
Package ‘crew.cluster’
April 24, 2024

Title Crew Launcher Plugins for Traditional High-Performance Computing
Clusters

Description In computationally demanding analysis projects,
statisticians and data scientists asynchronously
deploy long-running tasks to distributed systems,
ranging from traditional clusters to cloud services.
The 'crew.cluster' package extends the 'mirai'-powered
'crew' package with worker launcher plugins for traditional
high-performance computing systems.
Inspiration also comes from packages 'mirai' by Gao (2023)
<https://github.com/shikokuchuo/mirai>,
'future' by Bengtsson (2021) <doi:10.32614/RJ-2021-048>,
'rrq' by FitzJohn and Ashton (2023) <https://github.com/mrc-ide/rrq>,
'clustermq' by Schubert (2019) <doi:10.1093/bioinformatics/btz284>),
and 'batchtools' by Lang, Bischl, and Surmann (2017).
<doi:10.21105/joss.00135>.

Version 0.3.1

License MIT + file LICENSE

URL https://wlandau.github.io/crew.cluster/,

https://github.com/wlandau/crew.cluster

BugReports https://github.com/wlandau/crew.cluster/issues

Depends R (>= 4.0.0)

Imports crew (>= 0.8.0), ps, lifecycle, R6, rlang, utils, vctrs, xml2,
yaml

Suggests knitr (>= 1.30), markdown (>= 1.1), rmarkdown (>= 2.4),
testthat (>= 3.0.0)

Encoding UTF-8

Language en-US

Config/testthat/edition 3

RoxygenNote 7.3.1

NeedsCompilation no

1

https://github.com/shikokuchuo/mirai
https://doi.org/10.32614/RJ-2021-048
https://github.com/mrc-ide/rrq
https://doi.org/10.1093/bioinformatics/btz284
https://doi.org/10.21105/joss.00135
https://wlandau.github.io/crew.cluster/
https://github.com/wlandau/crew.cluster
https://github.com/wlandau/crew.cluster/issues

2 crew.cluster-package

Author William Michael Landau [aut, cre]
(<https://orcid.org/0000-0003-1878-3253>),

Michael Gilbert Levin [aut] (<https://orcid.org/0000-0002-9937-9932>),
Brendan Furneaux [aut] (<https://orcid.org/0000-0003-3522-7363>),
Eli Lilly and Company [cph]

Maintainer William Michael Landau <will.landau.oss@gmail.com>

Repository CRAN

Date/Publication 2024-04-24 15:30:05 UTC

R topics documented:

crew.cluster-package . 2
crew_class_launcher_lsf . 3
crew_class_launcher_pbs . 6
crew_class_launcher_sge . 9
crew_class_launcher_slurm . 12
crew_class_monitor_sge . 16
crew_class_monitor_slurm . 17
crew_controller_lsf . 18
crew_controller_pbs . 21
crew_controller_sge . 25
crew_controller_slurm . 29
crew_launcher_lsf . 33
crew_launcher_pbs . 36
crew_launcher_sge . 40
crew_launcher_slurm . 43
crew_monitor_sge . 47
crew_monitor_slurm . 48

Index 49

crew.cluster-package crew.cluster: crew launcher plugins for traditional high-performance
computing clusters

Description

In computationally demanding analysis projects, statisticians and data scientists asynchronously de-
ploy long-running tasks to distributed systems, ranging from traditional clusters to cloud services.
The crew.cluster package extends the mirai-powered crew package with worker launcher plu-
gins for traditional high-performance computing systems. Inspiration also comes from packages
mirai, future, rrq, clustermq, and batchtools.

https://orcid.org/0000-0003-1878-3253
https://orcid.org/0000-0002-9937-9932
https://orcid.org/0000-0003-3522-7363
https://github.com/shikokuchuo/mirai
https://wlandau.github.io
https://github.com/shikokuchuo/mirai
https://future.futureverse.org/
https://mrc-ide.github.io/rrq/
https://mschubert.github.io/clustermq/
https://mllg.github.io/batchtools/

crew_class_launcher_lsf 3

Attribution

The template files at https://github.com/mschubert/clustermq/tree/master/inst informed
the development of the crew launcher plugins in crew.cluster, and we would like to thank
Michael Schubert for developing clustermq and releasing it under the permissive Apache License
2.0. See the NOTICE and README.md files in the crew.cluster source code for additional attribu-
tion.

crew_class_launcher_lsf

[Experimental] LSF launcher class

Description

R6 class to launch and manage LSF workers.

Details

See crew_launcher_lsf().

Attribution

The template files at https://github.com/mschubert/clustermq/tree/master/inst informed
the development of the crew launcher plugins in crew.cluster, and we would like to thank
Michael Schubert for developing clustermq and releasing it under the permissive Apache License
2.0. See the NOTICE and README.md files in the crew.cluster source code for additional attribu-
tion.

Super classes

crew::crew_class_launcher -> crew.cluster::crew_class_launcher_cluster -> crew_class_launcher_lsf

Active bindings

lsf_cwd See crew_launcher_lsf().

lsf_log_output See crew_launcher_lsf().

lsf_log_error See crew_launcher_lsf().

lsf_memory_gigabytes_limit See crew_launcher_lsf().

lsf_memory_gigabytes_required See crew_launcher_lsf().

lsf_cores See crew_launcher_lsf().

https://github.com/mschubert/clustermq/tree/master/inst
https://github.com/mschubert/clustermq/tree/master/inst

4 crew_class_launcher_lsf

Methods

Public methods:

• crew_class_launcher_lsf$new()

• crew_class_launcher_lsf$validate()

• crew_class_launcher_lsf$script()

Method new(): LSF launcher constructor.

