
anytime: Easier Date and Time Conversion
Dirk Eddelbuettel1

1Department of Statistics, University of Illinois, Urbana-Champaign, IL, USA

This version was compiled on August 28, 2019

The anytime package provides functions which convert from both a num-
ber of different input variable types (integer, numeric, character, factor)
and different input formats which are tried heuristically offering a power-
ful and versatile date and time converter that (generally) requires no user
input and operates autonomously.

Motivation

R excels at computing with dates, and times. Using a typed repre-
sentation for your data is highly recommended not only because
of the functionality offered but also because of the added safety
stemming from proper representation.

But there is a small nuisance cost in interactive work as well
as in programming. Users must have told as.POSIXct() about
a million times that the origin is (of course) the epoch. Do we
really have to say it a million more times? Similarly, when parsing
dates that are some variant of the common YYYYMMDD format, do
we really have to manually convert from integer or numeric or
factor or ordered to character? Having one of several common
separators and/or date formats (YYYY-MM-DD, YYYY/MM/DD,
YYYYMMDD, YYYY-mon-DD and so on, with or without times), do
we really need a format string? Or could a smart converter function
do this for us?

The anytime() function aims to provide such a general purpose
converter returning a proper POSIXct (or Date) object no matter
the input (provided it was parseable), relying on Boost Date_Time
for the (efficient, performant) conversion. anydate() is an addi-
tional wrapper returning a Date object instead. utctime() and
utcdate() are two variants which interpret input as coordinated
universal time (UTC), i.e. free of any timezone.

Examples

We set up the R environment and display for the examples below.
Note that the package caches the (local) timezone information
(and anytime:::setTZ() can be used to reset this value later).

Sys.setenv(TZ=anytime:::getTZ()) # TZ helper
library(anytime) # caches TZ info
options(width=50, # column width

digits.secs=6) # fractional secs

From Integer, Numeric, Factor or Ordered. For numeric dates in
the range of the (numeric) yyyymmdd format, we use anydate().

integer
anydate(20160101L + 0:2)
[1] "2016-01-01" "2016-01-02" "2016-01-03"

numeric
anydate(20160101 + 0:2)
[1] "2016-01-01" "2016-01-02" "2016-01-03"

Numeric input also works for datetimes if its range corresponds
to the range of as.numeric() values of POSIXct variables:

integer
anytime(1451628000L + 0:2)
[1] "2016-01-01 00:00:00 CST"
[2] "2016-01-01 00:00:01 CST"
[3] "2016-01-01 00:00:02 CST"

numeric
anytime(1451628000 + 0:2)
[1] "2016-01-01 00:00:00 CST"
[2] "2016-01-01 00:00:01 CST"
[3] "2016-01-01 00:00:02 CST"

This is a change from version 0.3.0; the old behaviour (which
was not fully consistent in how it treated numeric input values, but
convenient for input in the ranges shown here) can be enabled
via either an argument to the function or a global options, see
help(anytime) for details:

integer
anytime(20160101L + 0:2, oldHeuristic=TRUE)
[1] "2016-01-01 CST" "2016-01-02 CST"
[3] "2016-01-03 CST"

numeric
anytime(20160101 + 0:2, oldHeuristic=TRUE)
[1] "2016-01-01 CST" "2016-01-02 CST"
[3] "2016-01-03 CST"

In general, it is now preferred to use anydate() on values in
this range (or resort to using oldHeuristics=TRUE as shown).

Factor or Ordered. Factor variables and their order variant are also
supported directly.

factor
anytime(as.factor(20160101 + 0:2))
[1] "2016-01-01 CST" "2016-01-02 CST"
[3] "2016-01-03 CST"

ordered
anytime(as.ordered(20160101 + 0:2))
[1] "2016-01-01 CST" "2016-01-02 CST"
[3] "2016-01-03 CST"

Note that factor and ordered variables may appear to be like
numeric variables, they are in fact converted to character first and
treated just like character input (described in the next section).

