Package 'biplotEZ'

November 28, 2023
Title EZ-to-Use Biplots
Version 1.2.0
Description Provides users with an EZ-to-use platform for representing data with biplots. Currently principal component analysis (PCA) and canonical variate analysis (CVA) biplots are included. This is accompanied by various formatting options for the samples and axes. Alpha-bags and concentration ellipses are included for visual enhancements and interpretation. For an extensive discussion on the topic, see Gower, J.C., Lubbe, S. and le Roux, N.J. (2011, ISBN: 978-0-470-01255-0) Understanding Biplots. Wiley: Chichester.

License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.2.3
Imports ggplot2, ggrepel, grDevices, grid, withr
Suggests knitr, rmarkdown
VignetteBuilder knitr
NeedsCompilation no
Author Sugnet Lubbe [aut, cre] (https://orcid.org/0000-0003-2762-9944), Niël le Roux [aut] (https://orcid.org/0000-0002-1791-746X), Johané Nienkemper-Swanepoel [aut] (https://orcid.org/0000-0001-6086-8272), Raeesa Ganey [aut] (https://orcid.org/0009-0008-6973-0999), Carel van der Merwe [aut] (https://orcid.org/0000-0003-0676-8240)
Maintainer Sugnet Lubbe muvisu@sun.ac.za
Repository CRAN
Date/Publication 2023-11-28 10:30:02 UTC

R topics documented:

alpha.bags 2
axes 3
biplot 5
CVA 6
CVA.biplot 8
ellipses 9
fit.measures 10
interpolate 11
legend.type 12
means 13
newsamples 14
PCA 16
PCA.biplot 17
plot.biplot 18
print.biplot 19
samples 20
summary.biplot 21
Index 23
alpha.bags Create alpha bags

Description

This function produces α-bags, which is a useful graphical summary of the scatter plot. The alphabag refers to a contour which contains $\alpha \%$ of the observations.

Usage

alpha.bags(bp, alpha = 0.95, which = NULL, col = bp\$sample\$col[which], lty = 1, lwd $=1$, max $=2500$, trace $=$ TRUE)

Arguments

bp
an object of class biplot.
alpha value between 0 and 1 to determine coverage of bag (α), with default 0.95.
which the selection of groups or classes to be fitted with α-bags.
col vector of colours for the α-bags. Multiple α bags for one group will be displayed in the same colour.
lty vector of line types for the α-bags. The same line type will be used per value of α.
lwd vector of line widths for the α-bags. The same line width will be used per value of α.
$\max \quad$ maximum number of samples to include in α-bag calculations, with default 2500. If more samples are in the group, a random sample of size max is taken for the computations.
trace logical, indicating progress of computation.

Value

A list with the following components is available:
alpha.bags list of coordinates for the α-bags for each group.
col vector of colours for the α-bags.
lty \quad vector of line types for the α-bags.
lwd vector of line widths for the α-bags.

References

Gower, J., Gardner-Lubbe, S. \& Le Roux, N. (2011, ISBN: 978-0-470-01255-0) Understanding Biplots. Chichester, England: John Wiley \& Sons Ltd.

Examples

biplot (iris[,1:4]) |> PCA(group.aes=iris[,5]) |> alpha.bags(alpha=0.95) |> plot()
biplot (iris[,1:4],group.aes=iris[,5]) |> PCA() |> alpha.bags(alpha=0.95) |> plot()
axes Aesthetics for biplot axes

Description

This function allows formatting changes to axes.

Usage

```
axes(bp, X.names=colnames(bp\$X), which = 1:bp\$p, col = grey(0.7),
lwd = 1, lty = 1, label.dir = "Orthog", label.col = col, label.cex = 0.75,
    label.line = 0.1, ticks = 5, tick.col = col, tick.size = 1, tick.label = TRUE,
    tick.label.col = tick.col, tick.label.cex = 0.6, tick.label.side = "left",
    tick.label.offset = 0.5, tick.label.pos = 1, predict.col = col, predict.lwd = lwd,
    predict.lty = lty, ax.names = X.names, orthogx = 0, orthogy = 0)
```