Usage:
crew_class_launcher_lsf$new(
name = NULL,
seconds_interval = NULL,
seconds_timeout = NULL,
seconds_launch = NULL,
seconds_idle = NULL,
seconds_wall = NULL,
tasks_max = NULL,
tasks_timers = NULL,
reset_globals = NULL,
reset_packages = NULL,
reset_options = NULL,
garbage_collection = NULL,
launch_max = NULL,
tls = NULL,
verbose = NULL,
command_submit = NULL,
command_terminate = NULL,
script_directory = NULL,
script_lines = NULL,
lsf_cwd = NULL,
lsf_log_output = NULL,
lsf_log_error = NULL,
lsf_memory_gigabytes_limit = NULL,
lsf_memory_gigabytes_required = NULL,
lsf_cores = NULL

)

Arguments:

name See crew_launcher_lsf().
seconds_interval See crew_launcher_lsf().
seconds_timeout See crew_launcher_lsf().
seconds_launch See crew_launcher_lsf().
seconds_idle See crew_launcher_lsf().
seconds_wall See crew_launcher_lsf().
tasks_max See crew_launcher_lsf().
tasks_timers See crew_launcher_lsf().
reset_globals See crew_launcher_lsf().

crew_class_launcher_lsf 5

reset_packages See crew_launcher_lsf().
reset_options See crew_launcher_lsf().
garbage_collection See crew_launcher_lsf().
launch_max See crew_launcher_lsf().
tls See crew_launcher_lsf().
verbose See crew_launcher_lsf().
command_submit See crew_launcher_lsf().
command_terminate See crew_launcher_lsf().
script_directory See crew_launcher_lsf().
script_lines See crew_launcher_lsf().
lsf_cwd See crew_launcher_lsf().
lsf_log_output See crew_launcher_lsf().
lsf_log_error See crew_launcher_lsf().
lsf_memory_gigabytes_limit See crew_launcher_lsf().
lsf_memory_gigabytes_required See crew_launcher_lsf().
lsf_cores See crew_launcher_lsf().

Returns: an LSF launcher object.

Method validate(): Validate the launcher.

Usage:
crew_class_launcher_lsf$validate()

Returns: NULL (invisibly). Throws an error if a field is invalid.

Method script(): Generate the job script.

Usage:
crew_class_launcher_lsf$script(name)

Arguments:
name Character of length 1, name of the job. For inspection purposes, you can supply a mock

job name.

Details: Includes everything except the worker-instance-specific job name and the worker-
instance-specific call to crew::crew_worker(), both of which get inserted at the bottom of the
script at launch time.

Returns: Character vector of the lines of the job script.

Examples:
if (identical(Sys.getenv("CREW_EXAMPLES"), "true")) {
launcher <- crew_launcher_lsf(
lsf_cwd = getwd(),
lsf_log_output = "log_file_%J.log",
lsf_log_error = NULL,
lsf_memory_gigabytes_limit = 4

)
launcher$script(name = "my_job_name")
}

6 crew_class_launcher_pbs

See Also

Other lsf: crew_controller_lsf(), crew_launcher_lsf()

Examples

--
Method `crew_class_launcher_lsf$script`
--

if (identical(Sys.getenv("CREW_EXAMPLES"), "true")) {
launcher <- crew_launcher_lsf(

lsf_cwd = getwd(),
lsf_log_output = "log_file_%J.log",
lsf_log_error = NULL,
lsf_memory_gigabytes_limit = 4

)
launcher$script(name = "my_job_name")
}

crew_class_launcher_pbs

[Maturing] PBS/TORQUE launcher class

Description

R6 class to launch and manage PBS/TORQUE workers.

Details

See crew_launcher_pbs().

Attribution

The template files at https://github.com/mschubert/clustermq/tree/master/inst informed
the development of the crew launcher plugins in crew.cluster, and we would like to thank
Michael Schubert for developing clustermq and releasing it under the permissive Apache License
2.0. See the NOTICE and README.md files in the crew.cluster source code for additional attribu-
tion.

Super classes

crew::crew_class_launcher -> crew.cluster::crew_class_launcher_cluster -> crew_class_launcher_pbs

https://github.com/mschubert/clustermq/tree/master/inst

crew_class_launcher_pbs 7

Active bindings

pbs_cwd See crew_launcher_pbs().

pbs_log_output See crew_launcher_pbs().

pbs_log_error See crew_launcher_pbs().

pbs_log_join See crew_launcher_pbs().

pbs_memory_gigabytes_required See crew_launcher_pbs().

pbs_cores See crew_launcher_pbs().

pbs_walltime_hours See crew_launcher_pbs().

Methods

Public methods:
• crew_class_launcher_pbs$new()

• crew_class_launcher_pbs$validate()

• crew_class_launcher_pbs$script()

Method new(): PBS/TORQUE launcher constructor.

Usage:
crew_class_launcher_pbs$new(
name = NULL,
seconds_interval = NULL,
seconds_timeout = NULL,
seconds_launch = NULL,
seconds_idle = NULL,
seconds_wall = NULL,
tasks_max = NULL,
tasks_timers = NULL,
reset_globals = NULL,
reset_packages = NULL,
reset_options = NULL,
garbage_collection = NULL,
launch_max = NULL,
tls = NULL,
verbose = NULL,
command_submit = NULL,
command_terminate = NULL,
script_directory = NULL,
script_lines = NULL,
pbs_cwd = NULL,
pbs_log_output = NULL,
pbs_log_error = NULL,
pbs_log_join = NULL,
pbs_memory_gigabytes_required = NULL,
pbs_cores = NULL,
pbs_walltime_hours = NULL

)

8 crew_class_launcher_pbs

Arguments:
name See crew_launcher_pbs().
seconds_interval See crew_launcher_slurm().
seconds_timeout See crew_launcher_slurm().
seconds_launch See crew_launcher_pbs().
seconds_idle See crew_launcher_pbs().
seconds_wall See crew_launcher_pbs().
tasks_max See crew_launcher_pbs().
tasks_timers See crew_launcher_pbs().
reset_globals See crew_launcher_pbs().
reset_packages See crew_launcher_pbs().
reset_options See crew_launcher_pbs().
garbage_collection See crew_launcher_pbs().
launch_max See crew_launcher_pbs().
tls See crew_launcher_pbs().
verbose See crew_launcher_pbs().
command_submit See crew_launcher_pbs().
command_terminate See crew_launcher_pbs().
script_directory See crew_launcher_pbs().
script_lines See crew_launcher_pbs().
pbs_cwd See crew_launcher_sge().
pbs_log_output See crew_launcher_pbs().
pbs_log_error See crew_launcher_pbs().
pbs_log_join See crew_launcher_pbs().
pbs_memory_gigabytes_required See crew_launcher_pbs().
pbs_cores See crew_launcher_pbs().
pbs_walltime_hours See crew_launcher_pbs().

Returns: an PBS/TORQUE launcher object.

Method validate(): Validate the launcher.

Usage:
crew_class_launcher_pbs$validate()

Returns: NULL (invisibly). Throws an error if a field is invalid.

Method script(): Generate the job script.

Usage:
crew_class_launcher_pbs$script(name)

Arguments:
name Character of length 1, name of the job. For inspection purposes, you can supply a mock

job name.

