
Package ‘calACS’
October 12, 2022

Type Package

Title Calculations for All Common Subsequences

Version 2.2.2

Date 2016-3-31

Author Alan Gu

Maintainer Alan Gu <alan.on.ca@gmail.com>

Description Implements several string comparison algorithms, including calACS (count all com-
mon subsequences), lenACS (calculate the lengths of all common subse-
quences), and lenLCS (calculate the length of the longest common subsequence). Some algo-
rithms differentiate between the more strict definition of subsequence, where a common subse-
quence cannot be separated by any other items, from its looser counterpart, where a com-
mon subsequence can be interrupted by other items. This difference is shown in the suf-
fix of the algorithm (-Strict vs -Loose). For example, q-w is a common subsequence of q-w-e-
r and q-e-w-r on the looser definition, but not on the more strict definition. calACSLoose Algo-
rithm from Wang, H. All common subsequences (2007) IJCAI International Joint Confer-
ence on Artificial Intelligence, pp. 635-640.

License GPL

LazyData TRUE

RoxygenNote 5.0.1

NeedsCompilation no

Repository CRAN

Date/Publication 2016-03-31 19:35:54

R topics documented:
calACSLoose . 2
calACSStrict . 2
lenACSStrict . 3
lenLCSStrict . 4
longestVec . 5

Index 6

1

2 calACSStrict

calACSLoose Calculate the total number of all common subsequences between a
string and a vector/list of strings. Subsequences can be interrupted by
items, i.e. q-w is considered a subsequence of q-e-w-r

Description

Calculate the total number of all common subsequences between a string and a vector/list of strings.
Subsequences can be interrupted by items, i.e. q-w is considered a subsequence of q-e-w-r

Usage

calACSLoose(vecA, listB, sep = "-", dropFirstItem = FALSE)

Arguments

vecA The single string

listB The vector/list of 1 or more strings

sep Delimiter separating each items in a sequence

dropFirstItem Boolean. If true, the first item in each sequence is excluded from counting all
subsequences

Value

The total number of all common subsequences as an integer in a vector

Examples

calACSLoose("q-w-e-r", c("q-e-w-r","q-r-e-w"), "-")
calACSLoose("itemToBeDropped-q-w-e-r", "itemToBeDroped-q-e-w-r", "-", dropFirstItem=TRUE)

calACSStrict Count the total number of all common subsequences between a string
and a vector/list of strings. Subsequences cannot be interrupted by
any item, i.e. q-w is not considered a subsequence of q-e-w-r due to
the interrupting ’e’

Description

Count the total number of all common subsequences between a string and a vector/list of strings.
Subsequences cannot be interrupted by any item, i.e. q-w is not considered a subsequence of q-e-w-r
due to the interrupting ’e’

lenACSStrict 3

Usage

calACSStrict(vecA, listB, sep = "-", dropFirstItem = FALSE,
ignoreLenOneSubseq = FALSE, ignoreLenZeroSubseq = FALSE)

Arguments

vecA The single string

listB The vector/list of 1 or more strings

sep Delimiter separating each items in a sequence

dropFirstItem Boolean. If true, the first item in each sequence is excluded from counting all
subsequences

ignoreLenOneSubseq

Boolean. If true, all length one subequences are not counted as common subse-
quences

ignoreLenZeroSubseq

Boolean. If true, the length zero subsequence (empty set) is not counted as a
common subsequence

Value

The total number of all common subsequences as an integer in a vector

Examples

calACSStrict("q-w-e-r", c("q-e-w-r","q-r-e-w"), "-")
calACSStrict("itemToBeDropped-q-w-e-r", "itemToBeDroped-q-e-w-r", "-", dropFirstItem=TRUE)

lenACSStrict Calculate the length of each common subsequences between a string
and a vector/list of strings. Subsequences cannot be interrupted by
any item, i.e. q-w is not considered a subsequence of q-e-w-r due to
the interrupting ’e’

Description

Calculate the length of each common subsequences between a string and a vector/list of strings.
Subsequences cannot be interrupted by any item, i.e. q-w is not considered a subsequence of q-e-
w-r due to the interrupting ’e’

Usage

lenACSStrict(vecA, listB, sep = "-", dropFirstItem = FALSE,
ignoreLenOneSubseq = FALSE)

4 lenLCSStrict

Arguments

vecA The single string

listB The vector/list of 1 or more strings

sep Delimiter separating each items in a sequence

dropFirstItem Boolean. If true, the first item in each sequence is excluded from counting all
subsequences

ignoreLenOneSubseq

Boolean. If true, all length one subequences are not counted as common subse-
quences

Value

A list of vectors of the length of each common subsequence

Examples

lenACSStrict("q-w-e-r", c("q-e-w-r","q-r-e-w","q-w-r-e"), "-")
lenACSStrict("itemToBeDropped-q-w-e-r", "itemToBeDroped-q-e-w-r", "-", dropFirstItem=TRUE)

lenLCSStrict Calculate the length of the longest common subsequence (KCS) be-
tween a string and a vector/list of strings. Subsequences cannot be
interrupted by any item, i.e. q-w is not considered a subsequence of
q-e-w-r due to the interrupting ’e’

Description

Calculate the length of the longest common subsequence (KCS) between a string and a vector/list of
strings. Subsequences cannot be interrupted by any item, i.e. q-w is not considered a subsequence
of q-e-w-r due to the interrupting ’e’

Usage

lenLCSStrict(vecA, listB, sep = "-", dropFirstItem = FALSE)

Arguments

vecA The single string

listB The vector/list of 1 or more strings

sep Delimiter separating each items in a sequence

dropFirstItem Boolean. If true, the first item in each sequence is excluded from counting all
subsequences

longestVec 5

Value

A list of vectors of the length of each common subsequence

Examples

lenACSStrict("q-w-e-r", c("q-e-w-r","q-r-e-w","q-w-r-e"), "-")
lenACSStrict("itemToBeDropped-q-w-e-r", "itemToBeDroped-q-e-w-r", "-", dropFirstItem=TRUE)

longestVec The function takes in multiple vectors of any length, and returns the
one with the longest length. The tieBreaker variable controls if the
first or the last of the longest vectors gets returned in case there are
multiple

Description

The function takes in multiple vectors of any length, and returns the one with the longest length.
The tieBreaker variable controls if the first or the last of the longest vectors gets returned in case
there are multiple

Usage

longestVec(..., tieBreaker = "last")

Arguments

... vectors of any length

tieBreaker decides if the first or the last longest vector gets returned if there are multiple
longest vectors. Can be either ’first’ or ’last’. Default to ’last’.

Examples

longestVec(1:5, c('a','b'))

Index

calACSLoose, 2
calACSStrict, 2

lenACSStrict, 3
lenLCSStrict, 4
longestVec, 5

6

	calACSLoose
	calACSStrict
	lenACSStrict
	lenLCSStrict
	longestVec
	Index