Character: Simple. Character input is supported in a variety of
formats. We first show simple formats.

https://cran.r-project.org/package=anytime anytime Vignette | August 28, 2019 | 1–4

Dates: Character
anytime(as.character(20160101 + 0:2))
[1] "2016-01-01 CST" "2016-01-02 CST"
[3] "2016-01-03 CST"

Dates: alternate formats
anytime(c("20160101", "2016/01/02", "2016-01-03"))
[1] "2016-01-01 CST" "2016-01-02 CST"
[3] "2016-01-03 CST"

Character: ISO. ISO8661 date(time) formats are supported with
both ‘T’ and a space as separator of date and time.

Datetime: ISO with/without fractional seconds
anytime(c("2016-01-01 10:11:12",

"2016-01-01T10:11:12.345678"))
[1] "2016-01-01 10:11:12.000000 CST"
[2] "2016-01-01 10:11:12.345678 CST"

Character: Textual month formats. Date formats with month ab-
breviations are supported in a number of common orderings.

ISO style
anytime(c("2016-Sep-01 10:11:12",

"Sep/01/2016 10:11:12",
"Sep-01-2016 10:11:12"))

[1] "2016-09-01 10:11:12 CDT"
[2] "2016-09-01 10:11:12 CDT"
[3] "2016-09-01 10:11:12 CDT"

Datetime: Mixed format
(cf http://stackoverflow.com/questions/39259184)
anytime(c("Thu Sep 01 10:11:12 2016",

"Thu Sep 01 10:11:12.345678 2016"))
[1] "2016-09-01 10:11:12.000000 CDT"
[2] "2016-09-01 10:11:12.345678 CDT"

Character: Dealing with DST. This shows an important aspect.
When not working in localtime (by overriding to UTC) the change in
difference to UTC is correctly covered (which the underlying Boost
Date_Time library does not do by itself).

Datetime: pre/post DST
anytime(c("2016-01-31 12:13:14",

"2016-08-31 12:13:14"))
[1] "2016-01-31 12:13:14 CST"
[2] "2016-08-31 12:13:14 CDT"
important: catches change
anytime(c("2016-01-31 12:13:14",

"2016-08-31 12:13:14"), tz="UTC")
[1] "2016-01-31 18:13:14 UTC"
[2] "2016-08-31 17:13:14 UTC"

Technical Details

The actual parsing and conversion is done by two different Boost
libraries. First, the top-level R function checks the input argument
type and branches on date or datetime types. All other types get
handed to a function using Boost lexical_cast to convert from any-
thing numeric to a string representation. This textual representation
is then parsed by Boost Date_Time to create the corresponding date,

or datetime, type. (There are also a number of special cases where
numeric values are directly converted; see below for a discussion.)
We use the BH package (Eddelbuettel et al., 2019a) to access these
Boost libraries, and rely on Rcpp (Eddelbuettel and François, 2011;
Eddelbuettel, 2013; Eddelbuettel et al., 2019b) for a seamless C++
interface to and from R.

The Boost Date_Time library is addressing the need for parsing
date and datetimes from text. It permits us to loop over a suitably
large number of candidate formats with considerable ease. The for-
mats are generally variants of the ISO 8601 date format, i.e., of the
YYYY-MM-DD ordering. We also allow for textual representation of
months, e.g., ‘Jan’ for January. This feature is not internationalised.

The list of current formats can be retrieved by the
getFormats() function. Users can also add to this list at run-
time by calling addFormats(), as well as removing formats. User-
provided formats are tried before the formats supplied by the pack-
age.

fmts <- getFormats()
length(fmts)
[1] 83
head(fmts,10)
[1] "%Y-%m-%d %H:%M:%S%f" "%Y-%m-%e %H:%M:%S%f"
[3] "%Y-%m-%d %H%M%S%f" "%Y-%m-%e %H%M%S%f"
[5] "%Y/%m/%d %H:%M:%S%f" "%Y/%m/%e %H:%M:%S%f"
[7] "%Y%m%d %H%M%S%f" "%Y%m%d %H:%M:%S%f"
[9] "%m/%d/%Y %H:%M:%S%f" "%m/%e/%Y %H:%M:%S%f"
tail(fmts,10)
[1] "%d-%b-%Y" "%e-%b-%Y" "%Y-%B-%d" "%Y-%B-%e"
[5] "%Y%B%d" "%Y%B%e" "%B/%d/%Y" "%B/%e/%Y"
[9] "%B-%d-%Y" "%B-%e-%Y"

As a fallback for, e.g., different behavior on Windows where
Boost does not consult the TZ environment variable, and to be
generally as close as possible to parsing by the R language and
system, we also support the parser from R itself. As R does not
expose this part of its API at the C level, we use the Rcpp package
(Eddelbuettel and François, 2011; Eddelbuettel, 2013; Eddelbuettel
et al., 2019b). This code path is enabled when useR=TRUE is used.