Arguments

bp	an object of class biplot.
X.names	refers to the column names of bp to specify which axes to label.
which	vector of columns to be displayed in the biplot, with default 1:bp\$p.
col	axis colour, with default grey (0.7).
lwd	axis line width, with default 1.
lty	axis line type, with default 1.
label.dir	direction of axis label, with default Orthog.
label.col	axis label colour, with default, col.

label.cex axis label expansion, with default 0.75.
label.line axis label written on which margin line, with default 0.1.
ticks number of tick marks per axis, with default 5 .
tick.col tick mark colour, with default col.
tick.size tick mark size, with default 1.
tick.label logical, whether axes should be labelled or not, with default TRUE.
tick.label.col tick mark label colour, with default tick.col.
tick. label.cex tick mark label expansion, with default 0.6.
tick.label.side
side of the tick mark label, with default left.
tick.label.offset
tick mark label offset, with default 0.5.
tick.label.pos side of the tick mark label, with default below.
predict.col predicted samples colour, with default col.
predict.lwd predicted samples line width, with default lwd.
predict.lty predicted samples line type, with default lty.
ax. names vector of size p containing user defined names for the variables.
orthogx the horizontal translation, with default 0 .
orthogy the vertical translation with default 0 .

Value

A list with the following components is available:
which vector of the columns displayed as axes.
col vector of axis colours.
lwd vector of axis line widths.
lty vector of axis line types.
label.dir direction of the axis labels.
label.col vector of axis label colours.
label.cex vector of axis labels expansions.
label.line vector of axis label margin lines from axes.
ticks vector representing the number of tick marks per axis.
tick.col vector of tick mark colours.
tick.size vector of tick mark sizes.
tick.label vector of logical values indicating whether axes are labelled.
tick.label.col vector of tick mark label colours.
tick. label.cex vector of tick mark label expansions.
tick.label.side
vector of the side of tick mark labels.
tick.label.offset
vector of tick mark label offsets.
tick. label. pos vector of the side of tick mark labels.
predict.col vector of colours for the predicted samples.
predict.lty vector of line types for the predicted samples.
predict.lwd vector of line widths for the predicted samples.
names vector of variable names defined by the user.
or thogx vector of the horisontal translations for each axis.
orthogy vector of the vertical translations for each axis.

Examples

```
biplot(iris[,1:4]) |> PCA() |> axes(col="purple") |> plot()
biplot(iris[,1:4]) |> PCA() |> samples(col="purple",pch=15) |> axes() |> plot()
```

biplot First step to create a new biplot with biplotEZ

Description

This function produces a list of elements to be used when producing a biplot, which provides a useful data analysis tool and allows the visual appraisal of the structure of large data matrices. Biplots are the multivariate analogue of scatter plots. They approximate the multivariate distribution of a sample in a few dimensions and they superimpose on this display representations of the variables on which the samples are measured.

Usage

biplot(data, classes $=$ NULL, group.aes $=$ NULL, center $=$ TRUE, scaled $=$ FALSE, Title = NULL)

Arguments

data a dataframe or matrix containing all variables the user wants to analyse.
classes vector identifying class membership.
group.aes vector identifying groups for aesthetic formatting.
center logical, indicating whether data should be column centered, with default TRUE.
scaled logical, indicating whether data should be standardized to unit column variances, with default FALSE.

Title title of the biplot to be rendered, enter text in " ".

Value

A list with the following components is available:
X matrix of the centered and scaled numeric variables.
Xcat data frame of the categorical variables.
raw.X original data.
center TRUE or FALSE, whether X is centered.
scaled TRUE or FALSE, wether X is scaled.
means vector of means for each numeric variable.
sd vector of standard deviations for each numeric variable.
group.aes vector of category levels for the grouping variable. This is to be used for colour, pch and cex specifications.
Title title of the biplot to be rendered

References

Gabriel, K.R. (1971) The biplot graphic display of matrices with application to principal component analysis. Biometrika. 58(3):453-467. Gower, J., Gardner-Lubbe, S. \& Le Roux, N. (2011, ISBN: 978-0-470-01255-0) Understanding Biplots. Chichester, England: John Wiley \& Sons Ltd. Gower, J.C. \& Hand, D.J.(1996, ISBN: 0-412-71630-5) Biplots. London: Chapman \& Hall.