Details: Includes everything except the worker-instance-specific job name and the worker-
instance-specific call to crew::crew_worker(), both of which get inserted at the bottom of the
script at launch time.

crew_class_launcher_sge 9

Returns: Character vector of the lines of the job script.

Examples:

if (identical(Sys.getenv("CREW_EXAMPLES"), "true")) {
launcher <- crew_launcher_pbs(
pbs_cores = 2,
pbs_memory_gigabytes_required = 4

)
launcher$script(name = "my_job_name")
}

See Also

Other pbs: crew_controller_pbs(), crew_launcher_pbs()

Examples

--
Method `crew_class_launcher_pbs$script`
--

if (identical(Sys.getenv("CREW_EXAMPLES"), "true")) {
launcher <- crew_launcher_pbs(

pbs_cores = 2,
pbs_memory_gigabytes_required = 4

)
launcher$script(name = "my_job_name")
}

crew_class_launcher_sge

[Maturing] SGE launcher class

Description

R6 class to launch and manage SGE workers.

Details

See crew_launcher_sge().

Attribution

The template files at https://github.com/mschubert/clustermq/tree/master/inst informed
the development of the crew launcher plugins in crew.cluster, and we would like to thank
Michael Schubert for developing clustermq and releasing it under the permissive Apache License
2.0. See the NOTICE and README.md files in the crew.cluster source code for additional attribu-
tion.

https://github.com/mschubert/clustermq/tree/master/inst

10 crew_class_launcher_sge

Super classes

crew::crew_class_launcher -> crew.cluster::crew_class_launcher_cluster -> crew_class_launcher_sge

Active bindings

sge_cwd See crew_launcher_sge().

sge_envvars See crew_launcher_sge().

sge_log_output See crew_launcher_sge().

sge_log_error See crew_launcher_sge().

sge_log_join See crew_launcher_sge().

sge_memory_gigabytes_limit See crew_launcher_sge().

sge_memory_gigabytes_required See crew_launcher_sge().

sge_cores See crew_launcher_sge().

sge_gpu See crew_launcher_sge().

Methods

Public methods:
• crew_class_launcher_sge$new()

• crew_class_launcher_sge$validate()

• crew_class_launcher_sge$script()

Method new(): SGE launcher constructor.

Usage:
crew_class_launcher_sge$new(
name = NULL,
seconds_interval = NULL,
seconds_timeout = NULL,
seconds_launch = NULL,
seconds_idle = NULL,
seconds_wall = NULL,
tasks_max = NULL,
tasks_timers = NULL,
reset_globals = NULL,
reset_packages = NULL,
reset_options = NULL,
garbage_collection = NULL,
launch_max = NULL,
tls = NULL,
verbose = NULL,
command_submit = NULL,
command_terminate = NULL,
script_directory = NULL,
script_lines = NULL,
sge_cwd = NULL,

crew_class_launcher_sge 11

sge_envvars = NULL,
sge_log_output = NULL,
sge_log_error = NULL,
sge_log_join = NULL,
sge_memory_gigabytes_limit = NULL,
sge_memory_gigabytes_required = NULL,
sge_cores = NULL,
sge_gpu = NULL

)

Arguments:

name See crew_launcher_sge().
seconds_interval See crew_launcher_slurm().
seconds_timeout See crew_launcher_slurm().
seconds_launch See crew_launcher_sge().
seconds_idle See crew_launcher_sge().
seconds_wall See crew_launcher_sge().
tasks_max See crew_launcher_sge().
tasks_timers See crew_launcher_sge().
reset_globals See crew_launcher_sge().
reset_packages See crew_launcher_sge().
reset_options See crew_launcher_sge().
garbage_collection See crew_launcher_sge().
launch_max See crew_launcher_sge().
tls See crew_launcher_sge().
verbose See crew_launcher_sge().
command_submit See crew_launcher_sge().
command_terminate See crew_launcher_sge().
script_directory See crew_launcher_sge().
script_lines See crew_launcher_sge().
sge_cwd See crew_launcher_sge().
sge_envvars See crew_launcher_sge().
sge_log_output See crew_launcher_sge().
sge_log_error See crew_launcher_sge().
sge_log_join See crew_launcher_sge().
sge_memory_gigabytes_limit See crew_launcher_sge().
sge_memory_gigabytes_required See crew_launcher_sge().
sge_cores See crew_launcher_sge().
sge_gpu See crew_launcher_sge().

Returns: an SGE launcher object.

Method validate(): Validate the launcher.

Usage:
crew_class_launcher_sge$validate()

12 crew_class_launcher_slurm

Returns: NULL (invisibly). Throws an error if a field is invalid.

Method script(): Generate the job script.

Usage:
crew_class_launcher_sge$script(name)

Arguments:
name Character of length 1, name of the job. For inspection purposes, you can supply a mock

job name.

Details: Includes everything except the worker-instance-specific job name and the worker-
instance-specific call to crew::crew_worker(), both of which get inserted at the bottom of the
script at launch time.

Returns: Character vector of the lines of the job script.

Examples:
if (identical(Sys.getenv("CREW_EXAMPLES"), "true")) {
launcher <- crew_launcher_sge(
sge_cores = 2,
sge_memory_gigabytes_required = 4

)
launcher$script(name = "my_job_name")
}

See Also

Other sge: crew_class_monitor_sge, crew_controller_sge(), crew_launcher_sge(), crew_monitor_sge()

Examples

--
Method `crew_class_launcher_sge$script`
--

if (identical(Sys.getenv("CREW_EXAMPLES"), "true")) {
launcher <- crew_launcher_sge(

sge_cores = 2,
sge_memory_gigabytes_required = 4

)
launcher$script(name = "my_job_name")
}

crew_class_launcher_slurm

[Experimental] SLURM launcher class

Description

R6 class to launch and manage SLURM workers.

crew_class_launcher_slurm 13

Details

See crew_launcher_slurm().

Attribution

The template files at https://github.com/mschubert/clustermq/tree/master/inst informed
the development of the crew launcher plugins in crew.cluster, and we would like to thank
Michael Schubert for developing clustermq and releasing it under the permissive Apache License
2.0. See the NOTICE and README.md files in the crew.cluster source code for additional attribu-
tion.

