel on a default clus-
ter or sequentially in the main process; if a cluster/value has not been specified
by setup_cluster(), cores will then be set to the value stored in the global
"mc.cores" option (if previously set by options(mc.cores = <number of cores>),
and 1 if that option has not been specified.
If the resulting number of cores = 1, computations will be run sequentially
in the primary process, and if cores > 1, a new parallel cluster will be setup
using the parallel library and removed once the function completes. See
setup_cluster() for details.

base_seed single integer or NULL (default); the random seed used as the basis for all simu-
lation runs (see run_trials()) and random number generation within the rest
of the calibration process; if used, the global random seed will be restored after
the function has been run.
Note: providing a base_seed is highly recommended, as this will generally
lead to faster and more stable calibration.

fun NULL (the default), in which case the trial specification will be calibrated using
the default process described above and further in Details; otherwise a user-
supplied function used during the calibration process, which should have a struc-
ture as described in Details.

target single finite numeric value (defaults to 0.05); the target value for y to calibrate
the trial_spec object to.

search_range finite numeric vector of length 2; the lower and upper boundaries in which to
search for the best x. Defaults to c(0.9, 1.0).

tol single finite numeric value (defaults to target / 10); the accepted tolerance (in
the direction(s) specified by dir) accepted; when a y-value within the accepted
tolerance of the target is obtained, the calibration stops.
Note: tol should be specified to be sensible considering n_rep; e.g., if the
probability of superiority is targeted with n_rep == 1000, a tol of 0.01 will
correspond to 10 simulated trials.
A too low tol relative to n_rep may lead to very slow calibration or calibration
that cannot succeed regardless of the number of iterations.
Important: even when a large number of simulations are conducted, using a

6 calibrate_trial

very low tol may lead to calibration not succeeding as it may also be affected
by other factors, e.g., the total number of simulated patients, the possible max-
imum differences in simulated outcomes, and the number of posterior draws
(n_draws in the setup_trial() family of functions), which affects the mini-
mum differences in posterior probabilities when simulating trials and thus can
affect calibration, including when using the default calibration function. In-
creasing the number of posterior draws or the number of repetitions should be
attempted if the desired tolerance cannot be achieved with lower numbers.

dir single numeric value; specifies the direction(s) of the tolerance range. If 0 (the
default) the tolerance range will be target - tol to target + tol. If < 0, the
range will be target - tol to target, and if > 0, the range will be target to
target + tol.

init_n single integer >= 2. The number of initial evaluations evenly spread over the
search_range, with one evaluation at each boundary (thus, the default value of
2 is the minimum permitted value; if calibrating according to a different target
than the default, a higher value may be sensible).

iter_max single integer > 0 (default 25). The maximum number of new evaluations after
the initial grid (with size specified by init_n) has been set up. If calibration is
unsuccessful after the maximum number of iterations, the prev_x and prev_y
arguments (described below) may be used to to start a new calibration process
re-using previous evaluations.

resolution single integer (defaults to 5000), size of the grid at which the predictions used
to select the next value to evaluate at are made.
Note: memory use will substantially increase with higher values. See also the
narrow argument below.

kappa single numeric value > 0 (default 0.5); corresponding to the width of the uncer-
tainty bounds used to find the next target to evaluate. See Details.

pow single numerical value in the [1, 2] range (default 1.95), controlling the
smoothness of the Gaussian process. See Details.

lengthscale single numerical value (defaults to 1) or numerical vector of length 2; values
must be finite and non-negative. If a single value is provided, this will be used as
the lengthscale hyperparameter; if a numerical vector of length 2 is provided,
the second value must be higher than the first and the optimal lengthscale in
this range will be found using an optimisation algorithm. If any value is 0, a
small amount of noise will be added as lengthscales must be > 0. Controls
smoothness in combination with pow. See Details.

scale_x single logical value; if TRUE (the default) the x-values will be scaled to the
[0, 1] range according to the minimum/maximum values provided. If FALSE,
the model will use the original scale. If distances on the original scale are small,
scaling may be preferred. The returned values will always be on the original
scale. See Details.

noisy single logical value; if FALSE, a noiseless process is assumed, and interpolation
between values is performed (i.e., with no uncertainty at the x-values assumed).
If TRUE, the y-values are assumed to come from a noisy process, and regression is
performed (i.e., some uncertainty at the evaluated x-values will be assumed and
included in the predictions). Specifying FALSE requires a base_seed supplied,

calibrate_trial 7

and is generally recommended, as this will usually lead to faster and more stable
calibration. If a low n_rep is used (or if trials are calibrated to other metrics
other than the default), specifying TRUE may be necessary even when using a
valid base_seed. Defaults to TRUE if a base_seed is supplied and FALSE if not.

narrow single logical value. If FALSE, predictions are evenly spread over the full x-
range. If TRUE, the prediction grid will be spread evenly over an interval con-
sisting of the two x-values with corresponding y-values closest to the target in
opposite directions. Can only be TRUE when a base_seed is provided and noisy
is FALSE (the default value is TRUE in that case, otherwise it is FALSE), and only
if the function can safely be assumed to be only monotonically increasing or de-
creasing (which is generally reasonable if the default is used for fun), in which
case this will lead to a faster search and a smoother prediction grid in the relevant
region without increasing memory use.

prev_x, prev_y numeric vectors of equal lengths, corresponding to previous evaluations. If pro-
vided, these will be used in the calibration process (added before the initial grid
is setup, with values in the grid matching values in prev_x leading to those
evaluations being skipped).

path single character string or NULL (the default); if a valid file path is provided, the
calibration results will either be saved to this path (if the file does not exist or
if overwrite is TRUE, see below) or the previous results will be loaded and re-
turned (if the file exists, overwrite is FALSE, and if the input trial_spec and
central control settings are identical to the previous run, otherwise an error is
produced). Results are saved/loaded using the saveRDS() / readRDS() func-
tions.

overwrite single logical, defaults to FALSE, in which case previous results are loaded if
a valid file path is provided in path and the object in path contains the same
input trial_spec and the previous calibration used the same central control
settings (otherwise, the function errors). If TRUE and a valid file path is provided
in path, the complete calibration function will be run with results saved using
saveRDS(), regardless of whether or not a previous result was saved in path.

version passed to saveRDS() when saving calibration results, defaults to NULL (as in
saveRDS()), which means that the current default version is used. Ignored if
calibration results are not saved.

compress passed to saveRDS() when saving calibration results, defaults to TRUE (as in
saveRDS()), see saveRDS() for other options. Ignored if calibration results are
not saved.

sparse, progress, export, export_envir

passed to run_trials(), see description there.

verbose single logical, defaults to FALSE. If TRUE, the function will print details on cali-
bration progress.

plot single logical, defaults to FALSE. If TRUE, the function will print plots of the
Gaussian process model predictions and return them as part of the final object;
requires the ggplot2 package installed.

Details

Default calibration

8 calibrate_trial

If fun is NULL (as default), the default calibration strategy will be employed. Here, the target y
is the probability of superiority (as described in check_performance() and summary()), and the
function will calibrate constant stopping thresholds for superiority and inferiority (as described in
setup_trial(), setup_trial_binom(), and setup_trial_norm()), which corresponds to the
Bayesian analogues of the type 1 error rate if there are no differences between arms in the trial
specification, which we expect to be the most common use case, or the power, if there are differ-
ences between arms in the trial specification.

The stopping calibration process will, in the default case, use the input x as the stopping threshold
for superiority and 1 - x as the stopping threshold for inferiority, respectively, i.e., stopping thresh-
olds will be constant and symmetric.

The underlying default function calibrated is typically essentially noiseless if a high enough num-
ber of simulations are used with an appropriate random base_seed, and generally monotonically
decreasing. The default values for the control hyperparameters have been set to normally work
well in this case (including init_n, kappa, pow, lengthscale, narrow, scale_x, etc.). Thus, few
initial grid evaluations are used in this case, and if a base_seed is provided, a noiseless process is
assumed and narrowing of the search range with each iteration is performed, and the uncertainty
bounds used in the acquisition function (corresponding to quantiles from the posterior predictive
distribution) are relatively narrow.

Specifying calibration functions

A user-specified calibration function should have the following structure:

The function must take the arguments x and trial_spec
trial_spec is the original trial_spec object which should be modified
(alternatively, it may be re-specified, but the argument should still
be included, even if ignored)
function(x, trial_spec) {
Calibrate trial_spec, here as in the default function
trial_spec$superiority <- x
trial_spec$inferiority <- 1 - x

If relevant, known y values corresponding to specific x values may be
returned without running simulations (here done as in the default
function). In that case, a code block line the one below can be included,
with changed x/y values - of note, the other return values should not be
changed
if (x == 1) {
return(list(sims = NULL, trial_spec = trial_spec, y = 0))

}

Run simulations - this block should be included unchanged
sims <- run_trials(trial_spec, n_rep = n_rep, cores = cores,

base_seed = base_seed, sparse = sparse,
progress = progress, export = export,
export_envir = export_envir)

calibrate_trial 9

Return results - only the y value here should be changed
summary() or check_performance() will often be used here
list(sims = sims, trial_spec = trial_spec,

y = summary(sims)$prob_superior)
}

Note: changes to the trial specification are not validated; users who define their own calibra-
tion function need to ensure that changes to calibrated trial specifications does not lead to in-
valid values; otherwise, the procedure is prone to error when simulations are run. Especially,
users should be aware that changing true_ys in a trial specification generated using the simplified
setup_trial_binom() and setup_trial_norm() functions requires changes in multiple places in
the object, including in the functions used to generate random outcomes, and in these cases (and
otherwise if in doubt) re-generating the trial_spec instead of modifying should be preferred as
this is safer and leads to proper validation.

Note: if the y values corresponding to certain x values are known, then the user may directly return
these values without running simulations (e.g., in the default case an x of 1 will require >100% or
<0% probabilities for stopping rules, which is impossible, and hence the y value in this case is by
definition 1).

Gaussian process optimisation function and control hyperparameters

The calibration function uses a relatively simple Gaussian optimisation function with settings that
should work well for the default calibration function, but can be changed as required, which should
be considered if calibrating according to other targets (effects of using other settings may be evalu-
ated in greater detail by setting verbose and plot to TRUE).
The function may perform both interpolation (i.e., assuming a noiseless, deterministic process with
no uncertainty at the values already evaluated) or regression (i.e., assuming a noisy, stochastic pro-
cess), controlled by the noisy argument.

The covariance matrix (or kernel) is defined as:

exp(-||x - x'||^pow / lengthscale)

with ||x -x'|| corresponding to a matrix containing the absolute Euclidean distances of values of
x (and values on the prediction grid), scaled to the [0, 1] range if scale_x is TRUE and on their
original scale if FALSE. Scaling i generally recommended (as this leads to more comparable and
predictable effects of pow and lengthscale, regardless of the true scale), and also recommended
if the range of values is smaller than this range. The absolute distances are raised to the power
pow, which must be a value in the [1, 2] range. Together with lengthscale, pow controls the
smoothness of the Gaussian process model, with 1 corresponding to less smoothing (i.e., piecewise
straight lines between all evaluations if lengthscale is 1) and values > 1 corresponding to more
smoothing. After raising the absolute distances to the chosen power pow, the resulting matrix is
divided by lengthscale. The default is 1 (no change), and values < 1 leads to faster decay in
correlations and thus less smoothing (more wiggly fits), and values > 1 leads to more smoothing
(less wiggly fits). If a single specific value is supplied for lengthscale this is used; if a range of
values is provided, a secondary optimisation process determines the value to use within that range.

10 calibrate_trial

Some minimal noise ("jitter") is always added to the diagonals of the matrices where relevant to
ensure numerical stability; if noisy is TRUE, a "nugget" value will be determined using a secondary
optimisation process

Predictions will be made over an equally spaced grid of x values of size resolution; if narrow is
TRUE, this grid will only be spread out between the x values with corresponding y values closest to
and below and closes to and above target, respectively, leading to a finer grid in the range of rel-
evance (as described above, this should only be used for processes that are assumed to be noiseless
and should only be used if the process can safely be assumed to be monotonically increasing or de-
creasing within the search_range). To suggest the next x value for evaluations, the function uses an
acquisition function based on bi-directional uncertainty bounds (posterior predictive distributions)
with widths controlled by the kappa hyperparameter. Higher kappa/wider uncertainty bounds leads
to increased exploration (i.e., the algorithm is more prone to select values with high uncertainty,
relatively far from existing evaluations), while lower kappa/narrower uncertainty bounds leads to
increased exploitation (i.e., the algorithm is more prone to select values with less uncertainty, closer
to the best predicted mean values). The value in the x grid leading with one of the boundaries hav-
ing the smallest absolute distance to the target is chosen (within the narrowed range, if narrow is
TRUE). See Greenhill et al, 2020 under References for a general description of acquisition functions.

IMPORTANT: we recommend that control hyperparameters are explicitly specified, even for
the default calibration function. Although the default values should be sensible for the default cali-
bration function, these may change in the future. Further, we generally recommend users to perform
small-scale comparisons (i.e., with fewer simulations than in the final calibration) of the calibration
process with different hyperparameters for specific use cases beyond the default (possibly guided by
setting the verbose and plot options to TRUE) before running a substantial number of calibrations
or simulations, as the exact choices may have important influence on the speed and likelihood of
success of the calibration process.
It is the responsibility of the user to specify sensible values for the settings and hyperparameters.

Value

A list of special class "trial_calibration", which contains the following elements that can be
extracted using $ or [[:

• success: single logical, TRUE if the calibration succeeded with the best result being within
the tolerance range, FALSE if the calibration process ended after all allowed iterations without
obtaining a result within the tolerance range.

• best_x: single numerical value, the x-value (on the original, input scale) at which the best
y-value was found, regardless of success.

• best_y: single numerical value, the best y-value obtained, regardless of success.

• best_trial_spec: the best calibrated version of the original trial_spec object supplied,
regardless of success (i.e., the returned trial specification object is only adequately calibrated
if success is TRUE).

• best_sims: the trial simulation results (from run_trials()) leading to the best y-value,
regardless of success. If no new simulations have been conducted (e.g., if the best y-value is
from one of the prev_y-values), this will be NULL.

check_performance 11

• evaluations: a two-column data.frame containing the variables x and y, corresponding to
all x-values and y-values (including values supplied through prev_x/prev_y).

• input_trial_spec: the unaltered, uncalibrated, original trial_spec-object provided to the
function.

• elapsed_time: the total run time of the calibration process.

• control: list of the most central settings provided to the function.

• fun: the function used for calibration; if NULL was supplied when starting the calibration, the
default function (described in Details) is returned after being used in the function.

• adaptr_version: the version of the adaptr package used to run the calibration process.

• plots: list containing ggplot2 plot objects of each Gaussian process suggestion step, only
included if plot is TRUE.

References

Gramacy RB (2020). Chapter 5: Gaussian Process Regression. In: Surrogates: Gaussian Process
Modeling, Design and Optimization for the Applied Sciences. Chapman Hall/CRC, Boca Raton,
Florida, USA. Available online.

Greenhill S, Rana S, Gupta S, Vellanki P, Venkatesh S (2020). Bayesian Optimization for Adaptive
Experimental Design: A Review. IEEE Access, 8, 13937-13948. doi:10.1109/ACCESS.2020.2966228

Examples

Not run:
Setup a trial specification to calibrate
This trial specification has similar event rates in all arms
and as the default calibration settings are used, this corresponds to
assessing the Bayesian type 1 error rate for this design and scenario
binom_trial <- setup_trial_binom(arms = c("A", "B"),

true_ys = c(0.25, 0.25),
data_looks = 1:5 * 200)

Run calibration using default settings for most parameters
res <- calibrate_trial(binom_trial, n_rep = 1000, base_seed = 23)

Print calibration summary result
res

End(Not run)

check_performance Check performance metrics for trial simulations

https://bookdown.org/rbg/surrogates/chap5.html
https://doi.org/10.1109/ACCESS.2020.2966228

12 check_performance

Description

Calculates performance metrics for a trial specification based on simulation results from the run_trials()
function, with bootstrapped uncertainty measures if requested. Uses extract_results(), which
may be used directly to extract key trial results without summarising. This function is also used by
summary() to calculate the performance metrics presented by that function.