Examples

biplot(data = iris)
\# create a PCA biplot
biplot(data = iris) |> PCA() |> plot()

Description

This function produces a list of elements to be used for CVA biplot construction.

Usage

CVA(bp, dim.biplot $=c(2,1,3)$, e.vects $=1: n c o l(b p \$ X)$, classes=bp\$classes, weightedCVA = "weighted", show.class.means = TRUE)

Arguments

bp	object of class biplot obtained from preceding function biplot().		
dim.biplot	dimension of the biplot. Only values 1, 2 and 3 are accepted, with default 2. e.vects classes		
which eigenvectors (canonical variates) to extract, with default 1: dim. biplot.			
vector of the same length as the number of rows in the data matrix with the class			
indicator for the samples.		\quad	the default is "weighted", specifying a weighted CVA to be performed. Other
:---			
possible values are "unweightedI" and "unweightedCent".			

Value

Object of class CVA with the following elements:

X	matrix of the centered and scaled numeric variables.
Xcat	matrix of the categorical variables.
raw.X	original data.
na. action	vector of observations that have been removed.
center	TRUE or FALSE, whether X is centred.
scaled	TRUE or FALSE, whether X is scaled.
means	mean of each numerical variable.
sd	standard deviation of each numerical variable.
n	number of observations.
p	number of variables. group. aes
vector of the same length as the number of rows in the data matrix for differen-	
tiated aesthetics for samples.	
g names	descriptive name to be used for group labels.
Title	number of groups. title of the biplot to be rendered.
Gmat	indicator matrix for class membership.
Xmeans	matrix of class means. Z
matrix with each row containing the details of the point to be plotted (i.e. coor-	
Zmeans	dinates). matrix of canonical means.
Lmat	matrix for transformation to the canonical space.
eigenvalues	vector of eigenvalues of the two-sided eigenvalue problem. Cmat
Centring matrix based on different choices of weighting. For "weighted", Cmat is a diagonal matrix with the class sizes, for "unweightedI", Cmat is an indica- tor matrix and for "unweightedCent", Cmat is the usual centring matrix.	
Between class sums of squares and cross products matrix.	

Wmat	Within class sums of squares and corss products matrix.
e.vects	vector indicating which canonical variates are plotted in the biplot.
ax.one.unit	one unit in the positive direction of each biplot axis.
class.means	logical value, indicating whether the class means should be plotted in the biplot.
Zmeans	matrix of the class mean coordinates to be plotted in the biplot.

Examples

biplot(iris[,1:4]) |> CVA(classes=iris[,5])
\# create a CVA biplot
biplot(iris[,1:4]) |> CVA(classes=iris[,5]) |> plot()

```
CVA.biplot CVA biplot
```


Description

Performs calculations for a CVA biplot.

Usage

\#\# S3 method for class 'biplot'
CVA(
bp,
dim.biplot = c(2, 1, 3),
e.vects $=1: n c o l(b p \$ X)$,
classes = bp\$classes, weightedCVA = "weighted", show.class.means $=$ TRUE
)

Arguments

bp object of class biplot obtained from preceding function biplot().
dim.biplot dimension of the biplot. Only values 1, 2 and 3 are accepted, with default 2 .
e.vects which eigenvectors (canonical variates) to extract, with default 1:dim.biplot.
classes vector of the same length as the number of rows in the data matrix with the class indicator for the samples.
weightedCVA the default is "weighted", specifying a weighted CVA to be performed. Other possible values are "unweightedI" and "unweightedCent".
show.class.means
logical, indicating whether to plot the class means on the biplot.

Value

an object of class CVA, inherits from class biplot.

Examples

biplot(iris[,1:4]) |> CVA(classes=iris[,5])

```
ellipses Concentration ellipses ( }\kappa\mathrm{ -ellipses)
```


Description

This function produces κ-ellipses, which is a useful geometrical description of the data points about the sample mean.