Output Formats

A related topic is faithful and easy to read representation of datetime
objects in output, i.e., formatting and printing such objects.

In the spirit of no configuration used on the parsing side, for-
mating support is provided via several functions. These all follow
different known standards and are accessible by the name of the
standard, or, in one case, the non-standard convention. All return
a a character representation.

pt <- anytime("2016-01-31 12:13:14.123456")
iso8601(pt)
[1] "2016-01-31T12:13:14"
rfc2822(pt)
[1] "Sun, 31 Jan 2016 12:13:14.123456 -0600"
rfc3339(pt)
[1] "2016-01-31T12:13:14.123456-0600"
yyyymmdd(pt)
[1] "20160131"

2 | https://cran.r-project.org/package=anytime Eddelbuettel

Table 1. Comparison of anytime and base R to fasttime

test replications elapsed relative

anytime 1e+05 16.556 20.515
baseR 1e+05 15.692 19.445
fasttime 1e+05 0.807 1.000

Ambiguities

The anytime package is designed to operate heuristically on a
number of plausible and sane formats. This cannot possibly cover
all conceivable cases.

North America versus the world. In general, anytime tries to gently
nudge users towards ISO 8601 order of year followed by month
and day. But for example in the United States, another prevalent
form insists on month-day-year ordering. As many users are likely
to encounter such input format, anytime accomodates this use
provided a separator is used: input with either a slash (/) or a
hyphen (-) is accepted and parsed.

Asserts

The anytime package also contains two helper functions that can as-
sist in defensive programming by validating input arguments. The
assertTime() and assertDate() functions validate if the given
input can be parsed, respectively, as Datetime or Date objects.
In case one of the inputs cannot be parsed, an error is triggered.
Otherwise the parsed input is returned invisibly.

Comparison

The anytime aims to satisfy two goal: be performant, and the
same time flexible in terms of not requiring an explicit input for-
mat. We can gauge the relative performance via several pairwise
compariosns.

Speed. The as.POSIXct() function in R provides a useful baseline
as it is also implemented in compiled code. The fastPOSIct()
function from the fasttime package (Urbanek, 2016) excels at
converting one (and only one) input format fast to a (UTC-only)
datetime object. A simple benchmark converting 100 input strings
100,000 times finds both as.POSIXct() and anytime() at very
comparable and similar performance, but well over one order of
magnitude slower that the highly-focussed fastPOSIXct(). Table
1 shows the detailed results; the underlying code can be seen in
the appendix. This result is reasonable: a highly specialised func-
tion can (yand should) outperform two (relatively fast) universal
converters. anytime() is still compelling as it easier to use than
as.POSIXct() by not requiring a format string (for formats other
than ISO 8601).

Generality. The parsedate package (Csárdi and Torvalds, 2019)
brings the very general date parsing utility from the git version
control software to R. In a similar comparison of 100 input strings
parsed 10,000 times, we find its parse_date() function to be
more than an order of magnitude slower than anytime() or
as.POSIXct()—see table 2 for the results based on the code in the
appendix. Again, this result is reasonable as the greater flexibility
of parsedate comes at a cost in performance relative to the more
restricted alternatives.

Table 2. Comparison of anytime and base R to parsedate

test replications elapsed relative

anytime 10000 1.653 1.069
baseR 10000 1.546 1.000
parsedate 10000 21.827 14.118

Table 3. Comparison of anytime to two lubridate functions

test replications elapsed relative

anytime 10000 1.652 1.000
parse_date_time 10000 12.770 7.730
ymd_hms 10000 25.162 15.231

All-in. The lubridate package (Spinu et al., 2018) is a widely-used
package for working with dates and times. It offers a very any-
wide variety of functions for working with dates and times: we
count a full 168 exported functions in the current version. Its
parser for dates and times requires at least a hint: the user has to
specify whether input is ordered as, say, year-month-day, or day-
month-year, or another form. lubridate has changed its internals
considerably over the years. Early versions did not contain com-
piled code; a C-based parser was added first, and current versions
embed the CCTZ C++ library (White and Miller, 2019) which was
first made available to R by the RcppCCTZ package (Eddelbuettel,
2019).