Usage

check_performance(
object,
select_strategy = "control if available",
select_last_arm = FALSE,
select_preferences = NULL,
te_comp = NULL,
raw_ests = FALSE,
final_ests = NULL,
restrict = NULL,
uncertainty = FALSE,
n_boot = 5000,
ci_width = 0.95,
boot_seed = NULL,
cores = NULL

)

Arguments

object trial_results object, output from the run_trials() function.
select_strategy

single character string. If a trial was not stopped due to superiority (or had
only 1 arm remaining, if select_last_arm is set to TRUE in trial designs with
a common control arm; see below), this parameter specifies which arm will
be considered selected when calculating trial design performance metrics, as
described below; this corresponds to the consequence of an inconclusive trial,
i.e., which arm would then be used in practice.
The following options are available and must be written exactly as below (case
sensitive, cannot be abbreviated):

• "control if available" (default): selects the first control arm for trials
with a common control arm if this arm is active at end-of-trial, otherwise
no arm will be selected. For trial designs without a common control, no
arm will be selected.

• "none": selects no arm in trials not ending with superiority.
• "control": similar to "control if available", but will throw an error if

used for trial designs without a common control arm.
• "final control": selects the final control arm regardless of whether the

trial was stopped for practical equivalence, futility, or at the maximum sam-
ple size; this strategy can only be specified for trial designs with a common
control arm.

check_performance 13

• "control or best": selects the first control arm if still active at end-of-
trial, otherwise selects the best remaining arm (defined as the remaining arm
with the highest probability of being the best in the last adaptive analysis
conducted). Only works for trial designs with a common control arm.

• "best": selects the best remaining arm (as described under "control or
best").

• "list or best": selects the first remaining arm from a specified list (spec-
ified using select_preferences, technically a character vector). If none
of these arms are are active at end-of-trial, the best remaining arm will be
selected (as described above).

• "list": as specified above, but if no arms on the provided list remain active
at end-of-trial, no arm is selected.

select_last_arm

single logical, defaults to FALSE. If TRUE, the only remaining active arm (the
last control) will be selected in trials with a common control arm ending
with equivalence or futility, before considering the options specified in
select_strategy. Must be FALSE for trial designs without a common control
arm.

select_preferences

character vector specifying a number of arms used for selection if one of the
"list or best" or "list" options are specified for select_strategy. Can
only contain valid arms available in the trial.

te_comp character string, treatment-effect comparator. Can be either NULL (the default)
in which case the first control arm is used for trial designs with a common
control arm, or a string naming a single trial arm. Will be used when calculating
sq_err_te (the squared error of the treatment effect comparing the selected arm
to the comparator arm, as described below).

raw_ests single logical. If FALSE (default), the posterior estimates (post_ests or post_ests_all,
see setup_trial() and run_trial()) will be used to calculate sq_err (the
squared error of the estimated compared to the specified effect in the selected
arm) and sq_err_te (the squared error of the treatment effect comparing the
selected arm to the comparator arm, as described for te_comp and below). If
TRUE, the raw estimates (raw_ests or raw_ests_all, see setup_trial() and
run_trial()) will be used instead of the posterior estimates.

final_ests single logical. If TRUE (recommended) the final estimates calculated using out-
come data from all patients randomised when trials are stopped are used (post_ests_all
or raw_ests_all, see setup_trial() and run_trial()); if FALSE, the esti-
mates calculated for each arm when an arm is stopped (or at the last adaptive
analysis if not before) using data from patients having reach followed up at this
time point and not all patients randomised are used (post_ests or raw_ests,
see setup_trial() and run_trial()). If NULL (the default), this argument will
be set to FALSE if outcome data are available immediate after randomisation for
all patients (for backwards compatibility, as final posterior estimates may vary
slightly in this situation, even if using the same data); otherwise it will be said
to TRUE. See setup_trial() for more details on how these estimates are calcu-
lated.

14 check_performance

restrict single character string or NULL. If NULL (default), results are summarised for all
simulations; if "superior", results are summarised for simulations ending with
superiority only; if "selected", results are summarised for simulations end-
ing with a selected arm only (according to the specified arm selection strategy
for simulations not ending with superiority). Some summary measures (e.g.,
prob_conclusive) have substantially different interpretations if restricted, but
are calculated nonetheless.

uncertainty single logical; if FALSE (default) uncertainty measures are not calculated, if
TRUE, non-parametric bootstrapping is used to calculate uncertainty measures.

n_boot single integer (default 5000); the number of bootstrap samples to use if uncertainty
= TRUE. Values < 100 are not allowed and values < 1000 will lead to a warning,
as results are likely to be unstable in those cases.

ci_width single numeric >= 0 and < 1, the width of the percentile-based bootstrapped
confidence intervals. Defaults to 0.95, corresponding to 95% confidence inter-
vals.

boot_seed single integer, NULL (default), or "base". If a value is provided, this value will
be used to initiate random seeds when bootstrapping with the global random
seed restored after the function has run. If "base" is specified, the base_seed
specified in run_trials() is used. Regardless of whether simulations are run
sequentially or in parallel, bootstrapped results will be identical if a boot_seed
is specified.

cores NULL or single integer. If NULL, a default value set by setup_cluster() will
be used to control whether extractions of simulation results are done in parallel
on a default cluster or sequentially in the main process; if a value has not been
specified by setup_cluster(), cores will then be set to the value stored in the
global "mc.cores" option (if previously set by options(mc.cores = <number of cores>),
and 1 if that option has not been specified.
If cores = 1, computations will be run sequentially in the primary process, and
if cores > 1, a new parallel cluster will be setup using the parallel library and
removed once the function completes. See setup_cluster() for details.

Details

The ideal design percentage (IDP) returned is based on Viele et al, 2020 doi:10.1177/1740774519877836
(and also described in Granholm et al, 2022 doi:10.1016/j.jclinepi.2022.11.002, which also de-
scribes the other performance measures) and has been adapted to work for trials with both desir-
able/undesirable outcomes and non-binary outcomes. Briefly, the expected outcome is calculated
as the sum of the true outcomes in each arm multiplied by the corresponding selection probabilities
(ignoring simulations with no selected arm). The IDP is then calculated as:

• For desirable outcomes (highest_is_best is TRUE):
100 * (expected outcome - lowest true outcome) / (highest true outcome - lowest true outcome)

• For undesirable outcomes (highest_is_best is FALSE):
100 - IDP calculated for desirable outcomes

https://doi.org/10.1177/1740774519877836
https://doi.org/10.1016/j.jclinepi.2022.11.002

check_performance 15

Value

A tidy data.frame with added class trial_performance (to control the number of digits printed,
see print()), with the columns "metric" (described below), "est" (estimate of each metric),
and the following four columns if uncertainty = TRUE: "err_sd"(bootstrapped SDs), "err_mad"
(bootstrapped MAD-SDs, as described in setup_trial() and stats::mad()), "lo_ci", and "hi_ci",
the latter two corresponding to the lower/upper limits of the percentile-based bootstrapped confi-
dence intervals. Bootstrap estimates are not calculated for the mininum (_p0) and maximum values
(_p100) of size, sum_ys, and ratio_ys, as non-parametric bootstrapping for mininum/maximum
values is not sensible - bootstrap estimates for these values will be NA.
The following performance metrics are calculated:

• n_summarised: the number of simulations summarised.

• size_mean, size_sd, size_median, size_p25, size_p75, size_p0, size_p100: the mean,
standard deviation, median as well as 25-, 75-, 0- (min), and 100- (max) percentiles of the
sample sizes (number of patients randomised in each simulated trial) of the summarised trial
simulations.

• sum_ys_mean, sum_ys_sd, sum_ys_median, sum_ys_p25, sum_ys_p75, sum_ys_p0, sum_ys_p100:
the mean, standard deviation, median as well as 25-, 75-, 0- (min), and 100- (max) percentiles
of the total sum_ys across all arms in the summarised trial simulations (e.g., the total number
of events in trials with a binary outcome, or the sums of continuous values for all patients
across all arms in trials with a continuous outcome). Always uses all outcomes from all ran-
domised patients regardless of whether or not all patients had outcome data available at the
time of trial stopping (corresponding to sum_ys_all in results from run_trial()).

• ratio_ys_mean, ratio_ys_sd, ratio_ys_median, ratio_ys_p25, ratio_ys_p75, ratio_ys_p0,
ratio_ys_p100: the mean, standard deviation, median as well as 25-, 75-, 0- (min), and 100-
(max) percentiles of the final ratio_ys (sum_ys as described above divided by the total num-
ber of patients randomised) across all arms in the summarised trial simulations.

• prob_conclusive: the proportion (0 to 1) of conclusive trial simulations, i.e., simulations not
stopped at the maximum sample size without a superiority, equivalence or futility decision.

• prob_superior, prob_equivalence, prob_futility, prob_max: the proportion (0 to 1) of
trial simulations stopped for superiority, equivalence, futility or inconclusive at the maximum
allowed sample size, respectively.
Note: Some metrics may not make sense if summarised simulation results are restricted.

• prob_select_*: the selection probabilities for each arm and for no selection, according to the
specified selection strategy. Contains one element per arm, named prob_select_arm_<arm name>
and prob_select_none for the probability of selecting no arm.

• rmse, rmse_te: the root mean squared error of the estimates for the selected arm and for the
treatment effect, as described in extract_results().

• idp: the ideal design percentage (IDP; 0-100%), see Details.

See Also

extract_results(), summary(), plot_convergence(), plot_metrics_ecdf(), check_remaining_arms().

16 check_remaining_arms

Examples

Setup a trial specification
binom_trial <- setup_trial_binom(arms = c("A", "B", "C", "D"),

control = "A",
true_ys = c(0.20, 0.18, 0.22, 0.24),
data_looks = 1:20 * 100)

Run 10 simulations with a specified random base seed
res <- run_trials(binom_trial, n_rep = 10, base_seed = 12345)

Check performance measures, without assuming that any arm is selected in
the inconclusive simulations, with bootstrapped uncertainty measures
(unstable in this example due to the very low number of simulations
summarised):
check_performance(res, select_strategy = "none", uncertainty = TRUE,
n_boot = 1000, boot_seed = "base")

check_remaining_arms Check remaining arm combinations

Description

This function summarises the numbers and proportions of all combinations of remaining arms (i.e.,
excluding arms dropped for inferiority or futility at any analysis, and arms dropped for equiva-
lence at earlier analyses in trials with a common control) across multiple simulated trial results.
The function supplements the extract_results(), check_performance(), and summary() func-
tions, and is especially useful for designs with > 2 arms, where it provides details that the other
functionality mentioned do not.

Usage

check_remaining_arms(object, ci_width = 0.95)

Arguments

object trial_results object, output from the run_trials() function.

ci_width single numeric >= 0 and < 1, the width of the approximate confidence intervals
for the proportions of combinations (calculated analytically). Defaults to 0.95,
corresponding to 95% confidence intervals.

Value

a data.frame containing the combinations of remaining arms, sorted in descending order of, with
the following columns:

extract_results 17

• arm_*, one column per arm, each named as arm_<arm name>. These columns will contain
an empty character string "" for dropped arms (including arms dropped at the final analysis),
and otherwise be "superior", "control", "equivalence" (only if equivalent at the final
analysis), or "active", as described in run_trial().

• n integer vector, number of trial simulations ending with the combination of remaining arms
as specified by the preceding columns.

• prop numeric vector, the proportion of trial simulations ending with the combination of re-
maining arms as specified by the preceding columns.

• se,lo_ci,hi_ci: the standard error of prop and the confidence intervals of the width specified
by ci_width.

See Also

extract_results(), check_performance(), summary(), plot_convergence(), plot_metrics_ecdf().

Examples

Setup a trial specification
binom_trial <- setup_trial_binom(arms = c("A", "B", "C", "D"),

control = "A",
true_ys = c(0.20, 0.18, 0.22, 0.24),
data_looks = 1:20 * 200,
equivalence_prob = 0.7,
equivalence_diff = 0.03,
equivalence_only_first = FALSE)

Run 35 simulations with a specified random base seed
res <- run_trials(binom_trial, n_rep = 25, base_seed = 12345)

Check remaining arms (printed with fewer digits)
print(check_remaining_arms(res), digits = 3)

extract_results Extract simulation results

Description

This function extracts relevant information from multiple simulations of the same trial specification
in a tidy data.frame (1 simulation per row). See also the check_performance() and summary()
functions, that uses the output from this function to further summarise simulation results.

Usage

extract_results(
object,
select_strategy = "control if available",
select_last_arm = FALSE,

18 extract_results

select_preferences = NULL,
te_comp = NULL,
raw_ests = FALSE,
final_ests = NULL,
cores = NULL

)

Arguments

object trial_results object, output from the run_trials() function.
select_strategy

single character string. If a trial was not stopped due to superiority (or had
only 1 arm remaining, if select_last_arm is set to TRUE in trial designs with
a common control arm; see below), this parameter specifies which arm will
be considered selected when calculating trial design performance metrics, as
described below; this corresponds to the consequence of an inconclusive trial,
i.e., which arm would then be used in practice.
The following options are available and must be written exactly as below (case
sensitive, cannot be abbreviated):

• "control if available" (default): selects the first control arm for trials
with a common control arm if this arm is active at end-of-trial, otherwise
no arm will be selected. For trial designs without a common control, no
arm will be selected.

• "none": selects no arm in trials not ending with superiority.
• "control": similar to "control if available", but will throw an error if

used for trial designs without a common control arm.
• "final control": selects the final control arm regardless of whether the

trial was stopped for practical equivalence, futility, or at the maximum sam-
ple size; this strategy can only be specified for trial designs with a common
control arm.

• "control or best": selects the first control arm if still active at end-of-
trial, otherwise selects the best remaining arm (defined as the remaining arm
with the highest probability of being the best in the last adaptive analysis
conducted). Only works for trial designs with a common control arm.

• "best": selects the best remaining arm (as described under "control or
best").

• "list or best": selects the first remaining arm from a specified list (spec-
ified using select_preferences, technically a character vector). If none
of these arms are are active at end-of-trial, the best remaining arm will be
selected (as described above).

• "list": as specified above, but if no arms on the provided list remain active
at end-of-trial, no arm is selected.

select_last_arm

single logical, defaults to FALSE. If TRUE, the only remaining active arm (the
last control) will be selected in trials with a common control arm ending
with equivalence or futility, before considering the options specified in
select_strategy. Must be FALSE for trial designs without a common control
arm.

extract_results 19

select_preferences

character vector specifying a number of arms used for selection if one of the
"list or best" or "list" options are specified for select_strategy. Can
only contain valid arms available in the trial.

te_comp character string, treatment-effect comparator. Can be either NULL (the default)
in which case the first control arm is used for trial designs with a common
control arm, or a string naming a single trial arm. Will be used when calculating
sq_err_te (the squared error of the treatment effect comparing the selected arm
to the comparator arm, as described below).

raw_ests single logical. If FALSE (default), the posterior estimates (post_ests or post_ests_all,
see setup_trial() and run_trial()) will be used to calculate sq_err (the
squared error of the estimated compared to the specified effect in the selected
arm) and sq_err_te (the squared error of the treatment effect comparing the
selected arm to the comparator arm, as described for te_comp and below). If
TRUE, the raw estimates (raw_ests or raw_ests_all, see setup_trial() and
run_trial()) will be used instead of the posterior estimates.

final_ests single logical. If TRUE (recommended) the final estimates calculated using out-
come data from all patients randomised when trials are stopped are used (post_ests_all
or raw_ests_all, see setup_trial() and run_trial()); if FALSE, the esti-
mates calculated for each arm when an arm is stopped (or at the last adaptive
analysis if not before) using data from patients having reach followed up at this
time point and not all patients randomised are used (post_ests or raw_ests,
see setup_trial() and run_trial()). If NULL (the default), this argument will
be set to FALSE if outcome data are available immediate after randomisation for
all patients (for backwards compatibility, as final posterior estimates may vary
slightly in this situation, even if using the same data); otherwise it will be said
to TRUE. See setup_trial() for more details on how these estimates are calcu-
lated.

cores NULL or single integer. If NULL, a default value set by setup_cluster() will
be used to control whether extractions of simulation results are done in parallel
on a default cluster or sequentially in the main process; if a value has not been
specified by setup_cluster(), cores will then be set to the value stored in the
global "mc.cores" option (if previously set by options(mc.cores = <number of cores>),
and 1 if that option has not been specified.
If cores = 1, computations will be run sequentially in the primary process, and
if cores > 1, a new parallel cluster will be setup using the parallel library and
removed once the function completes. See setup_cluster() for details.

Value

A data.frame containing the following columns:

• sim: the simulation number (from 1 to the total number of simulations).

• final_n: the final sample size in each simulation.