Usage

ellipses(bp, df=2, kappa = NULL, which = NULL, alpha = 0.95, col = bp\$sample\$col[which], lty = 1, lwd = 1, alpha.transparency $=0.5$, trace $=$ TRUE)

Arguments

bp an object of class biplot.
$d f \quad$ degrees of freedom, with default 2.
kappa value to construct κ-ellipse (the value of κ).
which the selection of the group for ellipse construction.
alpha size of α-bag, with default 0.95 .
col colour of ellipse. Multiple κ-ellipse for one group will be displayed in the same colour.
lty line type of ellipse. The same line type will be used per value of κ.
lwd line width of ellipse. The same line width will be used per value of κ.
alpha.transparency
level of opacity, with default 0.5.
trace logical, indicating progress of computation.

Value

A list with the following components is available:
conc.ellipses list of coordinates for the κ-ellipses for each group.
col vector of colours for the κ-ellipses.
lty \quad vector of line types for the κ-ellipses.
lwd \quad vector of line widths for the κ-ellipses.
alpha vector of α values.

References

Gower, J., Gardner-Lubbe, S. \& Le Roux, N. (2011, ISBN: 978-0-470-01255-0) Understanding Biplots. Chichester, England: John Wiley \& Sons Ltd.

Examples

biplot (iris[,1:4]) |> PCA(group.aes=iris[,5]) |> ellipses(kappa=2) |> plot()

```
fit.measures Compute measures of fit for biplot.
```


Description

Compute measures of fit for biplot.

Usage

fit.measures(bp)

Arguments

bp an object of class biplot.

Value

An object of class biplot. The object is augmented with additional items, depending on the type of biplot object.
quality overall quality of fit.
adequacy adequacy of representation of variables.
For an object of class PCA:
axis.predictivity
fit measure of each individual axis.
sample.predictivity
fit measure for each individual sample.
For an object of class CVA:
axis.predictivity
fit measure of each individual axis.
class.predictivity fit measure for each class mean.
within.class.axis.predictivity
fit measure for each axis based on values expressed as deviations from their class means.
within.class.sample.predictivity
fit measure for each sample expressed as deviation from its class mean.

Examples

```
out <- biplot (iris[,1:4]) |> PCA() |> fit.measures()
summary(out)
```

interpolate Interpolation of new samples

Description

Interpolation of new samples

Usage

interpolate(bp, newdata)

Arguments

bp	an object of class biplot obtained from preceding function biplot().
newdata	a new data set, similar in structure to the data set supplied to biplot() contain- ing supplementary data points to be added on the biplot.

Value

Object of class PCA with the following elements:

X	matrix of the centered and scaled numeric variables.
Xcat	matrix of the categorical variables.
raw.	original data.
na.action	vector of observations that have been removed.
center	TRUE or FALSE, whether X is centred.
scaled	TRUE or FALSE, whether X is scaled.
means	mean of each numerical variable.
sd	standard deviation of each numerical variable. n
p	number of observations.
group. aes	vector of the same length as the number of rows in the data matrix for differen- tiated aesthetics for samples.
g. names	descriptive name to be used for group labels. g
Title	number of groups. title of the biplot to be rendered
Z	matrix with each row containing the details of the point to be plotted (i.e. coor- dinates).

Lmat	matrix for transformation to the principal components.
e.vects	vector indicating which principal components are plotted in the biplot.
ax.one.unit	one unit in the positive direction of each biplot axis.
Xnew.raw	newdata numerical variables.
Xnew	matrix of the centered and scaled new numeric variables.
Xnew.cat	matrix of the new categorical variables.
Znew	matrix of the coordinates of the newdata in the biplot.

Examples

```
biplot(data = iris[1:145,]) |> PCA() |> interpolate(newdata = iris[146:150,]) |> plot()
```

legend. type Legend type

Description

This function enables the user to format the legend and make a required selection to display.

Usage

legend.type(bp, samples = FALSE, means = FALSE, bags = FALSE, ellipses = FALSE, new = FALSE, ...)