Super classes

crew::crew_class_launcher -> crew.cluster::crew_class_launcher_cluster -> crew_class_launcher_slurm

Active bindings

slurm_log_output See crew_launcher_slurm().

slurm_log_error See crew_launcher_slurm().

slurm_memory_gigabytes_per_cpu See crew_launcher_slurm().

slurm_cpus_per_task See crew_launcher_slurm().

slurm_time_minutes See crew_launcher_slurm().

slurm_partition See See crew_launcher_slurm().

Methods

Public methods:
• crew_class_launcher_slurm$new()

• crew_class_launcher_slurm$validate()

• crew_class_launcher_slurm$script()

Method new(): SLURM launcher constructor.

Usage:
crew_class_launcher_slurm$new(
name = NULL,
seconds_interval = NULL,
seconds_timeout = NULL,
seconds_launch = NULL,
seconds_idle = NULL,
seconds_wall = NULL,
tasks_max = NULL,
tasks_timers = NULL,
reset_globals = NULL,
reset_packages = NULL,
reset_options = NULL,
garbage_collection = NULL,

https://github.com/mschubert/clustermq/tree/master/inst

14 crew_class_launcher_slurm

launch_max = NULL,
tls = NULL,
verbose = NULL,
command_submit = NULL,
command_terminate = NULL,
script_directory = NULL,
script_lines = NULL,
slurm_log_output = NULL,
slurm_log_error = NULL,
slurm_memory_gigabytes_per_cpu = NULL,
slurm_cpus_per_task = NULL,
slurm_time_minutes = NULL,
slurm_partition = NULL

)

Arguments:
name See crew_launcher_slurm().
seconds_interval See crew_launcher_slurm().
seconds_timeout See crew_launcher_slurm().
seconds_launch See crew_launcher_slurm().
seconds_idle See crew_launcher_slurm().
seconds_wall See crew_launcher_slurm().
tasks_max See crew_launcher_slurm().
tasks_timers See crew_launcher_slurm().
reset_globals See crew_launcher_slurm().
reset_packages See crew_launcher_slurm().
reset_options See crew_launcher_slurm().
garbage_collection See crew_launcher_slurm().
launch_max See crew_launcher_slurm().
tls See crew_launcher_slurm().
verbose See crew_launcher_slurm().
command_submit See crew_launcher_sge().
command_terminate See crew_launcher_sge().
script_directory See crew_launcher_sge().
script_lines See crew_launcher_sge().
slurm_log_output See crew_launcher_slurm().
slurm_log_error See crew_launcher_slurm().
slurm_memory_gigabytes_per_cpu See crew_launcher_slurm().
slurm_cpus_per_task See crew_launcher_slurm().
slurm_time_minutes See crew_launcher_slurm().
slurm_partition See crew_launcher_slurm().

Returns: an SLURM launcher object.

Method validate(): Validate the launcher.

Usage:

crew_class_launcher_slurm 15

crew_class_launcher_slurm$validate()

Returns: NULL (invisibly). Throws an error if a field is invalid.

Method script(): Generate the job script.

Usage:
crew_class_launcher_slurm$script(name)

Arguments:

name Character of length 1, name of the job. For inspection purposes, you can supply a mock
job name.

Details: Includes everything except the worker-instance-specific job name and the worker-
instance-specific call to crew::crew_worker(), both of which get inserted at the bottom of the
script at launch time.

Returns: Character vector of the lines of the job script.

Examples:

if (identical(Sys.getenv("CREW_EXAMPLES"), "true")) {
launcher <- crew_launcher_slurm(
slurm_log_output = "log_file_%A.log",
slurm_log_error = NULL,
slurm_memory_gigabytes_per_cpu = 4096

)
launcher$script(name = "my_job_name")
}

See Also

Other slurm: crew_class_monitor_slurm, crew_controller_slurm(), crew_launcher_slurm(),
crew_monitor_slurm()

Examples

--
Method `crew_class_launcher_slurm$script`
--

if (identical(Sys.getenv("CREW_EXAMPLES"), "true")) {
launcher <- crew_launcher_slurm(

slurm_log_output = "log_file_%A.log",
slurm_log_error = NULL,
slurm_memory_gigabytes_per_cpu = 4096

)
launcher$script(name = "my_job_name")
}

16 crew_class_monitor_sge

crew_class_monitor_sge

[Experimental] SGE monitor class

Description

SGE monitor R6 class

Details

See crew_monitor_sge().

Super class

crew.cluster::crew_class_monitor_cluster -> crew_class_monitor_sge

Methods

Public methods:
• crew_class_monitor_sge$jobs()

• crew_class_monitor_sge$terminate()

Method jobs(): List SGE jobs.

Usage:
crew_class_monitor_sge$jobs(user = ps::ps_username())

Arguments:

user Character of length 1, user name of the jobs to list.

Returns: A tibble with one row per SGE job and columns with specific details.

Method terminate(): Terminate one or more SGE jobs.

Usage:
crew_class_monitor_sge$terminate(jobs = NULL, all = FALSE)

Arguments:

jobs Character vector of job names or job IDs to terminate. Ignored if all is set to TRUE.
all Logical of length 1, whether to terminate all the jobs under your user name. This terminates

ALL your SGE jobs, regardless of whether crew.cluster launched them, so use with
caution!

Returns: NULL (invisibly).

See Also

Other sge: crew_class_launcher_sge, crew_controller_sge(), crew_launcher_sge(), crew_monitor_sge()

crew_class_monitor_slurm 17

crew_class_monitor_slurm

[Experimental] SLURM monitor class

Description

SLURM monitor R6 class

Details

See crew_monitor_slurm().

Super class

crew.cluster::crew_class_monitor_cluster -> crew_class_monitor_slurm

Methods

Public methods:

• crew_class_monitor_slurm$jobs()

• crew_class_monitor_slurm$terminate()

Method jobs(): List SLURM jobs.

Usage:
crew_class_monitor_slurm$jobs(user = ps::ps_username())

Arguments:

user Character of length 1, user name of the jobs to list.

Details: This function loads the entire SLURM queue for all users, so it may take several
seconds to execute. It is intended for interactive use, and should especially be avoided in scripts
where it is called frequently. It requires SLURM version 20.02 or higher, along with the YAML
plugin.

Returns: A tibble with one row per SLURM job and columns with specific details.

Method terminate(): Terminate one or more SLURM jobs.

Usage:
crew_class_monitor_slurm$terminate(jobs = NULL, all = FALSE)

Arguments:

jobs Character vector of job names or job IDs to terminate. Ignored if all is set to TRUE.
all Logical of length 1, whether to terminate all the jobs under your user name. This terminates

ALL your SLURM jobs, regardless of whether crew.cluster launched them, so use with
caution!