• sum_ys: the sum of the total counts in all arms, e.g., the total number of events in trials with
a binary outcome (setup_trial_binom()) or the sum of the arm totals in trials with a con-
tinuous outcome (setup_trial_norm()). Always uses all outcome data from all randomised

20 find_beta_params

patients regardless of whether or not all patients had outcome data available at the time of trial
stopping (corresponding to sum_ys_all in results from run_trial()).

• ratio_ys: calculated as sum_ys/final_n (as described above).

• final_status: the final trial status for each simulation, either "superiority", "equivalence",
"futility", or "max", as described in run_trial().

• superior_arm: the final superior arm in simulations stopped for superiority. Will be NA in
simulations not stopped for superiority.

• selected_arm: the final selected arm (as described above). Will correspond to the superior_arm
in simulations stopped for superiority and be NA if no arm is selected. See select_strategy
above.

• sq_err: the squared error of the estimate in the selected arm, calculated as (estimated effect - true effect)^2
for the selected arms.

• sq_err_te: the squared error of the treatment effect comparing the selected arm to the com-
parator arm (as specified in te_comp). Calculated as:
((estimated effect in the selected arm - estimated effect in the comparator arm) -
(true effect in the selected arm - true effect in the comparator arm))^2
Will be NA for simulations without a selected arm, with no comparator specified (see te_comp
above), and when the selected arm is the comparator arm.

See Also

check_performance(), summary(), plot_convergence(), plot_metrics_ecdf(), check_remaining_arms().

Examples

Setup a trial specification
binom_trial <- setup_trial_binom(arms = c("A", "B", "C", "D"),

control = "A",
true_ys = c(0.20, 0.18, 0.22, 0.24),
data_looks = 1:20 * 100)

Run 10 simulations with a specified random base seed
res <- run_trials(binom_trial, n_rep = 10, base_seed = 12345)

Extract results and Select the control arm if available
in simulations not ending with superiority
extract_results(res, select_strategy = "control")

find_beta_params Find beta distribution parameters from thresholds

find_beta_params 21

Description

Helper function to find a beta distribution with parameters corresponding to the fewest possible
patients with events/non-events and a specified event proportion. Used in the Advanced example
vignette (vignette("Advanced-example", "adaptr")) to derive beta prior distributions for use
in beta-binomial conjugate models, based on a belief that the true event probability lies within a
specified percentile-based interval (defaults to 95%). May similarly be used by users to derive other
beta priors.

Usage

find_beta_params(
theta = NULL,
boundary_target = NULL,
boundary = "lower",
interval_width = 0.95,
n_dec = 0,
max_n = 10000

)

Arguments

theta single numeric > 0 and < 1, expected true event probability.

boundary_target

single numeric > 0 and < 1, target lower or upper boundary of the interval.

boundary single character string, either "lower" (default) or "upper", used to select which
boundary to use when finding appropriate parameters for the beta distribution.

interval_width width of the credible interval whose lower/upper boundary should be used (see
boundary_target); must be > 0 and < 1; defaults to 0.95.

n_dec single non-negative integer; the returned parameters are rounded to this number
of decimals. Defaults to 0, in which case the parameters will correspond to
whole number of patients.

max_n single integer > 0 (default 10000), the maximum total sum of the parameters,
corresponding to the maximum total number of patients that will be considered
by the function when finding the optimal parameter values. Corresponds to the
maximum number of patients contributing information to a beta prior; more than
the default number of patients are unlikely to be used in a beta prior.

Value

A single-row data.frame with five columns: the two shape parameters of the beta distribution
(alpha, beta), rounded according to n_dec, and the actual lower and upper boundaries of the
interval and the median (with appropriate names, e.g. p2.5, p50, and p97.5 for a 95% interval),
when using those rounded values.

22 plot_convergence

plot_convergence Plot convergence of performance metrics

Description

Plots performance metrics according to the number of simulations conducted for multiple simu-
lated trials. The simulated trial results may be split into a number of batches to illustrate stability of
performance metrics across different simulations. Calculations are done according to specified se-
lection and restriction strategies as described in extract_results() and check_performance().
Requires the ggplot2 package installed.

Usage

plot_convergence(
object,
metrics = "size mean",
resolution = 100,
select_strategy = "control if available",
select_last_arm = FALSE,
select_preferences = NULL,
te_comp = NULL,
raw_ests = FALSE,
final_ests = NULL,
restrict = NULL,
n_split = 1,
nrow = NULL,
ncol = NULL,
cores = NULL

)

Arguments

object trial_results object, output from the run_trials() function.

metrics the performance metrics to plot, as described in check_performance(). Mul-
tiple metrics may be plotted at the same time. Valid metrics include: size_mean,
size_sd, size_median, size_p25, size_p75, size_p0, size_p100, sum_ys_mean,
sum_ys_sd, sum_ys_median, sum_ys_p25, sum_ys_p75, sum_ys_p0, sum_ys_p100,
ratio_ys_mean, ratio_ys_sd, ratio_ys_median, ratio_ys_p25, ratio_ys_p75,
ratio_ys_p0, ratio_ys_p100, prob_conclusive, prob_superior, prob_equivalence,
prob_futility, prob_max, prob_select_* (with * being either "arm_<name>
for all arm names or none), rmse, rmse_te, and idp. All may be specified as
above, case sensitive, but with either spaces or underlines. Defaults to "size
mean".

resolution single positive integer, the number of points calculated and plotted, defaults to
100 and must be >= 10. Higher numbers lead to smoother plots, but increases
computation time. If the value specified is higher than the number of simulations
(or simulations per split), the maximum possible value will be used instead.

plot_convergence 23

select_strategy

single character string. If a trial was not stopped due to superiority (or had
only 1 arm remaining, if select_last_arm is set to TRUE in trial designs with
a common control arm; see below), this parameter specifies which arm will
be considered selected when calculating trial design performance metrics, as
described below; this corresponds to the consequence of an inconclusive trial,
i.e., which arm would then be used in practice.
The following options are available and must be written exactly as below (case
sensitive, cannot be abbreviated):

• "control if available" (default): selects the first control arm for trials
with a common control arm if this arm is active at end-of-trial, otherwise
no arm will be selected. For trial designs without a common control, no
arm will be selected.

• "none": selects no arm in trials not ending with superiority.
• "control": similar to "control if available", but will throw an error if

used for trial designs without a common control arm.
• "final control": selects the final control arm regardless of whether the

trial was stopped for practical equivalence, futility, or at the maximum sam-
ple size; this strategy can only be specified for trial designs with a common
control arm.

• "control or best": selects the first control arm if still active at end-of-
trial, otherwise selects the best remaining arm (defined as the remaining arm
with the highest probability of being the best in the last adaptive analysis
conducted). Only works for trial designs with a common control arm.

• "best": selects the best remaining arm (as described under "control or
best").

• "list or best": selects the first remaining arm from a specified list (spec-
ified using select_preferences, technically a character vector). If none
of these arms are are active at end-of-trial, the best remaining arm will be
selected (as described above).

• "list": as specified above, but if no arms on the provided list remain active
at end-of-trial, no arm is selected.

select_last_arm

single logical, defaults to FALSE. If TRUE, the only remaining active arm (the
last control) will be selected in trials with a common control arm ending
with equivalence or futility, before considering the options specified in
select_strategy. Must be FALSE for trial designs without a common control
arm.

select_preferences

character vector specifying a number of arms used for selection if one of the
"list or best" or "list" options are specified for select_strategy. Can
only contain valid arms available in the trial.

te_comp character string, treatment-effect comparator. Can be either NULL (the default)
in which case the first control arm is used for trial designs with a common
control arm, or a string naming a single trial arm. Will be used when calculating
sq_err_te (the squared error of the treatment effect comparing the selected arm
to the comparator arm, as described below).

24 plot_convergence

raw_ests single logical. If FALSE (default), the posterior estimates (post_ests or post_ests_all,
see setup_trial() and run_trial()) will be used to calculate sq_err (the
squared error of the estimated compared to the specified effect in the selected
arm) and sq_err_te (the squared error of the treatment effect comparing the
selected arm to the comparator arm, as described for te_comp and below). If
TRUE, the raw estimates (raw_ests or raw_ests_all, see setup_trial() and
run_trial()) will be used instead of the posterior estimates.

final_ests single logical. If TRUE (recommended) the final estimates calculated using out-
come data from all patients randomised when trials are stopped are used (post_ests_all
or raw_ests_all, see setup_trial() and run_trial()); if FALSE, the esti-
mates calculated for each arm when an arm is stopped (or at the last adaptive
analysis if not before) using data from patients having reach followed up at this
time point and not all patients randomised are used (post_ests or raw_ests,
see setup_trial() and run_trial()). If NULL (the default), this argument will
be set to FALSE if outcome data are available immediate after randomisation for
all patients (for backwards compatibility, as final posterior estimates may vary
slightly in this situation, even if using the same data); otherwise it will be said
to TRUE. See setup_trial() for more details on how these estimates are calcu-
lated.

restrict single character string or NULL. If NULL (default), results are summarised for all
simulations; if "superior", results are summarised for simulations ending with
superiority only; if "selected", results are summarised for simulations end-
ing with a selected arm only (according to the specified arm selection strategy
for simulations not ending with superiority). Some summary measures (e.g.,
prob_conclusive) have substantially different interpretations if restricted, but
are calculated nonetheless.

n_split single positive integer, the number of consecutive batches the simulation results
will be split into, which will be plotted separately. Default is 1 (no splitting);
maximum value is the number of simulations summarised (after restrictions)
divided by 10.

nrow, ncol the number of rows and columns when plotting multiple metrics in the same
plot (using faceting in ggplot2). Defaults to NULL, in which case this will be
determined automatically.

cores NULL or single integer. If NULL, a default value set by setup_cluster() will
be used to control whether extractions of simulation results are done in parallel
on a default cluster or sequentially in the main process; if a value has not been
specified by setup_cluster(), cores will then be set to the value stored in the
global "mc.cores" option (if previously set by options(mc.cores = <number of cores>),
and 1 if that option has not been specified.
If cores = 1, computations will be run sequentially in the primary process, and
if cores > 1, a new parallel cluster will be setup using the parallel library and
removed once the function completes. See setup_cluster() for details.

Value

A ggplot2 plot object.

plot_history 25

See Also

check_performance(), summary(), extract_results(), check_remaining_arms().

Examples

Only run examples if ggplot2 is installed
if (requireNamespace("ggplot2", quietly = TRUE)){

Setup a trial specification
binom_trial <- setup_trial_binom(arms = c("A", "B", "C", "D"),

control = "A",
true_ys = c(0.20, 0.18, 0.22, 0.24),
data_looks = 1:20 * 100)

Run multiple simulation with a fixed random base seed
res_mult <- run_trials(binom_trial, n_rep = 25, base_seed = 678)

NOTE: the number of simulations in this example is smaller than
recommended - the plots reflect that, and show that performance metrics
are not stable and have likely not converged yet

Convergence plot of mean sample sizes
plot_convergence(res_mult, metrics = "size mean")

}

if (requireNamespace("ggplot2", quietly = TRUE)){

Convergence plot of mean sample sizes and ideal design percentages,
with simulations split in 2 batches
plot_convergence(res_mult, metrics = c("size mean", "idp"), n_split = 2)

}

plot_history Plot trial metric history

Description

Plots the history of relevant metrics over the progress of a single or multiple trial simulations. Sim-
ulated trials only contribute until the time they are stopped, i.e., if some trials are stopped earlier
than others, they will not contribute to the summary statistics at later adaptive looks. Data from
individual arms in a trial contribute until the complete trial is stopped.
These history plots require non-sparse results (sparse set to FALSE; see run_trial() and run_trials())
and the ggplot2 package installed.

26 plot_history

Usage

plot_history(object, x_value = "look", y_value = "prob", line = NULL, ...)

S3 method for class 'trial_result'
plot_history(object, x_value = "look", y_value = "prob", line = NULL, ...)

S3 method for class 'trial_results'
plot_history(
object,
x_value = "look",
y_value = "prob",
line = NULL,
ribbon = list(width = 0.5, alpha = 0.2),
cores = NULL,
...

)

Arguments

object trial_results object, output from the run_trials() function.

x_value single character string, determining whether the number of adaptive analysis
looks ("look", default), the total cumulated number of patients randomised
("total n") or the total cumulated number of patients with outcome data avail-
able at each adaptive analysis ("followed n") are plotted on the x-axis.

y_value single character string, determining which values are plotted on the y-axis. The
following options are available: allocation probabilities ("prob", default), the
total number of patients with outcome data available ("n") or randomised ("n
all") to each arm, the percentage of patients with outcome data available ("pct")
or randomised ("pct all") to each arm out of the current total, the sum of all
available ("sum ys") outcome data or all outcome data for randomised patients
including outcome data not available at the time of the current adaptive analy-
sis ("sum ys all"), the ratio of outcomes as defined for "sum ys"/"sum ys all"
divided by the corresponding number of patients in each arm.

line list styling the lines as per ggplot2 conventions (e.g., linetype, linewidth).

... additional arguments, not used.

ribbon list, as line but only appropriate for trial_results objects (i.e., when multi-
ple simulations are run). Also allows to specify the width of the interval: must
be between 0 and 1, with 0.5 (default) showing the inter-quartile ranges.

cores NULL or single integer. If NULL, a default value set by setup_cluster() will
be used to control whether extractions of simulation results are done in parallel
on a default cluster or sequentially in the main process; if a value has not been
specified by setup_cluster(), cores will then be set to the value stored in the
global "mc.cores" option (if previously set by options(mc.cores = <number of cores>),
and 1 if that option has not been specified.
If cores = 1, computations will be run sequentially in the primary process, and
if cores > 1, a new parallel cluster will be setup using the parallel library and
removed once the function completes. See setup_cluster() for details.

plot_metrics_ecdf 27

Value

A ggplot2 plot object.

See Also

plot_status().

Examples

Only run examples if ggplot2 is installed
if (requireNamespace("ggplot2", quietly = TRUE)){

Setup a trial specification
binom_trial <- setup_trial_binom(arms = c("A", "B", "C", "D"),

control = "A",
true_ys = c(0.20, 0.18, 0.22, 0.24),
data_looks = 1:20 * 100)

Run a single simulation with a fixed random seed
res <- run_trial(binom_trial, seed = 12345)

Plot total allocations to each arm according to overall total allocations
plot_history(res, x_value = "total n", y_value = "n")

}

if (requireNamespace("ggplot2", quietly = TRUE)){

Run multiple simulation with a fixed random base seed
Notice that sparse = FALSE is required
res_mult <- run_trials(binom_trial, n_rep = 15, base_seed = 12345, sparse = FALSE)

Plot allocation probabilities at each look
plot_history(res_mult, x_value = "look", y_value = "prob")

Other y_value options are available but not shown in these examples

}

plot_metrics_ecdf Plot empirical cumulative distribution functions of performance met-
rics

Description

Plots empirical cumulative distribution functions (ECDFs) of numerical performance metrics across
multiple simulations from a "trial_results" object returned by run_trials(). Requires the
ggplot2 package installed.

28 plot_metrics_ecdf

Usage

plot_metrics_ecdf(
object,
metrics = c("size", "sum_ys", "ratio_ys"),
restrict = NULL,
nrow = NULL,
ncol = NULL,
cores = NULL

)

Arguments

object trial_results object, output from the run_trials() function.

metrics the performance metrics to plot, as described in extract_results(). Multiple
metrics may be plotted at the same time. Valid metrics include: size, sum_ys,
and ratio_ys_mean. All may be specified using either spaces or underlines
(case sensitive). Defaults to plotting all three.

restrict single character string or NULL. If NULL (default), results are summarised for all
simulations; if "superior", results are summarised for simulations ending with
superiority only; if "selected", results are summarised for simulations end-
ing with a selected arm only (according to the specified arm selection strategy
for simulations not ending with superiority). Some summary measures (e.g.,
prob_conclusive) have substantially different interpretations if restricted, but
are calculated nonetheless.

nrow, ncol the number of rows and columns when plotting multiple metrics in the same
plot (using faceting in ggplot2). Defaults to NULL, in which case this will be
determined automatically.

cores NULL or single integer. If NULL, a default value set by setup_cluster() will
be used to control whether extractions of simulation results are done in parallel
on a default cluster or sequentially in the main process; if a value has not been
specified by setup_cluster(), cores will then be set to the value stored in the
global "mc.cores" option (if previously set by options(mc.cores = <number of cores>),
and 1 if that option has not been specified.
If cores = 1, computations will be run sequentially in the primary process, and
if cores > 1, a new parallel cluster will be setup using the parallel library and
removed once the function completes. See setup_cluster() for details.