Arguments

bp
samples
means logical, indicating whether legend should be printed for means, with default FLASE.
bags logical, indicating whether legend should be printed for bags, with default FALSE.
ellipses
new logical, indicating whether the legend should appear in a new window, with default FALSE.
... additional arguments to be sent to legend(). with default FALSE.

Value

A list with the following components is available:
samples TRUE or FALSE, whether legend for samples are provided.
means TRUE or FALSE, whether legend for class means are provided.
bags TRUE or FALSE, whether legend for alpha-bags are provided.
ellipses TRUE or FALSE, whether legend for kappa-ellipses are provided.
new TRUE or FALSE, whether legend appears on new plot.

Examples

biplot (iris[,1:4], Title="Test biplot") |> PCA(group.aes = iris[,5]) |> legend.type(samples=TRUE) |> plot()

means

Aesthetics for biplot class / group means

Description

This function allows formatting changes to class means or group means.

Usage

means (bp, which = NULL, col = NULL, pch = 1, cex = 1, label = FALSE,
label.col = NULL,label.cex = 0.75, label.side = "bottom", label.offset = 0.5)

Arguments

bp
which
col mean colour, with default to sample colour.
pch mean plotting character, with default o.
cex mean character expansion, with default 1.
label logical, whether means should be labelled or not, with default TRUE.
label.col vector of length g with the colour of the labels, defaulting to the colour of the means.
label.cex label text expansion, with default 0.75.
label.side side of the plotting character where label appears, with default bottom. Note that unlike the argument pos in text(), options are "bottom", "left", "top", "right" and not $1,2,3,4$.
label. offset offset of the label from the mean point. See ?text for a detailed explanation of the argument offset.

Details

The number of classes or groups (defined by group.aes) is indicated as g . If an argument is not of length g , recycling is used.

Value

A list with the following components is available:

which	which means to display.
col	colour of the means.
pch	plotting character of the means.
cex	expansion of the plotting character of the means.
label	logical, whether means should be labelled.
label.col	colour of the label.
label.cex	expansion of the label.
label.side	side at which to plot the label of means.
label.offset	offset of the label from the mean point.

Examples

```
biplot(iris[,1:4]) |> PCA() |>
        means(col = "purple", pch = 15, cex = 2) |> plot()
```

```
newsamples Aesthetics for supplementary (new) biplot samples
```


Description

This function allows formatting changes to new samples.

Usage

newsamples (bp, col = "darkorange1", pch = 1, cex = 1, label = FALSE, label.col = NULL, label.cex = 0.75, label.side = "bottom", label.offset = 0.5, connected = FALSE, connect.col = "black", connect.lty=1, connect.lwd=1)

Arguments

bp an object of class biplot.
col new sample colour, with default darkorange1.
pch new sample plotting character, with default o.
cex new sample character expansion, with default 1.
label logical, whether samples should be labelled or not, with default FALSE.
label.col vector of length number of new samples with the colour of the labels, defaulting to the colour of the sample points.
label.cex label text expansion, with default 0.75.
label.side side of the plotting character where label appears, with default bottom. Note that unlike the argument pos in text(), options are "bottom", "left", "top", "right" and not $1,2,3,4$.
label. offset offset of the label from the data point. See ?text for a detailed explanation of the argument offset.
connected logical, whether samples are connected in order of rows of data matrix, with default FALSE.
connect.col colour of the connecting line, with default black.
connect.lty line type of the connecting line, with default 1.
connect.lwd line width of the connecting line, with default 1 .

Value

A list with the following components is available:
col colour of the samples.
pch plotting character of the samples.
cex expansion of the plotting character of the samples.
label TRUE or FALSE, whether samples should be labelled.
label.col colour of the label.
label.cex expansion of the label.
label.side side at which to plot the label of samples.
label. offset offset of the label from the data point.
connected TRUE or FALSE, whether samples should be connected in row order of X.
connect.col colour of the connecting line.
connect.lty line type of the connecting line.
connect.lwd line width of the connecting line.

Examples

```
biplot(data = iris[1:145,]) |> PCA() |> samples(col = "grey") |>
interpolate(newdata = iris[146:150,]) |> newsamples(col = rainbow(6), pch=15) |> plot()
```

```
PCA
Principal Component Analysis (PCA) method
```


Description

This function produces a list of elements to be used for PCA biplot construction.