Returns: NULL (invisibly).

18 crew_controller_lsf

See Also

Other slurm: crew_class_launcher_slurm, crew_controller_slurm(), crew_launcher_slurm(),
crew_monitor_slurm()

crew_controller_lsf [Experimental] Create a controller with a LSF launcher.

Description

Create an R6 object to submit tasks and launch workers on LSF workers.

Usage

crew_controller_lsf(
name = NULL,
workers = 1L,
host = NULL,
port = NULL,
tls = crew::crew_tls(mode = "automatic"),
tls_enable = NULL,
tls_config = NULL,
seconds_interval = 0.25,
seconds_timeout = 60,
seconds_launch = 86400,
seconds_idle = Inf,
seconds_wall = Inf,
seconds_exit = NULL,
tasks_max = Inf,
tasks_timers = 0L,
reset_globals = TRUE,
reset_packages = FALSE,
reset_options = FALSE,
garbage_collection = FALSE,
launch_max = 5L,
verbose = FALSE,
command_submit = as.character(Sys.which("bsub")),
command_terminate = as.character(Sys.which("bkill")),
command_delete = NULL,
script_directory = tempdir(),
script_lines = character(0L),
lsf_cwd = getwd(),
lsf_log_output = "/dev/null",
lsf_log_error = "/dev/null",
lsf_memory_gigabytes_limit = NULL,
lsf_memory_gigabytes_required = NULL,
lsf_cores = NULL

)

crew_controller_lsf 19

Arguments

name Name of the client object. If NULL, a name is automatically generated.

workers Integer, maximum number of parallel workers to run.

host IP address of the mirai client to send and receive tasks. If NULL, the host defaults
to the local IP address.

port TCP port to listen for the workers. If NULL, then an available ephemeral port is
automatically chosen.

tls A TLS configuration object from crew_tls().

tls_enable Deprecated on 2023-09-15 in version 0.4.1. Use argument tls instead.

tls_config Deprecated on 2023-09-15 in version 0.4.1. Use argument tls instead.
seconds_interval

Number of seconds between polling intervals waiting for certain internal syn-
chronous operations to complete, such as checking mirai::status()

seconds_timeout

Number of seconds until timing out while waiting for certain synchronous oper-
ations to complete, such as checking mirai::status().

seconds_launch Seconds of startup time to allow. A worker is unconditionally assumed to be
alive from the moment of its launch until seconds_launch seconds later. After
seconds_launch seconds, the worker is only considered alive if it is actively
connected to its assign websocket.

seconds_idle Maximum number of seconds that a worker can idle since the completion of
the last task. If exceeded, the worker exits. But the timer does not launch until
tasks_timers tasks have completed. See the idletime argument of mirai::daemon().
crew does not excel with perfectly transient workers because it does not micro-
manage the assignment of tasks to workers, so please allow enough idle time for
a new worker to be delegated a new task.

seconds_wall Soft wall time in seconds. The timer does not launch until tasks_timers tasks
have completed. See the walltime argument of mirai::daemon().

seconds_exit Deprecated on 2023-09-21 in version 0.1.2.9000. No longer necessary.

tasks_max Maximum number of tasks that a worker will do before exiting. See the maxtasks
argument of mirai::daemon(). crew does not excel with perfectly transient
workers because it does not micromanage the assignment of tasks to workers, it
is recommended to set tasks_max to a value greater than 1.

tasks_timers Number of tasks to do before activating the timers for seconds_idle and seconds_wall.
See the timerstart argument of mirai::daemon().

reset_globals TRUE to reset global environment variables between tasks, FALSE to leave them
alone.

reset_packages TRUE to unload any packages loaded during a task (runs between each task),
FALSE to leave packages alone.

reset_options TRUE to reset global options to their original state between each task, FALSE oth-
erwise. It is recommended to only set reset_options = TRUE if reset_packages
is also TRUE because packages sometimes rely on options they set at loading
time.

20 crew_controller_lsf

garbage_collection

TRUE to run garbage collection between tasks, FALSE to skip.

launch_max Positive integer of length 1, maximum allowed consecutive launch attempts
which do not complete any tasks. Enforced on a worker-by-worker basis. The
futile launch count resets to back 0 for each worker that completes a task. It is
recommended to set launch_max above 0 because sometimes workers are un-
productive under perfectly ordinary circumstances. But launch_max should still
be small enough to detect errors in the underlying platform.

verbose Logical, whether to see console output and error messages when submitting
worker.

command_submit Character of length 1, file path to the executable to submit a worker job.
command_terminate

Character of length 1, file path to the executable to terminate a worker job. Set
to "" to skip manually terminating the worker. Unless there is an issue with the
platform, the job should still exit thanks to the NNG-powered network program-
ming capabilities of mirai. Still, if you set command_terminate = "", you are
assuming extra responsibility for manually monitoring your jobs on the cluster
and manually terminating jobs as appropriate.

command_delete Deprecated on 2024-01-08 (version 0.1.4.9001). Use command_terminate in-
stead.

script_directory

Character of length 1, directory path to the job scripts. Just before each job
submission, a job script is created in this folder. Script base names are unique to
each launcher and worker, and the launcher deletes the script when the worker
is manually terminated. tempdir() is the default, but it might not work for
some systems. tools::R_user_dir("crew.cluster", which = "cache") is
another reasonable choice.

script_lines Optional character vector of additional lines to be added to the job script just
after the more common flags. An example would be script_lines = "module
load R" if your cluster supports R through an environment module.

lsf_cwd Character of length 1, directory to launch the worker from (as opposed to the
system default). lsf_cwd = "/home" translates to a line of #BSUB -cwd /home
in the LSF job script. lsf_cwd = getwd() is the default, which launches workers
from the current working directory. Set lsf_cwd = NULL to omit this line from
the job script.

lsf_log_output Character of length 1, file pattern to control the locations of the LSF worker
log files. By default, both standard output and standard error go to the same file.
lsf_log_output = "crew_log_%J.log" translates to a line of #BSUB -o crew_log_%J.log
in the LSF job script, where %J is replaced by the job ID of the worker. The de-
fault is /dev/null to omit these logs. Set lsf_log_output = NULL to omit this
line from the job script.