While lubridate is less general than anytime (in that it gener-
ally requires user input on the ordering of date elements), it is also
slower as can be seen from the results in table 3 based on the code
in the appendix. The more-widely used form (here ymd_hms()) is
over an order of magnitude slower; the less well-known function
parse_data_times() (which still requires hints) is still several
times slower as shown below.

Summary

We describe the anytime package which offers fast, convenient
and reliable date and datetime conversion for R users along with
helper functions for formatting and assertions. Different types of
input are illustrated and described in detail, and performance is
analyzed via several benchmark comparisons.

We show that the anytime package is no slower than the base
R parser, and much faster than either the most flexible parsing
alternative, or a commonly-used package in this space—all the
while freeing users from having to supply explicit formats specified
in advance. The combination of features, performance and ease-of-
use may make anytime a compelling alternative for R users parsing
and analysing dates and times.

Appendix

The benchmark results shown in tables 1, 2 and 3 are based on the
code included below, and obtained via execution under R version
3.6.1 running under Ubuntu 19.04 with Linux kernel 5.0.0-25 on
an Intel i7-8700k processor.

library(anytime)
library(rbenchmark)
library(fasttime)

Eddelbuettel anytime Vignette | August 28, 2019 | 3

inp <- rep("2019-01-02 03:04:05", 100)
res1 <- benchmark(fasttime=fastPOSIXct(inp),

baseR=as.POSIXct(inp),
anytime=anytime(inp),
replications=1e5)[, 1:4]

res1

library(parsedate)
inp <- rep("2019-01-02 03:04:05", 100)
res2 <- benchmark(parsedate=parse_date(inp),

baseR=as.POSIXct(inp),
anytime=anytime(inp),
replications=1e4)[, 1:4]

res2

suppressMessages(library(lubridate))
inp <- rep("2019-01-02 03:04:05", 100)
res3 <- benchmark(ymd_hms=ymd_hms(inp),

parse_date_time=
parse_date_time(inp,

"ymd_HMS"),
anytime=anytime(inp),
replications=1e4)[, 1:4]

res3

References

Csárdi G, Torvalds L (2019). parsedate: Recognize and Parse Dates in Various
Formats, Including All ISO 8601 Formats. R package version 1.2.0, URL
https://CRAN.R-project.org/package=parsedate.

Eddelbuettel D (2013). Seamless R and C++ Integration with Rcpp. Springer,
New York. doi:10.1007/978-1-4614-6868-4.

Eddelbuettel D (2019). RcppCCTZ: Rcpp Bindings for the CCTZ LibraryRcpp.
R package version 0.2.6, URL https://CRAN.R-project.org/CRAN=package=
RcppCCTZ.

Eddelbuettel D, Emerson JW, Kane MJ (2019a). BH: Boost C++ Header Files. R
package version 1.69.0-1, URL https://CRAN.R-project.org/package=BH.

Eddelbuettel D, François R (2011). “Rcpp: Seamless R and C++
Integration.” Journal of Statistical Software, 40(8), 1–18. doi:
10.18637/jss.v040.i08.

Eddelbuettel D, François R, Allaire J, Ushey K, Kou Q, Russel N, Chambers J,
Bates D (2019b). Rcpp: Seamless R and C++ Integration. R package version
1.0.1, URL https://CRAN.R-project.org/CRAN=package=Rcpp.

Spinu V, Grolemund G, Wickham H, Lyttle I, Constigan I, Law J, Mitarotonda D,
Larmarange J, Boiser J, Lee CH (2018). lubridate: Make Dealing with Dates
a Little Easier. R package version 1.7.4, URL https://CRAN.R-project.org/
CRAN=package=lubridate.

Urbanek S (2016). fasttime: Fast Utility Function for Time Parsing and Conversion.
R package version 1.0.2, URL https://CRAN.R-project.org/package=fasttime.

White B, Miller G (2019). CCTZ: A C++ library for translating between absolute
and civil times using the rules of a time zone. GitHub Repository, URL
https://github.com/google/cctz.

4 | https://cran.r-project.org/package=anytime Eddelbuettel