Value

A ggplot2 plot object.

See Also

check_performance(), summary(), extract_results(), plot_convergence(), check_remaining_arms().

plot_status 29

Examples

Only run examples if ggplot2 is installed
if (requireNamespace("ggplot2", quietly = TRUE)){

Setup a trial specification
binom_trial <- setup_trial_binom(arms = c("A", "B", "C", "D"),

control = "A",
true_ys = c(0.20, 0.18, 0.22, 0.24),
data_looks = 1:20 * 100)

Run multiple simulation with a fixed random base seed
res_mult <- run_trials(binom_trial, n_rep = 25, base_seed = 678)

NOTE: the number of simulations in this example is smaller than
recommended - the plots reflect that, and would likely be smoother if
a larger number of trials had been simulated

Plot ECDFs of continuous performance metrics
plot_metrics_ecdf(res_mult)

}

plot_status Plot statuses

Description

Plots the statuses over time of multiple simulated trials (overall or for one or more specific arms).
Requires the ggplot2 package installed.

Usage

plot_status(
object,
x_value = "look",
arm = NULL,
area = list(alpha = 0.5),
nrow = NULL,
ncol = NULL

)

S3 method for class 'trial_results'
plot_status(
object,
x_value = "look",
arm = NULL,
area = list(alpha = 0.5),

30 plot_status

nrow = NULL,
ncol = NULL

)

Arguments

object trial_results object, output from the run_trials() function.

x_value single character string, determining whether the number of adaptive analysis
looks ("look", default), the total cumulated number of patients randomised
("total n") or the total cumulated number of patients with outcome data avail-
able at each adaptive analysis ("followed n") are plotted on the x-axis.

arm character vector containing one or more unique, valid arm names, NA, or NULL
(default). If NULL, the overall trial statuses are plotted, otherwise the specified
arms or all arms (if NA is specified) are plotted.

area list of styling settings for the area as per ggplot2 conventions (e.g., alpha,
linewidth). The default (list(alpha = 0.5)) sets the transparency to 50% so
overlain shaded areas are visible.

nrow, ncol the number of rows and columns when plotting statuses for multiple arms in the
same plot (using faceting in ggplot2). Defaults to NULL, in which case this will
be determined automatically where relevant.

Value

A ggplot2 plot object.

See Also

plot_history().

Examples

Only run examples if ggplot2 is installed
if (requireNamespace("ggplot2", quietly = TRUE)){

Setup a trial specification
binom_trial <- setup_trial_binom(arms = c("A", "B", "C", "D"),

control = "A",
true_ys = c(0.20, 0.18, 0.22, 0.24),
data_looks = 1:20 * 100)

Run multiple simulation with a fixed random base seed
res_mult <- run_trials(binom_trial, n_rep = 25, base_seed = 12345)

Plot trial statuses at each look according to total allocations
plot_status(res_mult, x_value = "total n")

}

if (requireNamespace("ggplot2", quietly = TRUE)){

print 31

Plot trial statuses for all arms
plot_status(res_mult, arm = NA)

}

print Print methods for adaptive trial objects

Description

Prints contents of the first input x in a human-friendly way, see Details for more information.

Usage

S3 method for class 'trial_spec'
print(x, prob_digits = 3, ...)

S3 method for class 'trial_result'
print(x, prob_digits = 3, ...)

S3 method for class 'trial_performance'
print(x, digits = 3, ...)

S3 method for class 'trial_results'
print(
x,
select_strategy = "control if available",
select_last_arm = FALSE,
select_preferences = NULL,
te_comp = NULL,
raw_ests = FALSE,
final_ests = NULL,
restrict = NULL,
digits = 1,
cores = NULL,
...

)

S3 method for class 'trial_results_summary'
print(x, digits = 1, ...)

S3 method for class 'trial_calibration'
print(x, ...)

32 print

Arguments

x object to print, see Details.

prob_digits single integer (default is 3), the number of digits used when printing probabili-
ties, allocation probabilities and softening powers (with 2 extra digits added for
stopping rule probability thresholds in trial specifications and for outcome rates
in summarised results from multiple simulations).

... additional arguments, not used.

digits single integer, the number of digits used when printing the numeric results.
Default is 3 for outputs from check_performance() and 1 for outputs from
run_trials() and the accompanying summary() method.

select_strategy

single character string. If a trial was not stopped due to superiority (or had
only 1 arm remaining, if select_last_arm is set to TRUE in trial designs with
a common control arm; see below), this parameter specifies which arm will
be considered selected when calculating trial design performance metrics, as
described below; this corresponds to the consequence of an inconclusive trial,
i.e., which arm would then be used in practice.
The following options are available and must be written exactly as below (case
sensitive, cannot be abbreviated):

• "control if available" (default): selects the first control arm for trials
with a common control arm if this arm is active at end-of-trial, otherwise
no arm will be selected. For trial designs without a common control, no
arm will be selected.

• "none": selects no arm in trials not ending with superiority.
• "control": similar to "control if available", but will throw an error if

used for trial designs without a common control arm.
• "final control": selects the final control arm regardless of whether the

trial was stopped for practical equivalence, futility, or at the maximum sam-
ple size; this strategy can only be specified for trial designs with a common
control arm.

• "control or best": selects the first control arm if still active at end-of-
trial, otherwise selects the best remaining arm (defined as the remaining arm
with the highest probability of being the best in the last adaptive analysis
conducted). Only works for trial designs with a common control arm.

• "best": selects the best remaining arm (as described under "control or
best").

• "list or best": selects the first remaining arm from a specified list (spec-
ified using select_preferences, technically a character vector). If none
of these arms are are active at end-of-trial, the best remaining arm will be
selected (as described above).

• "list": as specified above, but if no arms on the provided list remain active
at end-of-trial, no arm is selected.

select_last_arm

single logical, defaults to FALSE. If TRUE, the only remaining active arm (the
last control) will be selected in trials with a common control arm ending

print 33

with equivalence or futility, before considering the options specified in
select_strategy. Must be FALSE for trial designs without a common control
arm.

select_preferences

character vector specifying a number of arms used for selection if one of the
"list or best" or "list" options are specified for select_strategy. Can
only contain valid arms available in the trial.

te_comp character string, treatment-effect comparator. Can be either NULL (the default)
in which case the first control arm is used for trial designs with a common
control arm, or a string naming a single trial arm. Will be used when calculating
sq_err_te (the squared error of the treatment effect comparing the selected arm
to the comparator arm, as described below).

raw_ests single logical. If FALSE (default), the posterior estimates (post_ests or post_ests_all,
see setup_trial() and run_trial()) will be used to calculate sq_err (the
squared error of the estimated compared to the specified effect in the selected
arm) and sq_err_te (the squared error of the treatment effect comparing the
selected arm to the comparator arm, as described for te_comp and below). If
TRUE, the raw estimates (raw_ests or raw_ests_all, see setup_trial() and
run_trial()) will be used instead of the posterior estimates.

final_ests single logical. If TRUE (recommended) the final estimates calculated using out-
come data from all patients randomised when trials are stopped are used (post_ests_all
or raw_ests_all, see setup_trial() and run_trial()); if FALSE, the esti-
mates calculated for each arm when an arm is stopped (or at the last adaptive
analysis if not before) using data from patients having reach followed up at this
time point and not all patients randomised are used (post_ests or raw_ests,
see setup_trial() and run_trial()). If NULL (the default), this argument will
be set to FALSE if outcome data are available immediate after randomisation for
all patients (for backwards compatibility, as final posterior estimates may vary
slightly in this situation, even if using the same data); otherwise it will be said
to TRUE. See setup_trial() for more details on how these estimates are calcu-
lated.

restrict single character string or NULL. If NULL (default), results are summarised for all
simulations; if "superior", results are summarised for simulations ending with
superiority only; if "selected", results are summarised for simulations end-
ing with a selected arm only (according to the specified arm selection strategy
for simulations not ending with superiority). Some summary measures (e.g.,
prob_conclusive) have substantially different interpretations if restricted, but
are calculated nonetheless.

cores NULL or single integer. If NULL, a default value set by setup_cluster() will
be used to control whether extractions of simulation results are done in parallel
on a default cluster or sequentially in the main process; if a value has not been
specified by setup_cluster(), cores will then be set to the value stored in the
global "mc.cores" option (if previously set by options(mc.cores = <number of cores>),
and 1 if that option has not been specified.
If cores = 1, computations will be run sequentially in the primary process, and
if cores > 1, a new parallel cluster will be setup using the parallel library and
removed once the function completes. See setup_cluster() for details.

34 run_trial

Details

The behaviour depends on the class of x:

• trial_spec: prints a trial specification setup by setup_trial(), setup_trial_binom() or
setup_trial_norm().

• trial_result: prints the results of a single trial simulated by run_trial(). More details are
saved in the trial_result object and thus printed if the sparse argument in run_trial()
or run_trials() is set to FALSE; if TRUE, fewer details are printed, but the omitted details are
available by printing the trial_spec object created by setup_trial(), setup_trial_binom()
or setup_trial_norm().

• trial_results: prints the results of multiple simulations generated using run_trials().
Further documentation on how multiple trials are summarised before printing can be found in
the summary() function documentation.

• trial_results_summary: print method for summary of multiple simulations of the same
trial specification, generated by using the summary() function on an object generated by
run_trials().

Value

Invisibly returns x.

Methods (by class)

• print(trial_spec): Trial specification

• print(trial_result): Single trial result

• print(trial_performance): Trial performance metrics

• print(trial_results): Multiple trial results

• print(trial_results_summary): Summary of multiple trial results

• print(trial_calibration): Trial calibration

run_trial Simulate a single trial

Description

This function conducts a single trial simulation using a trial specification as specified by setup_trial(),
setup_trial_binom() or setup_trial_norm().
During simulation, the function randomises "patients", randomly generates outcomes, calculates the
probabilities that each arm is the best (and better than the control, if any). This is followed by check-
ing inferiority, superiority, equivalence and/or futility as desired; dropping arms, and re-adjusting
allocation probabilities according to the criteria specified in the trial specification. If there is no
common control arm, the trial simulation will be stopped at the final specified adaptive analysis,
when 1 arm is superior to the others, or when all arms are considered equivalent (if equivalence is

run_trial 35

assessed). If a common control arm is specified, all other arms will be compared to that, and if 1
of these pairwise comparisons crosses the applicable superiority threshold at an adaptive analysis,
that arm will become the new control and the old control will be considered inferior and dropped.
If multiple non-control arms cross the applicable superiority threshold in the same adaptive anal-
ysis, the one with the highest probability of being the overall best will become the new control.
Equivalence/futility will also be checked if specified, and equivalent or futile arms will be dropped
in designs with a common control arm and the entire trial will be stopped if all remaining arms
are equivalent in designs without a common control arm. The trial simulation will be stopped
when only 1 arm is left, when the final arms are all equivalent, or after the final specified adaptive
analysis.
After stopping (regardless of reason), a final analysis including outcome data from all patients ran-
domised to all arms will be conducted (with the final control arm, if any, used as the control in
this analysis). Results from this analysis will be saved, but not used with regards to the adaptive
stopping rules. This is particularly relevant if less patients have available outcome data at the last
adaptive analyses than the total number of patients randomised (as specified in setup_trial(),
setup_trial_binom(), or setup_trial_norm()), as the final analysis will then include all pa-
tients randomised, which may be more than in the last adaptive analysis conducted.

Usage

run_trial(trial_spec, seed = NULL, sparse = FALSE)

Arguments

trial_spec trial_spec object, generated and validated by the setup_trial(), setup_trial_binom()
or setup_trial_norm() function.

seed single integer or NULL (default). If a value is provided, this value will be used as
the random seed when running and the global random seed will be restored after
the function has run, so it is not affected.

sparse single logical; if FALSE (default) everything listed below is included in the re-
turned object. If TRUE, only a limited amount of data are included in the returned
object. This can be practical when running many simulations and saving the re-
sults using the run_trials() function (which relies on this function), as the
output file will thus be substantially smaller. However, printing of individual
trial results will be substantially less detailed for sparse results and non-sparse
results are required by plot_history().

Value

A trial_result object containing everything listed below if sparse (as described above) is FALSE.
Otherwise only final_status, final_n, followed_n, trial_res, seed, and sparse are included.

• final_status: either "superiority", "equivalence", "futility", or "max" (stopped at
the last possible adaptive analysis), as calculated during the adaptive analyses.

• final_n: the total number of patients randomised.

• followed_n: the total number of patients with available outcome data at the last adaptive
analysis conducted.

36 run_trial

• max_n: the pre-specified maximum number of patients with outcome data available at the last
possible adaptive analysis.

• max_randomised: the pre-specified maximum number of patients randomised at the last pos-
sible adaptive analysis.

• looks: numeric vector, the total number of patients with outcome data available at each con-
ducted adaptive analysis.

• planned_looks: numeric vector, the cumulated number of patients planned to have outcome
data available at each adaptive analysis, even those not conducted if the simulation is stopped
before the final possible analysis.

• randomised_at_looks: numeric vector, the cumulated number of patients randomised at
each conducted adaptive analysis (only including the relevant numbers for the analyses actu-
ally conducted).

• start_control: character, initial common control arm (if specified).

• final_control: character, final common control arm (if relevant).

• control_prob_fixed: fixed common control arm probabilities (if specified; see setup_trial()).

• inferiority, superiority, equivalence_prob, equivalence_diff, equivalence_only_first,
futility_prob, futility_diff, futility_only_first, highest_is_best, and soften_power:
as specified in setup_trial().

• best_arm: the best arm(s), as described in setup_trial().

• trial_res: a data.frame containing most of the information specified for each arm in
setup_trial() including true_ys (true outcomes as specified in setup_trial()) and for
each arm the sum of the outcomes (sum_ys/sum_ys_all; i.e., the total number of events for
binary outcomes or the totals of continuous outcomes) and sum of patients (ns/ns_all), sum-
mary statistics for the raw outcome data (raw_ests/raw_ests_all, calculated as specified in
setup_trial(), defaults to mean values, i.e., event rates for binary outcomes or means for
continuous outcomes) and posterior estimates (post_ests/post_ests_all, post_errs/post_errs_all,
lo_cri/lo_cri_all, and hi_cri/hi_cri_all, calculated as specified in setup_trial()),
final_status of each arm ("inferior", "superior", "equivalence", "futile", "active",
or "control" (currently active control arm, including if the current control when stopped for
equivalence)), status_look (specifying the cumulated number of patients with outcome data
available when an adaptive analysis changed the final_status to "superior", "inferior",
"equivalence", or "futile"), status_probs, the probability (in the last adaptive analysis
for each arm) that each arm was the best/better than the common control arm (if any)/equivalent
to the common control arm (if any and stopped for equivalence; NA if the control arm was
stopped due to the last remaining other arm(s) being stopped for equivalence)/futile if stopped
for futility at the last analysis it was included in, final_alloc, the final allocation probability
for each arm the last time patients were randomised to it, including for arms stopped at the
maximum sample size, and probs_best_last, the probabilities of each remaining arm being
the overall best in the last conducted adaptive analysis (NA for previously dropped arms).
Note: for the variables in the data.frame where a version including the _all-suffix is in-
cluded, the versions WITHOUT this suffix are calculated using patients with available out-
come data at the time of analysis, while the versions WITH the _all-suffixes are calculated
using outcome data for all patients randomised at the time of analysis, even if they have not
reached the time of follow-up yet (see setup_trial()).

run_trials 37

• all_looks: a list of lists containing one list per conducted trial look (adaptive analysis).
These lists contain the variables arms, old_status (status before the analysis of the cur-
rent round was conducted), new_status (as specified above, status after current analysis has
been conducted), sum_ys/sum_ys_all (as described above), ns/ns_all (as described above),
old_alloc (the allocation probability used during this look), probs_best (the probabilities
of each arm being the best in the current adaptive analysis), new_alloc (the allocation proba-
bilities after updating these in the current adaptive analysis; NA for all arms when the trial is
stopped and no further adaptive analyses will be conducted), probs_better_first (if a com-
mon control is provided, specifying the probabilities that each arm was better than the control
in the first analysis conducted during that look), probs_better (as probs_better_first, but
updated if another arm becomes the new control), probs_equivalence_first and probs_equivalence
(as for probs_better/probs_better_first, but for equivalence if equivalence is assessed).
The last variables are NA if the arm was not active in the applicable adaptive analysis or if they
would not be included during the next adaptive analysis.