lsf_log_error Character of length 1, file pattern for standard error. lsf_log_error = "crew_error_%J.err"
translates to a line of #BSUB -e crew_error_%J.err in the LSF job script,
where %J is replaced by the job ID of the worker. The default is /dev/null to
omit these logs. Set lsf_log_error = NULL to omit this line from the job script.

crew_controller_pbs 21

lsf_memory_gigabytes_limit

Positive numeric of length 1 with the limit in gigabytes lsf_memory_gigabytes_limit
= 4 translates to a line of #BSUB -M 4G in the LSF job script. lsf_memory_gigabytes_limit
= NULL omits this line.

lsf_memory_gigabytes_required

Positive numeric of length 1 with the memory requirement in gigabytes lsf_memory_gigabytes_required
= 4 translates to a line of #BSUB -R 'rusage[mem=4G]' in the LSF job script.
lsf_memory_gigabytes_required = NULL omits this line.

lsf_cores Optional positive integer of length 1, number of CPU cores for the worker.
lsf_cores = 4 translates to a line of #BSUB -n 4 in the LSF job script. lsf_cores
= NULL omits this line.

Details

WARNING: the crew.cluster LSF plugin is experimental and has not actually been tested on
a LSF cluster. Please proceed with caution and report bugs to https://github.com/wlandau/
crew.cluster.

Attribution

The template files at https://github.com/mschubert/clustermq/tree/master/inst informed
the development of the crew launcher plugins in crew.cluster, and we would like to thank
Michael Schubert for developing clustermq and releasing it under the permissive Apache License
2.0. See the NOTICE and README.md files in the crew.cluster source code for additional attribu-
tion.

See Also

Other lsf: crew_class_launcher_lsf, crew_launcher_lsf()

Examples

if (identical(Sys.getenv("CREW_EXAMPLES"), "true")) {
controller <- crew_controller_lsf()
controller$start()
controller$push(name = "task", command = sqrt(4))
controller$wait()
controller$pop()$result
controller$terminate()
}

crew_controller_pbs [Experimental] Create a controller with a PBS/TORQUE launcher.

Description

Create an R6 object to submit tasks and launch workers on a PBS or TORQUE cluster.

https://github.com/wlandau/crew.cluster
https://github.com/wlandau/crew.cluster
https://github.com/mschubert/clustermq/tree/master/inst

22 crew_controller_pbs

Usage

crew_controller_pbs(
name = NULL,
workers = 1L,
host = NULL,
port = NULL,
tls = crew::crew_tls(mode = "automatic"),
tls_enable = NULL,
tls_config = NULL,
seconds_interval = 0.25,
seconds_timeout = 60,
seconds_launch = 86400,
seconds_idle = Inf,
seconds_wall = Inf,
seconds_exit = NULL,
tasks_max = Inf,
tasks_timers = 0L,
reset_globals = TRUE,
reset_packages = FALSE,
reset_options = FALSE,
garbage_collection = FALSE,
launch_max = 5L,
verbose = FALSE,
command_submit = as.character(Sys.which("qsub")),
command_terminate = as.character(Sys.which("qdel")),
command_delete = NULL,
script_directory = tempdir(),
script_lines = character(0L),
pbs_cwd = TRUE,
pbs_log_output = "/dev/null",
pbs_log_error = NULL,
pbs_log_join = TRUE,
pbs_memory_gigabytes_required = NULL,
pbs_cores = NULL,
pbs_walltime_hours = 12

)

Arguments

name Name of the client object. If NULL, a name is automatically generated.

workers Integer, maximum number of parallel workers to run.

host IP address of the mirai client to send and receive tasks. If NULL, the host defaults
to the local IP address.

port TCP port to listen for the workers. If NULL, then an available ephemeral port is
automatically chosen.

tls A TLS configuration object from crew_tls().

tls_enable Deprecated on 2023-09-15 in version 0.4.1. Use argument tls instead.

crew_controller_pbs 23

tls_config Deprecated on 2023-09-15 in version 0.4.1. Use argument tls instead.
seconds_interval

Number of seconds between polling intervals waiting for certain internal syn-
chronous operations to complete, such as checking mirai::status()

seconds_timeout

Number of seconds until timing out while waiting for certain synchronous oper-
ations to complete, such as checking mirai::status().

seconds_launch Seconds of startup time to allow. A worker is unconditionally assumed to be
alive from the moment of its launch until seconds_launch seconds later. After
seconds_launch seconds, the worker is only considered alive if it is actively
connected to its assign websocket.

seconds_idle Maximum number of seconds that a worker can idle since the completion of
the last task. If exceeded, the worker exits. But the timer does not launch until
tasks_timers tasks have completed. See the idletime argument of mirai::daemon().
crew does not excel with perfectly transient workers because it does not micro-
manage the assignment of tasks to workers, so please allow enough idle time for
a new worker to be delegated a new task.

seconds_wall Soft wall time in seconds. The timer does not launch until tasks_timers tasks
have completed. See the walltime argument of mirai::daemon().

seconds_exit Deprecated on 2023-09-21 in version 0.1.2.9000. No longer necessary.

tasks_max Maximum number of tasks that a worker will do before exiting. See the maxtasks
argument of mirai::daemon(). crew does not excel with perfectly transient
workers because it does not micromanage the assignment of tasks to workers, it
is recommended to set tasks_max to a value greater than 1.

tasks_timers Number of tasks to do before activating the timers for seconds_idle and seconds_wall.
See the timerstart argument of mirai::daemon().

reset_globals TRUE to reset global environment variables between tasks, FALSE to leave them
alone.

reset_packages TRUE to unload any packages loaded during a task (runs between each task),
FALSE to leave packages alone.

reset_options TRUE to reset global options to their original state between each task, FALSE oth-
erwise. It is recommended to only set reset_options = TRUE if reset_packages
is also TRUE because packages sometimes rely on options they set at loading
time.

garbage_collection

TRUE to run garbage collection between tasks, FALSE to skip.

launch_max Positive integer of length 1, maximum allowed consecutive launch attempts
which do not complete any tasks. Enforced on a worker-by-worker basis. The
futile launch count resets to back 0 for each worker that completes a task. It is
recommended to set launch_max above 0 because sometimes workers are un-
productive under perfectly ordinary circumstances. But launch_max should still
be small enough to detect errors in the underlying platform.

verbose Logical, whether to see console output and error messages when submitting
worker.

command_submit Character of length 1, file path to the executable to submit a worker job.