Usage

PCA(bp, dim.biplot $=c(2,1,3)$, e.vects $=1: n c o l(b p \$ X)$,
group.aes = NULL, show.group.means = FALSE, correlation.biplot = FALSE)

Arguments

bp an object of class biplot obtained from preceding function biplot().
dim.biplot dimension of the biplot. Only values 1, 2 and 3 are accepted, with default 2 .
e.vects which eigenvectors (principal components) to extract, with default 1: dim. biplot.
group.aes vector of the same length as the number of rows in the data matrix for differentiated aesthetics for samples.
show.group.means
logical, indicating whether group means should be plotted in the biplot.
correlation.biplot
logical, if FALSE, the distances between sample points are optimally approximated in the biplot. If TRUE, the correlations between variables are optimally approximated by the cosine of the angles between axes. Default is FALSE.

Value

Object of class PCA with the following elements:
$X \quad$ matrix of the centered and scaled numeric variables.
Xcat matrix of the categorical variables.
raw.X original data.
na.action vector of observations that have been removed.
center TRUE or FALSE, whether X is centred.
scaled TRUE or FALSE, whether X is scaled.
means mean of each numerical variable.
sd standard deviation of each numerical variable.
n number of observations.
p number of variables.
group. aes vector of the same length as the number of rows in the data matrix for differentiated aesthetics for samples.
g.names descriptive name to be used for group labels.
g number of groups.
Title title of the biplot to be rendered
Z matrix with each row containing the details of the point to be plotted (i.e. coordinates).

Lmat matrix for transformation to the principal components.
eigenvalues vector of eigenvalues of the covariance matrix of X.
e.vects
ax.one.unit
class.means
Zmeans vector indicating which principal components are plotted in the biplot. one unit in the positive direction of each biplot axis.
logical, indicating whether group means should be plotted in the biplot. matrix of class mean coordinates to be plotted in the biplot.

References

Gabriel, K.R. (1971) The biplot graphic display of matrices with application to principal component analysis. Biometrika. 58(3):453-467.

Examples

```
biplot(iris[,1:4]) |> PCA()
# create a PCA biplot
biplot(data = iris) |> PCA() |> plot()
```


Description

Performs calculations for a PCA biplot.

```
Usage
    ## S3 method for class 'biplot'
    PCA(
        bp,
        dim.biplot = c(2, 1, 3),
        e.vects = 1:ncol(bp$X),
        group.aes = NULL,
        show.group.means = FALSE,
        correlation.biplot = FALSE
    )
```


Arguments

bp	an object of class biplot obtained from preceding function biplot().
dim.biplot	dimension of the biplot. Only values 1,2 and 3 are accepted, with default 2.
e.vects	which eigenvectors (principal components) to extract, with default 1 : dim. biplot. group.aesvector of the same length as the number of rows in the data matrix for differen- tiated aesthetics for samples.
show.group.means	
logical, indicating whether group means should be plotted in the biplot.	

Value

an object of class PCA, inherits from class biplot.

Examples

```
biplot(iris[,1:4]) |> PCA()
# create a PCA biplot
biplot(data = iris) |> PCA() |> plot()
```


Description

Generic Plotting function of objects of class biplot

Usage

```
## S3 method for class 'biplot'
    plot(
        x,
        exp.factor = 1.2,
        axis.predictivity = NULL,
        sample.predictivity = NULL,
    )
```


Arguments

X
An object of class biplot.
exp.factor factor to expand plotting area beyond samples.
axis.predictivity
either logical or a numeric value between 0 and 1 . If it is a numeric value, this value is used as threshold so that only axes with axis predictivity larger than the threshold is displayed. If axis.predictivity = TRUE, the axis color is 'diluted' in proportion with the axis predictivity.
sample.predictivity
either a logical or a numeric value between 0 and 1 . If it is a numeric value, this value is used as threshold so that only samples with sample predictivity larger than the threshold is displayed. if sample.predictivity = TRUE, the sample size is shrinked in proportion with the sample predictivity.
... additional arguments.