• allocs: a character vector containing the allocations of all patients in the order of random-
ization.

• ys: a numeric vector containing the outcomes of all patients in the order of randomization (0
or 1 for binary outcomes).

• seed: the random seed used, if specified.
• description, add_info, cri_width, n_draws, robust: as specified in setup_trial(),
setup_trial_binom() or setup_trial_norm().

• sparse: single logical, corresponding to the sparse input.

Examples

Setup a trial specification
binom_trial <- setup_trial_binom(arms = c("A", "B", "C", "D"),

true_ys = c(0.20, 0.18, 0.22, 0.24),
data_looks = 1:20 * 100)

Run trial with a specified random seed
res <- run_trial(binom_trial, seed = 12345)

Print results with 3 decimals
print(res, digits = 3)

run_trials Simulate multiple trials

Description

This function conducts multiple simulations using a trial specification as specified by setup_trial(),
setup_trial_binom() or setup_trial_norm(). This function essentially manages random seeds
and runs multiple simulation using run_trial() - additional details on individual simulations are
provided in that function’s description. This function allows simulating trials in parallel using
multiple cores, automatically saving and re-loading saved objects, and "growing" already saved
simulation files (i.e., appending additional simulations to the same file).

38 run_trials

Usage

run_trials(
trial_spec,
n_rep,
path = NULL,
overwrite = FALSE,
grow = FALSE,
cores = NULL,
base_seed = NULL,
sparse = TRUE,
progress = NULL,
version = NULL,
compress = TRUE,
export = NULL,
export_envir = parent.frame()

)

Arguments

trial_spec trial_spec object, generated and validated by the setup_trial(), setup_trial_binom()
or setup_trial_norm() function.

n_rep single integer; the number of simulations to run.

path single character string; if specified (defaults to NULL), files will be written to and
loaded from this path using the saveRDS() / readRDS() functions.

overwrite single logical; defaults to FALSE, in which case previous simulations saved in the
same path will be re-loaded (if the same trial specification was used). If TRUE,
the previous file is overwritten (even if the the same trial specification was not
used). If grow is TRUE, this argument must be set to FALSE.

grow single logical; defaults to FALSE. If TRUE and a valid path to a valid previous
file containing less simulations than n_rep, the additional number of simula-
tions will be run (appropriately re-using the same base_seed, if specified) and
appended to the same file.

cores NULL or single integer. If NULL, a default value/cluster set by setup_cluster()
will be used to control whether simulations are run in parallel on a default clus-
ter or sequentially in the main process; if a cluster/value has not been specified
by setup_cluster(), cores will then be set to the value stored in the global
"mc.cores" option (if previously set by options(mc.cores = <number of cores>),
and 1 if that option has not been specified.
If the resulting number of cores = 1, computations will be run sequentially
in the primary process, and if cores > 1, a new parallel cluster will be setup
using the parallel library and removed once the function completes. See
setup_cluster() for details.

base_seed single integer or NULL (default); a random seed used as the basis for simulations.
Regardless of whether simulations are run sequentially or in parallel, random
number streams will be identical and appropriate (see setup_cluster() for
details).

run_trials 39

sparse single logical, as described in run_trial(); defaults to TRUE when running
multiple simulations, in which case only the data necessary to summarise all
simulations are saved for each simulation. If FALSE, more detailed data for
each simulation is saved, allowing more detailed printing of individual trial
results and plotting using plot_history() (plot_status() does not require
non-sparse results).

progress single numeric > 0 and <= 1 or NULL. If NULL (default), no progress is printed to
the console. Otherwise, progress messages are printed to the control at intervals
proportional to the value specified by progress.
Note: as printing is not possible from within clusters on multiple cores, the
function conducts batches of simulations on multiple cores (if specified), with
intermittent printing of statuses. Thus, all cores have to finish running their
current assigned batches before the other cores may proceed with the next batch.
If there are substantial differences in the simulation speeds across cores, using
progress may thus increase total run time (especially with small values).

version passed to saveRDS() when saving simulations, defaults to NULL (as in saveRDS()),
which means that the current default version is used. Ignored if simulations are
not saved.

compress passed to saveRDS() when saving simulations, defaults to TRUE (as in saveRDS()),
see saveRDS() for other options. Ignored if simulations are not saved.

export character vector of names of objects to export to each parallel core when running
in parallel; passed as the varlist argument to parallel::clusterExport().
Defaults to NULL (no objects exported), ignored if cores == 1. See Details be-
low.

export_envir environment where to look for the objects defined in export when running in
parallel and export is not NULL. Defaults to the environment from where the
function is called.

Details

Exporting objects when using multiple cores
If setup_trial() is used to define a trial specification with custom functions (in the fun_y_gen,
fun_draws, and fun_raw_est arguments of setup_trial()) and run_trials() is run with cores
> 1, it is necessary to export additional functions or objects used by these functions and defined by
the user outside the function definitions provided. Similarly, functions from external packages
loaded using library() or require() must be exported or called prefixed with the namespace,
i.e., package::function. The export and export_envir arguments are used to export objects
calling the parallel::clusterExport()-function. See also setup_cluster(), which may be
used to setup a cluster and export required objects only once per session.

Value

A list of a special class "trial_results", which contains the trial_results (results from all
simulations; note that seed will be NULL in the individual simulations), trial_spec (the trial
specification), n_rep, base_seed, elapsed_time (the total simulation run time), sparse (as de-
scribed above) and adaptr_version (the version of the adaptr package used to run the simu-
lations). These results may be extracted, summarised, and plotted using the extract_results(),

40 setup_cluster

check_performance(), summary(), print.trial_results(), plot_convergence(), check_remaining_arms(),
plot_status(), and plot_history() functions. See the definitions of these functions for addi-
tional details and details on additional arguments used to select arms in simulations not ending in
superiority and other summary choices.

Examples

Setup a trial specification
binom_trial <- setup_trial_binom(arms = c("A", "B", "C", "D"),

true_ys = c(0.20, 0.18, 0.22, 0.24),
data_looks = 1:20 * 100)

Run 10 simulations with a specified random base seed
res <- run_trials(binom_trial, n_rep = 10, base_seed = 12345)

See ?extract_results, ?check_performance, ?summary and ?print for details
on extracting resutls, summarising and printing

setup_cluster Setup default cluster for use in parallelised adaptr functions

Description

This function setups (or removes) a default cluster for use in all parallelised functions in adaptr
using the parallel package. The function also exports objects that should be available on the
cluster and sets the random number generator appropriately. See Details for further info on how
adaptr handles sequential/parallel computation.

Usage

setup_cluster(cores, export = NULL, export_envir = parent.frame())

Arguments

cores can be either unspecified, NULL, or a single integer > 0. If NULL or 1, an ex-
isting default cluster is removed (if any), and the default will subsequently be
to run functions sequentially in the main process if cores = 1, and according
to getOption("mc.cores") if NULL (unless otherwise specified in individual
functions calls). The parallel::detectCores() function may be used to see
the number of available cores, although this comes with some caveats (as de-
scribed in the function documentation), including that the number of cores may
not always be returned and may not match the number of cores that are available
for use. In general, using less cores than available may be preferable if other
processes are run on the machine at the same time.

export character vector of names of objects to export to each parallel core when running
in parallel; passed as the varlist argument to parallel::clusterExport().
Defaults to NULL (no objects exported), ignored if cores == 1. See Details be-
low.

setup_cluster 41

export_envir environment where to look for the objects defined in export when running in
parallel and export is not NULL. Defaults to the environment from where the
function is called.

Details

Using sequential or parallel computing in adaptr
All parallelised adaptr functions have a cores argument that defaults to NULL. If a non-NULL integer
> 0 is provided to the cores argument in any of those (except setup_cluster()), the package will
run calculations sequentially in the main process if cores = 1, and otherwise initiate a new cluster
of size cores that will be removed once the function completes, regardless of whether or not a
default cluster or the global "mc.cores" option have been specified.

If cores is NULL in any adaptr function (except setup_cluster()), the package will use a default
cluster if one exists or run computations sequentially if setup_cluster() has last been called with
cores = 1. If setup_cluster() has not been called or last called with cores = NULL, then the pack-
age will check if the global "mc.cores" option has been specified (using options(mc.cores = <number of cores>)).
If this option has been set with a value > 1, then a new, temporary cluster of that size is setup, used,
and removed once the function completes. If this option has not been set or has been set to 1, then
computations will be run sequentially in the main process.

Generally, we recommend using the setup_cluster() function as this avoids the overhead of re-
initiating new clusters with every call to one of the parallelised adaptr functions. This is especially
important when exporting many or large objects to a parallel cluster, as this can then be done only
once (with the option to export further objects to the same cluster when calling run_trials()).

Type of clusters used and random number generation
The adaptr package solely uses parallel socket clusters (using parallel::makePSOCKcluster())
and thus does not use forking (as this is not available on all operating systems and may cause crashes
in some situations). As such, user-defined objects that should be used by the adaptr functions when
run in parallel need to be exported using either setup_cluster() or run_trials(), if not included
in the generated trial_spec object.

The adaptr package uses the "L'Ecuyer-CMRG" kind (see RNGkind()) for safe random number
generation for all parallelised functions. This is also the case when running adaptr functions
sequentially with a seed provided, to ensure that the same results are obtained regardless of whether
sequential or parallel computation is used. All functions restore both the random number generator
kind and the global random seed after use if called with a seed.

Value

Invisibly returns the default parallel cluster or NULL, as appropriate. This may be used with other
functions from the parallel package by advanced users, for example to load certain libraries on
the cluster prior to calling run_trials().

Examples

Setup a cluster using 2 cores
setup_cluster(cores = 2)

Get existing default cluster (printed here as invisibly returned)

42 setup_trial

print(setup_cluster())

Remove existing default cluster
setup_cluster(cores = NULL)

Specify preference for running computations sequentially
setup_cluster(cores = 1)

Remove default cluster preference
setup_cluster(cores = NULL)

Set global option to default to using 2 new clusters each time
(only used if no default cluster preference is specified)
options(mc.cores = 2)

setup_trial Setup a generic trial specification

Description

Specifies the design of an adaptive trial with any type of outcome and validates all inputs. Use
calibrate_trial() to calibrate the trial specification to obtain a specific value for a certain per-
formance metric (e.g., the Bayesian type 1 error rate). Use run_trial() or run_trials() to
conduct single/multiple simulations of the specified trial, respectively.
See setup_trial_binom() and setup_trial_norm() for simplified setup of trial designs for
common outcome types. For additional trial specification examples, see the the Basic examples
vignette (vignette("Basic-examples", package = "adaptr")) and the Advanced example vi-
gnette (vignette("Advanced-example", package = "adaptr")).

Usage

setup_trial(
arms,
true_ys,
fun_y_gen = NULL,
fun_draws = NULL,
start_probs = NULL,
fixed_probs = NULL,
min_probs = rep(NA, length(arms)),
max_probs = rep(NA, length(arms)),
data_looks = NULL,
max_n = NULL,
look_after_every = NULL,
randomised_at_looks = NULL,
control = NULL,
control_prob_fixed = NULL,
inferiority = 0.01,

setup_trial 43

superiority = 0.99,
equivalence_prob = NULL,
equivalence_diff = NULL,
equivalence_only_first = NULL,
futility_prob = NULL,
futility_diff = NULL,
futility_only_first = NULL,
highest_is_best = FALSE,
soften_power = 1,
fun_raw_est = mean,
cri_width = 0.95,
n_draws = 5000,
robust = TRUE,
description = NULL,
add_info = NULL

)

Arguments

arms character vector with unique names for the trial arms.

true_ys numeric vector specifying true outcomes (e.g., event probabilities, mean values,
etc.) for all trial arms.

fun_y_gen function, generates outcomes. See setup_trial() Details for information on
how to specify this function.
Note: this function is called once during setup to validate its output (with the
global random seed restored afterwards).

fun_draws function, generates posterior draws. See setup_trial() Details for informa-
tion on how to specify this function.
Note: this function is called up to three times during setup to validate its output
(with the global random seed restored afterwards).

start_probs numeric vector, allocation probabilities for each arm at the beginning of the trial.
The default (NULL) automatically generates equal randomisation probabilities for
each arm.

fixed_probs numeric vector, fixed allocation probabilities for each arm. Must be either a nu-
meric vector with NA for arms without fixed probabilities and values between 0
and 1 for the other arms or NULL (default), if adaptive randomisation is used for
all arms or if one of the special settings ("sqrt-based", "sqrt-based start",
"sqrt-based fixed", or "match") is specified for control_prob_fixed (de-
scribed below).

min_probs numeric vector, lower threshold for adaptive allocation probabilities; lower prob-
abilities will be rounded up to these values. Must be NA (default for all arms) if
no lower threshold is wanted and for arms using fixed allocation probabilities.

max_probs numeric vector, upper threshold for adaptive allocation probabilities; higher
probabilities will be rounded down to these values. Must be NA (default for all
arms) if no threshold is wanted and for arms using fixed allocation probabilities.

data_looks vector of increasing integers, specifies when to conduct adaptive analyses (= the
total number of patients with available outcome data at each adaptive analysis).

44 setup_trial

The last number in the vector represents the final adaptive analysis, i.e., the final
analysis where superiority, inferiority, practical equivalence, or futility can be
claimed. Instead of specifying data_looks, the max_n and look_after_every
arguments can be used in combination (in which case data_looks must be NULL,
the default value).

max_n single integer, number of patients with available outcome data at the last possible
adaptive analysis (defaults to NULL). Must only be specified if data_looks is
NULL. Requires specification of the look_after_every argument.

look_after_every

single integer, specified together with max_n. Adaptive analyses will be con-
ducted after every look_after_every patients have available outcome data, and
at the total sample size as specified by max_n (max_n does not need to be a mul-
tiple of look_after_every). If specified, data_looks must be NULL (default).

randomised_at_looks

vector of increasing integers or NULL, specifying the number of patients ran-
domised at the time of each adaptive analysis, with new patients randomised
using the current allocation probabilities at said analysis. If NULL (the default),
the number of patients randomised at each analysis will match the number of pa-
tients with available outcome data at said analysis, as specified by data_looks
or max_n and look_after_every, i.e., outcome data will be available immedi-
ately after randomisation for all patients.
If not NULL, the vector must be of the same length as the number of adaptive anal-
yses specified by data_looks or max_n and look_after_every, and all values
must be larger than or equal to the number of patients with available outcome
data at each analysis.

control single character string, name of one of the arms or NULL (default). If speci-
fied, this arm will serve as a common control arm, to which all other arms will
be compared and the inferiority/superiority/equivalence thresholds (see below)
will be for those comparisons. See setup_trial() Details for information on
behaviour with respect to these comparisons.

control_prob_fixed

if a common control arm is specified, this can be set NULL (the default), in
which case the control arm allocation probability will not be fixed if control
arms change (the allocation probability for the first control arm may still be
fixed using fixed_probs). If not NULL, a vector of probabilities of either length
1 or number of arms - 1 can be provided, or one of the special arguments
"sqrt-based", "sqrt-based start", "sqrt-based fixed" or "match". See
setup_trial() Details for details on how this affects trial behaviour.

inferiority single numeric value or vector of numeric values of the same length as the max-
imum number of possible adaptive analyses, specifying the probability thresh-
old(s) for inferiority (default is 0.01). All values must be >= 0 and <= 1, and if
multiple values are supplied, no values may be lower than the preceding value.
If a common controlis not used, all values must be < 1 / number of arms.
An arm will be considered inferior and dropped if the probability that it is best
(when comparing all arms) or better than the control arm (when a common
control is used) drops below the inferiority threshold at an adaptive analysis.

setup_trial 45

superiority single numeric value or vector of numeric values of the same length as the max-
imum number of possible adaptive analyses, specifying the probability thresh-
old(s) for superiority (default is 0.99). All values must be >= 0 and <= 1,
and if multiple values are supplied, no values may be higher than the preceding
value. If the probability that an arm is best (when comparing all arms) or better
than the control arm (when a common control is used) exceeds the superiority
threshold at an adaptive analysis, said arm will be declared the winner and the
trial will be stopped (if no common control is used or if the last comparator is
dropped in a design with a common control) or become the new control and the
trial will continue (if a common control is specified).