24 crew_controller_pbs

command_terminate

Character of length 1, file path to the executable to terminate a worker job. Set
to "" to skip manually terminating the worker. Unless there is an issue with the
platform, the job should still exit thanks to the NNG-powered network program-
ming capabilities of mirai. Still, if you set command_terminate = "", you are
assuming extra responsibility for manually monitoring your jobs on the cluster
and manually terminating jobs as appropriate.

command_delete Deprecated on 2024-01-08 (version 0.1.4.9001). Use command_terminate in-
stead.

script_directory

Character of length 1, directory path to the job scripts. Just before each job
submission, a job script is created in this folder. Script base names are unique to
each launcher and worker, and the launcher deletes the script when the worker
is manually terminated. tempdir() is the default, but it might not work for
some systems. tools::R_user_dir("crew.cluster", which = "cache") is
another reasonable choice.

script_lines Optional character vector of additional lines to be added to the job script just
after the more common flags. An example would be script_lines = "module
load R" if your cluster supports R through an environment module.

pbs_cwd Logical of length 1, whether to set the working directory of the worker to the
working directory it was launched from. pbs_cwd = TRUE is translates to a line
of cd "$PBS_O_WORKDIR" in the job script. This line is inserted after the content
of script_lines to make sure the #PBS directives are above system commands.
pbs_cwd = FALSE omits this line.

pbs_log_output Character of length 1, file or directory path to PBS worker log files for standard
output. pbs_log_output = "VALUE" translates to a line of #PBS -o VALUE in
the PBS job script. The default is /dev/null to omit the logs. If you do supply
a non-/dev/null value, it is recommended to supply a directory path with a
trailing slash so that each worker gets its own set of log files.

pbs_log_error Character of length 1, file or directory path to PBS worker log files for standard
error. pbs_log_error = "VALUE" translates to a line of #PBS -e VALUE in the
PBS job script. The default of NULL omits this line. If you do supply a non-
/dev/null value, it is recommended to supply a directory path with a trailing
slash so that each worker gets its own set of log files.

pbs_log_join Logical, whether to join the stdout and stderr log files together into one file.
pbs_log_join = TRUE translates to a line of #PBS -j oe in the PBS job script,
while pbs_log_join = FALSE is equivalent to #PBS -j n. If pbs_log_join =
TRUE, then pbs_log_error should be NULL.

pbs_memory_gigabytes_required

Optional positive numeric of length 1 with the gigabytes of memory required to
run the worker. pbs_memory_gigabytes_required = 2.4 translates to a line of
#PBS -l mem=2.4gb in the PBS job script. pbs_memory_gigabytes_required
= NULL omits this line.

pbs_cores Optional positive integer of length 1, number of cores per worker ("slots" in
PBS lingo). pbs_cores = 4 translates to a line of #PBS -l ppn=4 in the PBS
job script. pbs_cores = NULL omits this line.

crew_controller_sge 25

pbs_walltime_hours

Numeric of length 1 with the hours of wall time to request for the job. pbs_walltime_hours
= 23 translates to a line of #PBS -l walltime=23:00:00 in the job script.
pbs_walltime_hours = NULL omits this line.

Attribution

The template files at https://github.com/mschubert/clustermq/tree/master/inst informed
the development of the crew launcher plugins in crew.cluster, and we would like to thank
Michael Schubert for developing clustermq and releasing it under the permissive Apache License
2.0. See the NOTICE and README.md files in the crew.cluster source code for additional attribu-
tion.

See Also

Other pbs: crew_class_launcher_pbs, crew_launcher_pbs()

Examples

if (identical(Sys.getenv("CREW_EXAMPLES"), "true")) {
controller <- crew_controller_pbs()
controller$start()
controller$push(name = "task", command = sqrt(4))
controller$wait()
controller$pop()$result
controller$terminate()
}

crew_controller_sge [Maturing] Create a controller with a Sun Grid Engine (SGE)
launcher.

Description

Create an R6 object to submit tasks and launch workers on Sun Grid Engine (SGE) workers.

Usage

crew_controller_sge(
name = NULL,
workers = 1L,
host = NULL,
port = NULL,
tls = crew::crew_tls(mode = "automatic"),
tls_enable = NULL,
tls_config = NULL,
seconds_interval = 0.25,
seconds_timeout = 60,
seconds_launch = 86400,

https://github.com/mschubert/clustermq/tree/master/inst

26 crew_controller_sge

seconds_idle = Inf,
seconds_wall = Inf,
seconds_exit = NULL,
tasks_max = Inf,
tasks_timers = 0L,
reset_globals = TRUE,
reset_packages = FALSE,
reset_options = FALSE,
garbage_collection = FALSE,
launch_max = 5L,
verbose = FALSE,
command_submit = as.character(Sys.which("qsub")),
command_terminate = as.character(Sys.which("qdel")),
command_delete = NULL,
script_directory = tempdir(),
script_lines = character(0L),
sge_cwd = TRUE,
sge_envvars = FALSE,
sge_log_output = "/dev/null",
sge_log_error = NULL,
sge_log_join = TRUE,
sge_memory_gigabytes_limit = NULL,
sge_memory_gigabytes_required = NULL,
sge_cores = NULL,
sge_gpu = NULL

)

Arguments

name Name of the client object. If NULL, a name is automatically generated.

workers Integer, maximum number of parallel workers to run.

host IP address of the mirai client to send and receive tasks. If NULL, the host defaults
to the local IP address.

port TCP port to listen for the workers. If NULL, then an available ephemeral port is
automatically chosen.

tls A TLS configuration object from crew_tls().

tls_enable Deprecated on 2023-09-15 in version 0.4.1. Use argument tls instead.

tls_config Deprecated on 2023-09-15 in version 0.4.1. Use argument tls instead.
seconds_interval

Number of seconds between polling intervals waiting for certain internal syn-
chronous operations to complete, such as checking mirai::status()

seconds_timeout

Number of seconds until timing out while waiting for certain synchronous oper-
ations to complete, such as checking mirai::status().

seconds_launch Seconds of startup time to allow. A worker is unconditionally assumed to be
alive from the moment of its launch until seconds_launch seconds later. After

crew_controller_sge 27

seconds_launch seconds, the worker is only considered alive if it is actively
connected to its assign websocket.

seconds_idle Maximum number of seconds that a worker can idle since the completion of
the last task. If exceeded, the worker exits. But the timer does not launch until
tasks_timers tasks have completed. See the idletime argument of mirai::daemon().
crew does not excel with perfectly transient workers because it does not micro-
manage the assignment of tasks to workers, so please allow enough idle time for
a new worker to be delegated a new task.