Value

An object of class biplot.

Examples

biplot (iris[,1:4]) |> PCA() |> plot()

Description

Generic print function of objects of class biplot

Usage

```
## S3 method for class 'biplot'
```

print(x, ...)

Arguments

x	an object of class biplot.
\ldots	additional arguments.

Value

no return value, called for side effects.

Examples

out <- biplot (iris[,1:4]) |> PCA()
out

Description

This function allows formatting changes to samples.

Usage

samples (bp, which = $1: b p \$ g$, col = ez.col, pch = 3, cex = 1, label = FALSE, label.col = NULL, label.cex $=0.75$, label.side = "bottom", label.offset $=0.5$, connected $=$ FALSE, connect.col = "black", connect.lty = 1 , connect.lwd = 1)

Arguments

bp an object of class biplot.
which vector of which groups of samples to display, with default bp\$g.
col sample colour, with default blue.
pch sample plotting character, with default + .
cex sample character expansion, with default 1.
label logical, whether samples should be labelled or not, with default FALSE.
label.col vector of length number of samples with the colour of the labels, defaulting to the colour of the sample points.
label.cex label text expansion, with default 0.75.
label.side side of the plotting character where label appears, with default bottom. Note that unlike the argument pos in text(), options are "bottom", "left", "top", "right" and not $1,2,3,4$.
label.offset offset of the label from the data point. See ?text for a detailed explanation of the argument offset.
connected logical, whether samples are connected in order of rows of data matrix, with default FALSE.
connect.col colour of the connecting line, with default black.
connect.lty line type of the connecting line, with default 1.
connect.lwd line width of the connecting line, with default 1.

Details

The arguments which, col, pch and cex are based on the specification of group. aes or classes. If no groups are specified, a single colour, plotting character and / or character expansion is expected. If g groups are specified, vectors of length g is expected, or values are recycled to length g.
The arguments label, label.cex, label.side and label. offset are based on the sample size n. A single value will be recycled n times or a vector of length n is expected.

Value

A list with the following components is available:
which which means to display.
col colour of the samples.
pch plotting character of the samples.
cex expansion of the plotting character of the samples.
label TRUE or FALSE, whether samples should be labelled.
label.col colour of the label.
label.cex expansion of the label.
label.side side at which to plot the label of samples.
label. offset offset of the label from the data point.
connected TRUE or FALSE, whether samples should be connected in row order of X.
connect.col colour of the connecting line.
connect.lty line type of the connecting line.
connect.lwd line width of the connecting line.

Examples

biplot(iris[,1:4]) |> PCA() |> samples(col="purple",pch=15) |> plot()

```
summary.biplot Generic summary function of objects of class biplot
```


Description

Generic summary function of objects of class biplot

```
Usage
    ## S3 method for class 'biplot'
    summary(
    object,
    adequacy = TRUE,
    axis.predictivity = TRUE,
    sample.predictivity = TRUE,
    class.predictivity = TRUE,
    within.class.axis.predictivity = TRUE,
    within.class.sample.predictivity = TRUE,
)
```


Arguments

object an object of class biplot.
adequacy logical, whether variable adequacies should be reported.
axis.predictivity
logical, whether axis predictivities should be reported.
sample.predictivity
logical, whether sample predictivities should be reported.
class.predictivity
logical, whether class predictivities should be reported (only applicable to objects of class CVA).
within.class.axis.predictivity
logical, whether within class axis predictivity should be reported(only applicable to objects of class CVA).
within.class.sample.predictivity
logical, whether within class sample predictivity should be reported(only applicable to objects of class CVA).
... additional arguments.

Value

no return value, called for side effects.

Examples

```
out <- biplot (iris[,1:4]) |> PCA() |> fit.measures()
summary (out)
```


Index

```
alpha.bags,2
axes, }
biplot,5
CVA,}
CVA.biplot,8
ellipses,9
fit.measures,10
interpolate, 11
legend.type, 12
means, }1
newsamples,14
PCA, 16
PCA.biplot,17
plot.biplot,18
print.biplot,19
samples,20
summary.biplot,21
```