equivalence_prob

single numeric value, vector of numeric values of the same length as the max-
imum number of possible adaptive analyses or NULL (default, corresponding to
no equivalence assessment), specifying the probability threshold(s) for equiv-
alence. If not NULL, all values must be > 0 and <= 1, and if multiple values
are supplied, no value may be higher than the preceding value. If not NULL,
arms will be dropped for equivalence if the probability of either (a) equiva-
lence compared to a common control or (b) equivalence between all arms re-
maining (designs without a common control) exceeds the equivalence thresh-
old at an adaptive analysis. Requires specification of equivalence_diff and
equivalence_only_first.

equivalence_diff

single numeric value (> 0) or NULL (default, corresponding to no equivalence as-
sessment). If a numeric value is specified, estimated absolute differences smaller
than this threshold will be considered equivalent. For designs with a common
control arm, the differences between each non-control arm and the control
arm is used, and for trials without a common control arm, the difference be-
tween the highest and lowest estimated outcome rates are used and the trial is
only stopped for equivalence if all remaining arms are equivalent.

equivalence_only_first

single logical in trial specifications where equivalence_prob and equivalence_diff
are specified and a common control arm is included, otherwise NULL (default).
If a common control arm is used, this specifies whether equivalence will only
be assessed for the first control (if TRUE) or also for subsequent control arms (if
FALSE) if one arm is superior to the first control and becomes the new control.

futility_prob single numeric value, vector of numeric values of the same length as the max-
imum number of possible adaptive analyses or NULL (default, corresponding to
no futility assessment), specifying the probability threshold(s) for futility. All
values must be > 0 and <= 1, and if multiple values are supplied, no value
may be higher than the preceding value. If not NULL, arms will be dropped for
futility if the probability for futility compared to the common control exceeds
the futility threshold at an adaptive analysis. Requires a common control arm
(otherwise this argument must be NULL), specification of futility_diff, and
futility_only_first.

futility_diff single numeric value (> 0) or NULL (default, corresponding to no futility assess-
ment). If a numeric value is specified, estimated differences below this threshold
in the beneficial direction (as specified in highest_is_best) will be considered

46 setup_trial

futile when assessing futility in designs with a common control arm. If only
1 arm remains after dropping arms for futility, the trial will be stopped without
declaring the last arm superior.

futility_only_first

single logical in trial specifications designs where futility_prob and futility_diff
are specified, otherwise NULL (default and required in designs without a common
control arm). Specifies whether futility will only be assessed against the first
control (if TRUE) or also for subsequent control arms (if FALSE) if one arm is
superior to the first control and becomes the new control.

highest_is_best

single logical, specifies whether larger estimates of the outcome are favourable
or not; defaults to FALSE, corresponding to, e.g., an undesirable binary outcomes
(e.g., mortality) or a continuous outcome where lower numbers are preferred
(e.g., hospital length of stay).

soften_power either a single numeric value or a numeric vector of exactly the same length as
the maximum number of looks/adaptive analyses. Values must be between 0
and 1 (default); if < 1, then re-allocated non-fixed allocation probabilities are all
raised to this power (followed by rescaling to sum to 1) to make adaptive alloca-
tion probabilities less extreme, in turn used to redistribute remaining probability
while respecting limits when defined by min_probs and/or max_probs. If 1,
then no softening is applied.

fun_raw_est function that takes a numeric vector and returns a single numeric value, used
to calculate a raw summary estimate of the outcomes in each arm. Defaults to
mean(), which is always used in the setup_trial_binom() and setup_trial_norm()
functions.
Note: the function is called one time per arm during setup to validate the output
structure.

cri_width single numeric >= 0 and < 1, the width of the percentile-based credible intervals
used when summarising individual trial results. Defaults to 0.95, corresponding
to 95% credible intervals.

n_draws single integer, the number of draws from the posterior distributions for each arm
used when running the trial. Defaults to 5000; can be reduced for a speed gain
(at the potential loss of stability of results if too low) or increased for increased
precision (increasing simulation time). Values < 100 are not allowed and values
< 1000 are not recommended and warned against.

robust single logical, if TRUE (default) the medians and median absolute deviations
(scaled to be comparable to the standard deviation for normal distributions;
MAD_SDs, see stats::mad()) are used to summarise the posterior distribu-
tions; if FALSE, the means and standard deviations (SDs) are used instead (slightly
faster, but may be less appropriate for posteriors skewed on the natural scale).

description optional single character string describing the trial design, will only be used in
print functions if not NULL (the default).

add_info optional single string containing additional information regarding the trial de-
sign or specifications, will only be used in print functions if not NULL (the de-
fault).

setup_trial 47

Details

How to specify the fun_y_gen function
The function must take the following arguments:

• allocs: character vector, the trial arms that new patients allocated since the last adaptive
analysis are randomised to.

The function must return a single numeric vector, corresponding to the outcomes for all patients
allocated since the last adaptive analysis, in the same order as allocs.
See the Advanced example vignette (vignette("Advanced-example", package = "adaptr"))
for an example with further details.

How to specify the fun_draws function
The function must take the following arguments:

• arms: character vector, the unique trial arms, in the same order as above, but only the cur-
rently active arms are included when the function is called.

• allocs: a vector of allocations for all patients, corresponding to the trial arms, including
patients allocated to both currently active AND inactive arms when called.

• ys: a vector of outcomes for all patients in the same order as allocs, including outcomes for
patients allocated to both currently active AND inactive arms when called.

• control: single character, the current control arm, will be NULL for designs without a com-
mon control arm, but required regardless as the argument is supplied by run_trial()/run_trials().

• n_draws: single integer, the number of posterior draws for each arm.

The function must return a matrix (containing numeric values) with arms named columns and
n_draws rows. The matrix must have columns only for currently active arms (when called).
Each row should contain a single posterior draw for each arm on the original outcome scale: if
they are estimated as, e.g., the log(odds), these estimates must be transformed to probabilities and
similarly for other measures.
Important: the matrix cannot contain NAs, even if no patients have been randomised to an arm yet.
See the provided example for one way to alleviate this.
See the Advanced examples vignette (vignette("Advanced-example", package = "adaptr"))
for an example with further details.

Notes

• Different estimation methods and prior distributions may be used; complex functions will lead
to slower simulations compared to simpler methods for obtaining posterior draws, including
those specified using the setup_trial_binom() and setup_trial_norm() functions.

• Technically, using log relative effect measures — e.g. log(odds ratios) or log(risk ratios) - or
differences compared to a reference arm (e.g., mean differences or absolute risk differences)
instead of absolute values in each arm will work to some extent (be cautious!):

• Stopping for superiority/inferiority/max sample sizes will work.

• Stopping for equivalence/futility may be used with relative effect measures on the log scale,
but thresholds have to be adjusted accordingly.

• Several summary statistics from run_trial() (sum_ys and posterior estimates) may be non-
sensical if relative effect measures are used (depending on calculation method; see the raw_ests
argument in the relevant functions).

48 setup_trial

• In the same vein, extract_results() (sum_ys, sq_err, and sq_err_te), and summary()
(sum_ys_mean/sd/median/q25/q75/q0/q100, rmse, and rmse_te) may be equally nonsen-
sical when calculated on the relative scale (see the raw_ests argument in the relevant func-
tions.

Using additional custom or functions from loaded packages in the custom functions

If the fun_y_gen, fun_draws, or fun_raw_est functions calls other user-specified functions (or
uses objects defined by the user outside these functions or the setup_trial()-call) or functions
from external packages and simulations are conducted on multiple cores, these objects or functions
must be exported or prefixed with their namespaces, respectively, as described in setup_cluster()
and run_trials().

More information on arguments

• control: if one or more treatment arms are superior to the control arm (i.e., passes the supe-
riority threshold as defined above), this arm will become the new control (if multiple arms are
superior, the one with the highest probability of being the overall best will become the new
control), the previous control will be dropped for inferiority, and all remaining arms will be
immediately compared to the new control in the same adaptive analysis and dropped if inferior
(or possibly equivalent/futile, see below) compared to this new control arm. Only applies in
trials with a common control.

• control_prob_fixed: If the length is 1, then this allocation probability will be used for
the control group (including if a new arm becomes the control and the original control is
dropped). If multiple values are specified the first value will be used when all arms are active,
the second when one arm has been dropped, and so forth. If 1 or more values are specified,
previously set fixed_probs, min_probs or max_probs for new control arms will be ignored.
If all allocation probabilities do not sum to 1 (e.g, due to multiple limits) they will be rescaled
to do so.
Can also be set to one of the special arguments "sqrt-based", "sqrt-based start", "sqrt-based
fixed" or "match" (written exactly as one of those, case sensitive). This requires start_probs
to be NULL and relevant fixed_probs to be NULL (or NA for the control arm).
If one of the "sqrt-based"/"sqrt-based start"/"sqrt-based fixed" options are used,
the function will set square-root-transformation-based starting allocation probabilities. These
are defined as:
square root of number of non-control arms to 1-ratio for other arms
scaled to sum to 1, which will generally increase power for comparisons against the common
control, as discussed in, e.g., Park et al, 2020 doi:10.1016/j.jclinepi.2020.04.025.
If "sqrt-based", square-root-transformation-based allocation probabilities will also be used
for new controls when arms are dropped. If "sqrt-based start", the control arm will be
fixed to this allocation probability at all times (also after arm dropping, with rescaling as neces-
sary, as specified above). If "sqrt-based fixed" is chosen, square-root-transformation-based
allocation probabilities will be used and all allocation probabilities will be fixed throughout
the trial (with rescaling when arms are dropped).
If "match" is specified, the control group allocation probability will always be matched to be
similar to the highest non-control arm allocation probability.

Superiority and inferiority

In trial designs without a common control arm, superiority and inferiority are assessed by compar-
ing all currently active groups. This means that if a "final" analysis of a trial without a common

https://doi.org/10.1016/j.jclinepi.2020.04.025

setup_trial 49

control and > 2 arms is conducted including all arms (as will often be done in practice) after an
adaptive trial has stopped, the final probabilities of the best arm being superior may differ slightly.
For example, in a trial with three arms and no common control arm, one arm may be dropped early
for inferiority defined as < 1% probability of being the overall best arm. The trial may then continue
with the two remaining arms, and stopped when one is declared superior to the other defined as
> 99% probability of being the overall best arm. If a final analysis is then conducted including all
arms, the final probability of the best arm being overall superior will generally be slightly lower as
the probability of the first dropped arm being the best will often be > 0%, even if very low and below
the inferiority threshold.
This is less relevant trial designs with a common control, as pairwise assessments of superior-
ity/inferiority compared to the common control will not be influenced similarly by previously
dropped arms (and previously dropped arms may be included in the analyses, even if posterior distri-
butions are not returned for those). Similarly, in actual clinical trials and when randomised_at_looks
is specified with numbers higher than the number of patients with available outcome data at each
analysis, final probabilities may change somewhat when the all patients are have completed follow-
up and are included in a final analysis.

Equivalence

Equivalence is assessed after both inferiority and superiority have been assessed (and in case of
superiority, it will be assessed against the new control arm in designs with a common control, if
specified - see above).

Futility

Futility is assessed after inferiority, superiority, and equivalence have been assessed (and in case
of superiority, it will be assessed against the new control arm in designs with a common control, if
specified - see above). Arms will thus be dropped for equivalence before futility.

Varying probability thresholds

Different probability thresholds (for superiority, inferiority, equivalence, and futility) may be spec-
ified for different adaptive analyses. This may be used, e.g., to apply more strict probability
thresholds at earlier analyses (or make one or more stopping rules not apply at earlier analy-
ses), similar to the use of monitoring boundaries with different thresholds used for interim anal-
yses in conventional, frequentist group sequential trial designs. See the Basic examples vignette
(vignette("Basic-examples", package = "adaptr")) for an example.

Value

A trial_spec object used to run simulations by run_trial() or run_trials(). The output is
essentially a list containing the input values (some combined in a data.frame called trial_arms),
but its class signals that these inputs have been validated and inappropriate combinations and set-
tings have been ruled out. Also contains best_arm, holding the arm(s) with the best value(s) in
true_ys. Use str() to peruse the actual content of the returned object.

Examples

Setup a custom trial specification with right-skewed, log-normally
distributed continuous outcomes (higher values are worse)

Define the function that will generate the outcomes in each arm
Notice: contents should match arms/true_ys in the setup_trial() call below

50 setup_trial

get_ys_lognorm <- function(allocs) {
y <- numeric(length(allocs))
arms (names and order) and values (except for exponentiation) should match
those used in setup_trial (below)
means <- c("Control" = 2.2, "Experimental A" = 2.1, "Experimental B" = 2.3)
for (arm in names(means)) {
ii <- which(allocs == arm)
y[ii] <- rlnorm(length(ii), means[arm], 1.5)

}
y

}

Define the function that will generate posterior draws
In this example, the function uses no priors (corresponding to improper
flat priors) and calculates results on the log-scale, before exponentiating
back to the natural scale, which is required for assessments of
equivalence, futility and general interpretation
get_draws_lognorm <- function(arms, allocs, ys, control, n_draws) {

draws <- list()
logys <- log(ys)
for (arm in arms){

ii <- which(allocs == arm)
n <- length(ii)
if (n > 1) {

Necessary to avoid errors if too few patients randomised to this arm
draws[[arm]] <- exp(rnorm(n_draws, mean = mean(logys[ii]), sd = sd(logys[ii])/sqrt(n - 1)))
} else {

Too few patients randomised to this arm - extreme uncertainty
draws[[arm]] <- exp(rnorm(n_draws, mean = mean(logys), sd = 1000 * (max(logys) - min(logys))))
}

}
do.call(cbind, draws)

}

The actual trial specification is then defined
lognorm_trial <- setup_trial(

arms should match those above
arms = c("Control", "Experimental A", "Experimental B"),
true_ys should match those above
true_ys = exp(c(2.2, 2.1, 2.3)),
fun_y_gen = get_ys_lognorm, # as specified above
fun_draws = get_draws_lognorm, # as specified above
max_n = 5000,
look_after_every = 200,
control = "Control",
Square-root-based, fixed control group allocation ratio
and response-adaptive randomisation for other arms
control_prob_fixed = "sqrt-based",
Equivalence assessment
equivalence_prob = 0.9,
equivalence_diff = 0.5,
equivalence_only_first = TRUE,
highest_is_best = FALSE,

setup_trial_binom 51

Summarise raw results by taking the mean on the
log scale and back-transforming
fun_raw_est = function(x) exp(mean(log(x))) ,
Summarise posteriors using medians with MAD-SDs,
as distributions will not be normal on the actual scale
robust = TRUE,
Description/additional info used when printing
description = "continuous, log-normally distributed outcome",
add_info = "SD on the log scale for all arms: 1.5"

)

Print trial specification with 3 digits for all probabilities
print(lognorm_trial, prob_digits = 3)

setup_trial_binom Setup a trial specification using a binary, binomially distributed out-
come

Description

Specifies the design of an adaptive trial with a binary, binomially distributed outcome and validates
all inputs. Uses beta-binomial conjugate models with beta(1, 1) prior distributions, corresponding
to a uniform prior (or the addition of 2 patients, 1 with an event and 1 without, in each arm) to the
trial. Use calibrate_trial() to calibrate the trial specification to obtain a specific value for a cer-
tain performance metric (e.g., the Bayesian type 1 error rate). Use run_trial() or run_trials()
to conduct single/multiple simulations of the specified trial, respectively.
Note: add_info as specified in setup_trial() is set to NULL for trial specifications setup by this
function.
Further details: please see setup_trial(). See setup_trial_norm() for simplified setup of
trials with a normally distributed continuous outcome.
For additional trial specification examples, see the the Basic examples vignette (vignette("Basic-examples",
package = "adaptr")) and the Advanced example vignette (vignette("Advanced-example",
package = "adaptr")).

Usage

setup_trial_binom(
arms,
true_ys,
start_probs = NULL,
fixed_probs = NULL,
min_probs = rep(NA, length(arms)),
max_probs = rep(NA, length(arms)),
data_looks = NULL,
max_n = NULL,
look_after_every = NULL,
randomised_at_looks = NULL,

52 setup_trial_binom

control = NULL,
control_prob_fixed = NULL,
inferiority = 0.01,
superiority = 0.99,
equivalence_prob = NULL,
equivalence_diff = NULL,
equivalence_only_first = NULL,
futility_prob = NULL,
futility_diff = NULL,
futility_only_first = NULL,
highest_is_best = FALSE,
soften_power = 1,
cri_width = 0.95,
n_draws = 5000,
robust = TRUE,
description = "generic binomially distributed outcome trial"

)

Arguments

arms character vector with unique names for the trial arms.

true_ys numeric vector, true probabilities (between 0 and 1) of outcomes in all trial arms.

start_probs numeric vector, allocation probabilities for each arm at the beginning of the trial.
The default (NULL) automatically generates equal randomisation probabilities for
each arm.

fixed_probs numeric vector, fixed allocation probabilities for each arm. Must be either a nu-
meric vector with NA for arms without fixed probabilities and values between 0
and 1 for the other arms or NULL (default), if adaptive randomisation is used for
all arms or if one of the special settings ("sqrt-based", "sqrt-based start",
"sqrt-based fixed", or "match") is specified for control_prob_fixed (de-
scribed below).

min_probs numeric vector, lower threshold for adaptive allocation probabilities; lower prob-
abilities will be rounded up to these values. Must be NA (default for all arms) if
no lower threshold is wanted and for arms using fixed allocation probabilities.

max_probs numeric vector, upper threshold for adaptive allocation probabilities; higher
probabilities will be rounded down to these values. Must be NA (default for all
arms) if no threshold is wanted and for arms using fixed allocation probabilities.

data_looks vector of increasing integers, specifies when to conduct adaptive analyses (= the
total number of patients with available outcome data at each adaptive analysis).
The last number in the vector represents the final adaptive analysis, i.e., the final
analysis where superiority, inferiority, practical equivalence, or futility can be
claimed. Instead of specifying data_looks, the max_n and look_after_every
arguments can be used in combination (in which case data_looks must be NULL,
the default value).

max_n single integer, number of patients with available outcome data at the last possible
adaptive analysis (defaults to NULL). Must only be specified if data_looks is
NULL. Requires specification of the look_after_every argument.

setup_trial_binom 53

look_after_every

single integer, specified together with max_n. Adaptive analyses will be con-
ducted after every look_after_every patients have available outcome data, and
at the total sample size as specified by max_n (max_n does not need to be a mul-
tiple of look_after_every). If specified, data_looks must be NULL (default).

randomised_at_looks

vector of increasing integers or NULL, specifying the number of patients ran-
domised at the time of each adaptive analysis, with new patients randomised
using the current allocation probabilities at said analysis. If NULL (the default),
the number of patients randomised at each analysis will match the number of pa-
tients with available outcome data at said analysis, as specified by data_looks
or max_n and look_after_every, i.e., outcome data will be available immedi-
ately after randomisation for all patients.
If not NULL, the vector must be of the same length as the number of adaptive anal-
yses specified by data_looks or max_n and look_after_every, and all values
must be larger than or equal to the number of patients with available outcome
data at each analysis.

control single character string, name of one of the arms or NULL (default). If speci-
fied, this arm will serve as a common control arm, to which all other arms will
be compared and the inferiority/superiority/equivalence thresholds (see below)
will be for those comparisons. See setup_trial() Details for information on
behaviour with respect to these comparisons.

control_prob_fixed

if a common control arm is specified, this can be set NULL (the default), in
which case the control arm allocation probability will not be fixed if control
arms change (the allocation probability for the first control arm may still be
fixed using fixed_probs). If not NULL, a vector of probabilities of either length
1 or number of arms - 1 can be provided, or one of the special arguments
"sqrt-based", "sqrt-based start", "sqrt-based fixed" or "match". See
setup_trial() Details for details on how this affects trial behaviour.

inferiority single numeric value or vector of numeric values of the same length as the max-
imum number of possible adaptive analyses, specifying the probability thresh-
old(s) for inferiority (default is 0.01). All values must be >= 0 and <= 1, and if
multiple values are supplied, no values may be lower than the preceding value.
If a common controlis not used, all values must be < 1 / number of arms.
An arm will be considered inferior and dropped if the probability that it is best
(when comparing all arms) or better than the control arm (when a common
control is used) drops below the inferiority threshold at an adaptive analysis.

superiority single numeric value or vector of numeric values of the same length as the max-
imum number of possible adaptive analyses, specifying the probability thresh-
old(s) for superiority (default is 0.99). All values must be >= 0 and <= 1,
and if multiple values are supplied, no values may be higher than the preceding
value. If the probability that an arm is best (when comparing all arms) or better
than the control arm (when a common control is used) exceeds the superiority
threshold at an adaptive analysis, said arm will be declared the winner and the
trial will be stopped (if no common control is used or if the last comparator is
dropped in a design with a common control) or become the new control and the
trial will continue (if a common control is specified).

54 setup_trial_binom

equivalence_prob

single numeric value, vector of numeric values of the same length as the max-
imum number of possible adaptive analyses or NULL (default, corresponding to
no equivalence assessment), specifying the probability threshold(s) for equiv-
alence. If not NULL, all values must be > 0 and <= 1, and if multiple values
are supplied, no value may be higher than the preceding value. If not NULL,
arms will be dropped for equivalence if the probability of either (a) equiva-
lence compared to a common control or (b) equivalence between all arms re-
maining (designs without a common control) exceeds the equivalence thresh-
old at an adaptive analysis. Requires specification of equivalence_diff and
equivalence_only_first.

equivalence_diff

single numeric value (> 0) or NULL (default, corresponding to no equivalence as-
sessment). If a numeric value is specified, estimated absolute differences smaller
than this threshold will be considered equivalent. For designs with a common
control arm, the differences between each non-control arm and the control
arm is used, and for trials without a common control arm, the difference be-
tween the highest and lowest estimated outcome rates are used and the trial is
only stopped for equivalence if all remaining arms are equivalent.

equivalence_only_first

single logical in trial specifications where equivalence_prob and equivalence_diff
are specified and a common control arm is included, otherwise NULL (default).
If a common control arm is used, this specifies whether equivalence will only
be assessed for the first control (if TRUE) or also for subsequent control arms (if
FALSE) if one arm is superior to the first control and becomes the new control.

futility_prob single numeric value, vector of numeric values of the same length as the max-
imum number of possible adaptive analyses or NULL (default, corresponding to
no futility assessment), specifying the probability threshold(s) for futility. All
values must be > 0 and <= 1, and if multiple values are supplied, no value
may be higher than the preceding value. If not NULL, arms will be dropped for
futility if the probability for futility compared to the common control exceeds
the futility threshold at an adaptive analysis. Requires a common control arm
(otherwise this argument must be NULL), specification of futility_diff, and
futility_only_first.

futility_diff single numeric value (> 0) or NULL (default, corresponding to no futility assess-
ment). If a numeric value is specified, estimated differences below this threshold
in the beneficial direction (as specified in highest_is_best) will be considered
futile when assessing futility in designs with a common control arm. If only
1 arm remains after dropping arms for futility, the trial will be stopped without
declaring the last arm superior.

futility_only_first

single logical in trial specifications designs where futility_prob and futility_diff
are specified, otherwise NULL (default and required in designs without a common
control arm). Specifies whether futility will only be assessed against the first
control (if TRUE) or also for subsequent control arms (if FALSE) if one arm is
superior to the first control and becomes the new control.

highest_is_best

single logical, specifies whether larger estimates of the outcome are favourable

setup_trial_binom 55

or not; defaults to FALSE, corresponding to, e.g., an undesirable binary outcomes
(e.g., mortality) or a continuous outcome where lower numbers are preferred
(e.g., hospital length of stay).

soften_power either a single numeric value or a numeric vector of exactly the same length as
the maximum number of looks/adaptive analyses. Values must be between 0
and 1 (default); if < 1, then re-allocated non-fixed allocation probabilities are all
raised to this power (followed by rescaling to sum to 1) to make adaptive alloca-
tion probabilities less extreme, in turn used to redistribute remaining probability
while respecting limits when defined by min_probs and/or max_probs. If 1,
then no softening is applied.

cri_width single numeric >= 0 and < 1, the width of the percentile-based credible intervals
used when summarising individual trial results. Defaults to 0.95, corresponding
to 95% credible intervals.

n_draws single integer, the number of draws from the posterior distributions for each arm
used when running the trial. Defaults to 5000; can be reduced for a speed gain
(at the potential loss of stability of results if too low) or increased for increased
precision (increasing simulation time). Values < 100 are not allowed and values
< 1000 are not recommended and warned against.

robust single logical, if TRUE (default) the medians and median absolute deviations
(scaled to be comparable to the standard deviation for normal distributions;
MAD_SDs, see stats::mad()) are used to summarise the posterior distribu-
tions; if FALSE, the means and standard deviations (SDs) are used instead (slightly
faster, but may be less appropriate for posteriors skewed on the natural scale).

description character string, default is "generic binomially distributed outcome trial".
See arguments of setup_trial().

Value

A trial_spec object used to run simulations by run_trial() or run_trials(). The output is
essentially a list containing the input values (some combined in a data.frame called trial_arms),
but its class signals that these inputs have been validated and inappropriate combinations and set-
tings have been ruled out. Also contains best_arm, holding the arm(s) with the best value(s) in
true_ys. Use str() to peruse the actual content of the returned object.

Examples

Setup a trial specification using a binary, binomially
distributed, undesirable outcome
binom_trial <- setup_trial_binom(

arms = c("Arm A", "Arm B", "Arm C"),
true_ys = c(0.25, 0.20, 0.30),
Minimum allocation of 15% in all arms
min_probs = rep(0.15, 3),
data_looks = seq(from = 300, to = 2000, by = 100),
Stop for equivalence if > 90% probability of
absolute differences < 5 percentage points
equivalence_prob = 0.9,
equivalence_diff = 0.05,
soften_power = 0.5 # Limit extreme allocation ratios

56 setup_trial_norm

)

Print using 3 digits for probabilities
print(binom_trial, prob_digits = 3)

setup_trial_norm Setup a trial specification using a continuous, normally distributed
outcome

Description

Specifies the design of an adaptive trial with a continuous, normally distributed outcome and val-
idates all inputs. Uses normally distributed posterior distributions for the mean values in each
trial arm; technically, no priors are used (as using normal-normal conjugate prior models with
extremely wide or uniform priors gives similar results for these simple, unadjusted estimates).
This corresponds to the use of improper, flat priors, although not explicitly specified as such. Use
calibrate_trial() to calibrate the trial specification to obtain a specific value for a certain perfor-
mance metric (e.g., the Bayesian type 1 error rate). Use run_trial() or run_trials() to conduct
single/multiple simulations of the specified trial, respectively.
Note: add_info as specified in setup_trial() is set to the arms and standard deviations used for
trials specified using this function.
Further details: please see setup_trial(). See setup_trial_binom() for simplified setup of
trials with binomially distributed binary outcomes.
For additional trial specification examples, see the the Basic examples vignette (vignette("Basic-examples",
package = "adaptr")) and the Advanced example vignette (vignette("Advanced-example",
package = "adaptr")).

Usage

setup_trial_norm(
arms,
true_ys,
sds,
start_probs = NULL,
fixed_probs = NULL,
min_probs = rep(NA, length(arms)),
max_probs = rep(NA, length(arms)),
data_looks = NULL,
max_n = NULL,
look_after_every = NULL,
randomised_at_looks = NULL,
control = NULL,
control_prob_fixed = NULL,
inferiority = 0.01,
superiority = 0.99,
equivalence_prob = NULL,

setup_trial_norm 57

equivalence_diff = NULL,
equivalence_only_first = NULL,
futility_prob = NULL,
futility_diff = NULL,
futility_only_first = NULL,
highest_is_best = FALSE,
soften_power = 1,
cri_width = 0.95,
n_draws = 5000,
robust = FALSE,
description = "generic normally distributed outcome trial"

)

Arguments

arms character vector with unique names for the trial arms.
true_ys numeric vector, simulated means of the outcome in all trial arms.
sds numeric vector, true standard deviations (must be > 0) of the outcome in all trial

arms.
start_probs numeric vector, allocation probabilities for each arm at the beginning of the trial.

The default (NULL) automatically generates equal randomisation probabilities for
each arm.

fixed_probs numeric vector, fixed allocation probabilities for each arm. Must be either a nu-
meric vector with NA for arms without fixed probabilities and values between 0
and 1 for the other arms or NULL (default), if adaptive randomisation is used for
all arms or if one of the special settings ("sqrt-based", "sqrt-based start",
"sqrt-based fixed", or "match") is specified for control_prob_fixed (de-
scribed below).

min_probs numeric vector, lower threshold for adaptive allocation probabilities; lower prob-
abilities will be rounded up to these values. Must be NA (default for all arms) if
no lower threshold is wanted and for arms using fixed allocation probabilities.

max_probs numeric vector, upper threshold for adaptive allocation probabilities; higher
probabilities will be rounded down to these values. Must be NA (default for all
arms) if no threshold is wanted and for arms using fixed allocation probabilities.

data_looks vector of increasing integers, specifies when to conduct adaptive analyses (= the
total number of patients with available outcome data at each adaptive analysis).
The last number in the vector represents the final adaptive analysis, i.e., the final
analysis where superiority, inferiority, practical equivalence, or futility can be
claimed. Instead of specifying data_looks, the max_n and look_after_every
arguments can be used in combination (in which case data_looks must be NULL,
the default value).

max_n single integer, number of patients with available outcome data at the last possible
adaptive analysis (defaults to NULL). Must only be specified if data_looks is
NULL. Requires specification of the look_after_every argument.

look_after_every

single integer, specified together with max_n. Adaptive analyses will be con-
ducted after every look_after_every patients have available outcome data, and

58 setup_trial_norm

at the total sample size as specified by max_n (max_n does not need to be a mul-
tiple of look_after_every). If specified, data_looks must be NULL (default).

randomised_at_looks

vector of increasing integers or NULL, specifying the number of patients ran-
domised at the time of each adaptive analysis, with new patients randomised
using the current allocation probabilities at said analysis. If NULL (the default),
the number of patients randomised at each analysis will match the number of pa-
tients with available outcome data at said analysis, as specified by data_looks
or max_n and look_after_every, i.e., outcome data will be available immedi-
ately after randomisation for all patients.
If not NULL, the vector must be of the same length as the number of adaptive anal-
yses specified by data_looks or max_n and look_after_every, and all values
must be larger than or equal to the number of patients with available outcome
data at each analysis.

control single character string, name of one of the arms or NULL (default). If speci-
fied, this arm will serve as a common control arm, to which all other arms will
be compared and the inferiority/superiority/equivalence thresholds (see below)
will be for those comparisons. See setup_trial() Details for information on
behaviour with respect to these comparisons.

control_prob_fixed

if a common control arm is specified, this can be set NULL (the default), in
which case the control arm allocation probability will not be fixed if control
arms change (the allocation probability for the first control arm may still be
fixed using fixed_probs). If not NULL, a vector of probabilities of either length
1 or number of arms - 1 can be provided, or one of the special arguments
"sqrt-based", "sqrt-based start", "sqrt-based fixed" or "match". See
setup_trial() Details for details on how this affects trial behaviour.

inferiority single numeric value or vector of numeric values of the same length as the max-
imum number of possible adaptive analyses, specifying the probability thresh-
old(s) for inferiority (default is 0.01). All values must be >= 0 and <= 1, and if
multiple values are supplied, no values may be lower than the preceding value.
If a common controlis not used, all values must be < 1 / number of arms.
An arm will be considered inferior and dropped if the probability that it is best
(when comparing all arms) or better than the control arm (when a common
control is used) drops below the inferiority threshold at an adaptive analysis.

superiority single numeric value or vector of numeric values of the same length as the max-
imum number of possible adaptive analyses, specifying the probability thresh-
old(s) for superiority (default is 0.99). All values must be >= 0 and <= 1,
and if multiple values are supplied, no values may be higher than the preceding
value. If the probability that an arm is best (when comparing all arms) or better
than the control arm (when a common control is used) exceeds the superiority
threshold at an adaptive analysis, said arm will be declared the winner and the
trial will be stopped (if no common control is used or if the last comparator is
dropped in a design with a common control) or become the new control and the
trial will continue (if a common control is specified).

equivalence_prob

single numeric value, vector of numeric values of the same length as the max-
imum number of possible adaptive analyses or NULL (default, corresponding to

setup_trial_norm 59

no equivalence assessment), specifying the probability threshold(s) for equiv-
alence. If not NULL, all values must be > 0 and <= 1, and if multiple values
are supplied, no value may be higher than the preceding value. If not NULL,
arms will be dropped for equivalence if the probability of either (a) equiva-
lence compared to a common control or (b) equivalence between all arms re-
maining (designs without a common control) exceeds the equivalence thresh-
old at an adaptive analysis. Requires specification of equivalence_diff and
equivalence_only_first.

equivalence_diff

single numeric value (> 0) or NULL (default, corresponding to no equivalence as-
sessment). If a numeric value is specified, estimated absolute differences smaller
than this threshold will be considered equivalent. For designs with a common
control arm, the differences between each non-control arm and the control
arm is used, and for trials without a common control arm, the difference be-
tween the highest and lowest estimated outcome rates are used and the trial is
only stopped for equivalence if all remaining arms are equivalent.

equivalence_only_first

single logical in trial specifications where equivalence_prob and equivalence_diff
are specified and a common control arm is included, otherwise NULL (default).
If a common control arm is used, this specifies whether equivalence will only
be assessed for the first control (if TRUE) or also for subsequent control arms (if
FALSE) if one arm is superior to the first control and becomes the new control.

futility_prob single numeric value, vector of numeric values of the same length as the max-
imum number of possible adaptive analyses or NULL (default, corresponding to
no futility assessment), specifying the probability threshold(s) for futility. All
values must be > 0 and <= 1, and if multiple values are supplied, no value
may be higher than the preceding value. If not NULL, arms will be dropped for
futility if the probability for futility compared to the common control exceeds
the futility threshold at an adaptive analysis. Requires a common control arm
(otherwise this argument must be NULL), specification of futility_diff, and
futility_only_first.

futility_diff single numeric value (> 0) or NULL (default, corresponding to no futility assess-
ment). If a numeric value is specified, estimated differences below this threshold
in the beneficial direction (as specified in highest_is_best) will be considered
futile when assessing futility in designs with a common control arm. If only
1 arm remains after dropping arms for futility, the trial will be stopped without
declaring the last arm superior.

futility_only_first

single logical in trial specifications designs where futility_prob and futility_diff
are specified, otherwise NULL (default and required in designs without a common
control arm). Specifies whether futility will only be assessed against the first
control (if TRUE) or also for subsequent control arms (if FALSE) if one arm is
superior to the first control and becomes the new control.

highest_is_best

single logical, specifies whether larger estimates of the outcome are favourable
or not; defaults to FALSE, corresponding to, e.g., an undesirable binary outcomes
(e.g., mortality) or a continuous outcome where lower numbers are preferred
(e.g., hospital length of stay).

60 setup_trial_norm

soften_power either a single numeric value or a numeric vector of exactly the same length as
the maximum number of looks/adaptive analyses. Values must be between 0
and 1 (default); if < 1, then re-allocated non-fixed allocation probabilities are all
raised to this power (followed by rescaling to sum to 1) to make adaptive alloca-
tion probabilities less extreme, in turn used to redistribute remaining probability
while respecting limits when defined by min_probs and/or max_probs. If 1,
then no softening is applied.

cri_width single numeric >= 0 and < 1, the width of the percentile-based credible intervals
used when summarising individual trial results. Defaults to 0.95, corresponding
to 95% credible intervals.

n_draws single integer, the number of draws from the posterior distributions for each arm
used when running the trial. Defaults to 5000; can be reduced for a speed gain
(at the potential loss of stability of results if too low) or increased for increased
precision (increasing simulation time). Values < 100 are not allowed and values
< 1000 are not recommended and warned against.

robust single logical, if TRUE (default) the medians and median absolute deviations
(scaled to be comparable to the standard deviation for normal distributions;
MAD_SDs, see stats::mad()) are used to summarise the posterior distribu-
tions; if FALSE, the means and standard deviations (SDs) are used instead (slightly
faster, but may be less appropriate for posteriors skewed on the natural scale).

description character string, default is "generic normally distributed outcome trial".
See arguments of setup_trial().

Details

Because the posteriors used in this type of trial (with a generic, continuous, normally distributed
outcome) are by definition normally distributed, FALSE is used as the default value for the robust
argument.

Value

A trial_spec object used to run simulations by run_trial() or run_trials(). The output is
essentially a list containing the input values (some combined in a data.frame called trial_arms),
but its class signals that these inputs have been validated and inappropriate combinations and set-
tings have been ruled out. Also contains best_arm, holding the arm(s) with the best value(s) in
true_ys. Use str() to peruse the actual content of the returned object.

Examples

Setup a trial specification using a continuous, normally distributed, desirable outcome
norm_trial <- setup_trial_norm(

arms = c("Control", "New A", "New B", "New C"),
true_ys = c(15, 20, 14, 13),
sds = c(2, 2.5, 1.9, 1.8), # SDs in each arm
max_n = 500,
look_after_every = 50,
control = "Control", # Common control arm
Square-root-based, fixed control group allocation ratios
control_prob_fixed = "sqrt-based fixed",

summary 61

Desirable outcome
highest_is_best = TRUE,
soften_power = 0.5 # Limit extreme allocation ratios

)

Print using 3 digits for probabilities
print(norm_trial, prob_digits = 3)

summary Summary of simulated trial results

Description

Summarises simulation results from the run_trials() function. Uses extract_results() and
check_performance(), which may be used directly to extract key trial results without summarising
or to calculate performance metrics (with uncertainty measures if desired) and return them in a tidy
data.frame.

Usage

S3 method for class 'trial_results'
summary(
object,
select_strategy = "control if available",
select_last_arm = FALSE,
select_preferences = NULL,
te_comp = NULL,
raw_ests = FALSE,
final_ests = NULL,
restrict = NULL,
cores = NULL,
...

)

Arguments

object trial_results object, output from the run_trials() function.
select_strategy

single character string. If a trial was not stopped due to superiority (or had
only 1 arm remaining, if select_last_arm is set to TRUE in trial designs with
a common control arm; see below), this parameter specifies which arm will
be considered selected when calculating trial design performance metrics, as
described below; this corresponds to the consequence of an inconclusive trial,
i.e., which arm would then be used in practice.
The following options are available and must be written exactly as below (case
sensitive, cannot be abbreviated):

62 summary

• "control if available" (default): selects the first control arm for trials
with a common control arm if this arm is active at end-of-trial, otherwise
no arm will be selected. For trial designs without a common control, no
arm will be selected.

• "none": selects no arm in trials not ending with superiority.
• "control": similar to "control if available", but will throw an error if

used for trial designs without a common control arm.
• "final control": selects the final control arm regardless of whether the

trial was stopped for practical equivalence, futility, or at the maximum sam-
ple size; this strategy can only be specified for trial designs with a common
control arm.

• "control or best": selects the first control arm if still active at end-of-
trial, otherwise selects the best remaining arm (defined as the remaining arm
with the highest probability of being the best in the last adaptive analysis
conducted). Only works for trial designs with a common control arm.

• "best": selects the best remaining arm (as described under "control or
best").

• "list or best": selects the first remaining arm from a specified list (spec-
ified using select_preferences, technically a character vector). If none
of these arms are are active at end-of-trial, the best remaining arm will be
selected (as described above).

• "list": as specified above, but if no arms on the provided list remain active
at end-of-trial, no arm is selected.

select_last_arm

single logical, defaults to FALSE. If TRUE, the only remaining active arm (the
last control) will be selected in trials with a common control arm ending
with equivalence or futility, before considering the options specified in
select_strategy. Must be FALSE for trial designs without a common control
arm.

select_preferences

character vector specifying a number of arms used for selection if one of the
"list or best" or "list" options are specified for select_strategy. Can
only contain valid arms available in the trial.

te_comp character string, treatment-effect comparator. Can be either NULL (the default)
in which case the first control arm is used for trial designs with a common
control arm, or a string naming a single trial arm. Will be used when calculating
sq_err_te (the squared error of the treatment effect comparing the selected arm
to the comparator arm, as described below).

raw_ests single logical. If FALSE (default), the posterior estimates (post_ests or post_ests_all,
see setup_trial() and run_trial()) will be used to calculate sq_err (the
squared error of the estimated compared to the specified effect in the selected
arm) and sq_err_te (the squared error of the treatment effect comparing the
selected arm to the comparator arm, as described for te_comp and below). If
TRUE, the raw estimates (raw_ests or raw_ests_all, see setup_trial() and
run_trial()) will be used instead of the posterior estimates.

final_ests single logical. If TRUE (recommended) the final estimates calculated using out-
come data from all patients randomised when trials are stopped are used (post_ests_all

summary 63

or raw_ests_all, see setup_trial() and run_trial()); if FALSE, the esti-
mates calculated for each arm when an arm is stopped (or at the last adaptive
analysis if not before) using data from patients having reach followed up at this
time point and not all patients randomised are used (post_ests or raw_ests,
see setup_trial() and run_trial()). If NULL (the default), this argument will
be set to FALSE if outcome data are available immediate after randomisation for
all patients (for backwards compatibility, as final posterior estimates may vary
slightly in this situation, even if using the same data); otherwise it will be said
to TRUE. See setup_trial() for more details on how these estimates are calcu-
lated.

restrict single character string or NULL. If NULL (default), results are summarised for all
simulations; if "superior", results are summarised for simulations ending with
superiority only; if "selected", results are summarised for simulations end-
ing with a selected arm only (according to the specified arm selection strategy
for simulations not ending with superiority). Some summary measures (e.g.,
prob_conclusive) have substantially different interpretations if restricted, but
are calculated nonetheless.

cores NULL or single integer. If NULL, a default value set by setup_cluster() will
be used to control whether extractions of simulation results are done in parallel
on a default cluster or sequentially in the main process; if a value has not been
specified by setup_cluster(), cores will then be set to the value stored in the
global "mc.cores" option (if previously set by options(mc.cores = <number of cores>),
and 1 if that option has not been specified.
If cores = 1, computations will be run sequentially in the primary process, and
if cores > 1, a new parallel cluster will be setup using the parallel library and
removed once the function completes. See setup_cluster() for details.

... additional arguments, not used.

Value

A "trial_results_summary" object containing the following values:

• n_rep: the number of simulations.

• n_summarised: as described in check_performance().

• highest_is_best: as specified in setup_trial().

• elapsed_time: the total simulation time.

• size_mean, size_sd, size_median, size_p25, size_p75, size_p0, size_p100, sum_ys_mean,
sum_ys_sd, sum_ys_median, sum_ys_p25, sum_ys_p75, sum_ys_p0, sum_ys_p100, ratio_ys_mean,
ratio_ys_sd, ratio_ys_median, ratio_ys_p25, ratio_ys_p75, ratio_ys_p0, ratio_ys_p100,
prob_conclusive, prob_superior, prob_equivalence, prob_futility, prob_max, prob_select_*
(with * being either "arm_<name> for all arm names or none), rmse, rmse_te, and idp: perfor-
mance metrics as described in check_performance(). Note that all sum_ys_ and ratio_ys_
measures use outcome data from all randomised patients, regardless of whether they had out-
come data available at the last analysis or not, as described in extract_results().

• select_strategy, select_last_arm, select_preferences, te_comp, raw_ests, final_ests,
restrict: as specified above.

64 update_saved_trials

• control: the control arm specified by setup_trial(), setup_trial_binom() or setup_trial_norm();
NULL if no control.

• equivalence_assessed, futility_assessed: single logicals, specifies whether the trial
design specification includes assessments of equivalence and/or futility.

• base_seed: as specified in run_trials().

• cri_width, n_draws, robust, description, add_info: as specified in setup_trial(),
setup_trial_binom() or setup_trial_norm().

See Also

extract_results(), check_performance(), plot_convergence(), plot_metrics_ecdf(), check_remaining_arms().

Examples

Setup a trial specification
binom_trial <- setup_trial_binom(arms = c("A", "B", "C", "D"),

control = "A",
true_ys = c(0.20, 0.18, 0.22, 0.24),
data_looks = 1:20 * 100)

Run 10 simulations with a specified random base seed
res <- run_trials(binom_trial, n_rep = 10, base_seed = 12345)

Summarise simulations - select the control arm if available in trials not
ending with a superiority decision
res_sum <- summary(res, select_strategy = "control")

Print summary
print(res_sum, digits = 1)

update_saved_trials Update previously saved simulation results

Description

This function updates a previously saved "trial_results" object created and saved by run_trials()
using a previous version of adaptr, allowing the results from these previous simulations to be post-
processed (including performance metric calculation, printing and plotting) without errors by this
version of the package. The function should be run only once per saved simulation object and will
issue a warning if the object is already up to date. And overview of the changes made according to
the adaptr package version used to generate the original object is provided in Details.
NOTE: some values cannot be updated and will be set to NA (the posterior estimates from the
’final’ analysis conducted after the last adaptive analysis and including outcome data for all pa-
tients), and thus using both raw_ests = TRUE and final_ests = TRUE in the extract_results()
and summary() functions will lead to missing values for some of the values calculated for updated
simulation objects.
NOTE: other objects created by the adaptr package, i.e., trial specifications generated by setup_trial()

update_saved_trials 65

/ setup_trial_binom() / setup_trial_norm() and single simulation results from run_trials()
when not included in as part of the returned output from run_trials() should be re-created by re-
running the relevant code using the updated version of adaptr; if manually re-loaded from previous
sessions, they may cause errors and problems with the updated version of the package.

Usage

update_saved_trials(path, version = NULL, compress = TRUE)

Arguments

path single character; the path to the saved "trial_results"-object containing the
simulations saved by run_trials().

version passed to saveRDS() when saving the updated object, defaults to NULL (as in
saveRDS()), which means that the current default version is used.

compress passed to saveRDS() when saving the updated object, defaults to TRUE (as in
saveRDS()), see saveRDS() for other options.

Details

The following changes are made according to the version of adaptr used to generate the original
"trial_results" object:

• v1.2.0+: only updates the version number.
• v1.1.1 or earlier: updates version number and everything related to follow-up and data

collection lag (in these versions, the randomised_at_looks argument in the setup_trial()
functions did not exist, but for practical purposes was identical to the number of patients with
available data at each look).

Value

Invisibly returns the updated "trial_results"-object.

See Also

run_trials().

Index

adaptr (adaptr-package), 2
adaptr-package, 2

calibrate_trial, 3
calibrate_trial(), 3, 42, 51, 56
check_performance, 11
check_performance(), 3, 8, 16, 17, 20, 22,

25, 28, 32, 40, 61, 63, 64
check_remaining_arms, 16
check_remaining_arms(), 3, 15, 20, 25, 28,

40, 64

extract_results, 17
extract_results(), 3, 12, 15–17, 22, 25, 28,

39, 48, 61, 63, 64

find_beta_params, 20

library(), 39

mean(), 46

parallel::clusterExport(), 39, 40
parallel::detectCores(), 40
parallel::makePSOCKcluster(), 41
plot_convergence, 22
plot_convergence(), 3, 15, 17, 20, 28, 40, 64
plot_history, 25
plot_history(), 3, 30, 35, 39, 40
plot_metrics_ecdf, 27
plot_metrics_ecdf(), 3, 15, 17, 20, 64
plot_status, 29
plot_status(), 3, 27, 39, 40
print, 31
print(), 3, 15
print.trial_results(), 40

readRDS(), 7, 38
require(), 39
RNGkind(), 41
run_trial, 34

run_trial(), 3, 13, 15, 17, 19, 20, 24, 25, 33,
34, 37, 39, 42, 47, 49, 51, 55, 56, 60,
62, 63

run_trials, 37
run_trials(), 3–5, 7, 10, 12, 14, 16, 18, 22,

25–28, 30, 32, 34, 35, 39, 41, 42,
47–49, 51, 55, 56, 60, 61, 64, 65

saveRDS(), 7, 38, 39, 65
setup_cluster, 40
setup_cluster(), 2, 3, 5, 14, 19, 24, 26, 28,

33, 38, 39, 41, 48, 63
setup_trial, 42
setup_trial(), 2, 3, 5, 6, 8, 13, 15, 19, 24,

33–39, 43, 44, 48, 51, 53, 55, 56, 58,
60, 62–65

setup_trial_binom, 51
setup_trial_binom(), 2, 3, 5, 8, 9, 19, 34,

35, 37, 38, 42, 46, 47, 56, 64, 65
setup_trial_norm, 56
setup_trial_norm(), 2, 3, 5, 8, 9, 19, 34, 35,

37, 38, 42, 46, 47, 51, 64, 65
stats::mad(), 15, 46, 55, 60
summary, 61
summary(), 3, 8, 12, 15–17, 20, 25, 28, 32, 34,

40, 48, 64

update_saved_trials, 64

66

	adaptr-package
	calibrate_trial
	check_performance
	check_remaining_arms
	extract_results
	find_beta_params
	plot_convergence
	plot_history
	plot_metrics_ecdf
	plot_status
	print
	run_trial
	run_trials
	setup_cluster
	setup_trial
	setup_trial_binom
	setup_trial_norm
	summary
	update_saved_trials
	Index