seconds_wall Soft wall time in seconds. The timer does not launch until tasks_timers tasks
have completed. See the walltime argument of mirai::daemon().

seconds_exit Deprecated on 2023-09-21 in version 0.1.2.9000. No longer necessary.

tasks_max Maximum number of tasks that a worker will do before exiting. See the maxtasks
argument of mirai::daemon(). crew does not excel with perfectly transient
workers because it does not micromanage the assignment of tasks to workers, it
is recommended to set tasks_max to a value greater than 1.

tasks_timers Number of tasks to do before activating the timers for seconds_idle and seconds_wall.
See the timerstart argument of mirai::daemon().

reset_globals TRUE to reset global environment variables between tasks, FALSE to leave them
alone.

reset_packages TRUE to unload any packages loaded during a task (runs between each task),
FALSE to leave packages alone.

reset_options TRUE to reset global options to their original state between each task, FALSE oth-
erwise. It is recommended to only set reset_options = TRUE if reset_packages
is also TRUE because packages sometimes rely on options they set at loading
time.

garbage_collection

TRUE to run garbage collection between tasks, FALSE to skip.

launch_max Positive integer of length 1, maximum allowed consecutive launch attempts
which do not complete any tasks. Enforced on a worker-by-worker basis. The
futile launch count resets to back 0 for each worker that completes a task. It is
recommended to set launch_max above 0 because sometimes workers are un-
productive under perfectly ordinary circumstances. But launch_max should still
be small enough to detect errors in the underlying platform.

verbose Logical, whether to see console output and error messages when submitting
worker.

command_submit Character of length 1, file path to the executable to submit a worker job.
command_terminate

Character of length 1, file path to the executable to terminate a worker job. Set
to "" to skip manually terminating the worker. Unless there is an issue with the
platform, the job should still exit thanks to the NNG-powered network program-
ming capabilities of mirai. Still, if you set command_terminate = "", you are
assuming extra responsibility for manually monitoring your jobs on the cluster
and manually terminating jobs as appropriate.

command_delete Deprecated on 2024-01-08 (version 0.1.4.9001). Use command_terminate in-
stead.

28 crew_controller_sge

script_directory

Character of length 1, directory path to the job scripts. Just before each job
submission, a job script is created in this folder. Script base names are unique to
each launcher and worker, and the launcher deletes the script when the worker
is manually terminated. tempdir() is the default, but it might not work for
some systems. tools::R_user_dir("crew.cluster", which = "cache") is
another reasonable choice.

script_lines Optional character vector of additional lines to be added to the job script just
after the more common flags. An example would be script_lines = "module
load R" if your cluster supports R through an environment module.

sge_cwd Logical of length 1, whether to launch the worker from the current working
directory (as opposed to the user home directory). sge_cwd = TRUE translates to
a line of #$ -cwd in the SGE job script. sge_cwd = FALSE omits this line.

sge_envvars Logical of length 1, whether to forward the environment variables of the current
session to the SGE worker. sge_envvars = TRUE translates to a line of #$ -V in
the SGE job script. sge_envvars = FALSE omits this line.

sge_log_output Character of length 1, file or directory path to SGE worker log files for standard
output. sge_log_output = "VALUE" translates to a line of #$ -o VALUE in the
SGE job script. The default is /dev/null to omit the logs. If you do supply
a non-/dev/null value, it is recommended to supply a directory path with a
trailing slash so that each worker gets its own set of log files.

sge_log_error Character of length 1, file or directory path to SGE worker log files for standard
error. sge_log_error = "VALUE" translates to a line of #$ -e VALUE in the
SGE job script. The default of NULL omits this line. If you do supply a non-
/dev/null value, it is recommended to supply a directory path with a trailing
slash so that each worker gets its own set of log files.

sge_log_join Logical, whether to join the stdout and stderr log files together into one file.
sge_log_join = TRUE translates to a line of #$ -j y in the SGE job script,
while sge_log_join = FALSE is equivalent to #$ -j n. If sge_log_join =
TRUE, then sge_log_error should be NULL.

sge_memory_gigabytes_limit

Optional numeric of length 1 with the maximum number of gigabytes of mem-
ory a worker is allowed to consume. If the worker consumes more than this level
of memory, then SGE will terminate it. sge_memory_gigabytes_limit = 5.7"
translates to a line of "#$ -l h_rss=5.7G" in the SGE job script. sge_memory_gigabytes_limit
= NULL omits this line.

sge_memory_gigabytes_required

Optional positive numeric of length 1 with the gigabytes of memory required to
run the worker. sge_memory_gigabytes_required = 2.4 translates to a line of
#$ -l m_mem_free=2.4G in the SGE job script. sge_memory_gigabytes_required
= NULL omits this line.

sge_cores Optional positive integer of length 1, number of cores per worker ("slots" in
SGE lingo). sge_cores = 4 translates to a line of #$ -pe smp 4 in the SGE job
script. sge_cores = NULL omits this line.

sge_gpu Optional integer of length 1 with the number of GPUs to request for the worker.
sge_gpu = 1 translates to a line of "#$ -l gpu=1" in the SGE job script. sge_gpu
= NULL omits this line.

crew_controller_slurm 29

Attribution

The template files at https://github.com/mschubert/clustermq/tree/master/inst informed
the development of the crew launcher plugins in crew.cluster, and we would like to thank
Michael Schubert for developing clustermq and releasing it under the permissive Apache License
2.0. See the NOTICE and README.md files in the crew.cluster source code for additional attribu-
tion.

See Also

Other sge: crew_class_launcher_sge, crew_class_monitor_sge, crew_launcher_sge(), crew_monitor_sge()

Examples

if (identical(Sys.getenv("CREW_EXAMPLES"), "true")) {
controller <- crew_controller_sge()
controller$start()
controller$push(name = "task", command = sqrt(4))
controller$wait()
controller$pop()$result
controller$terminate()
}

crew_controller_slurm [Experimental] Create a controller with a SLURM launcher.

Description

Create an R6 object to submit tasks and launch workers on SLURM workers.

Usage

crew_controller_slurm(
name = NULL,
workers = 1L,
host = NULL,
port = NULL,
tls = crew::crew_tls(mode = "automatic"),
tls_enable = NULL,
tls_config = NULL,
seconds_interval = 0.25,
seconds_timeout = 60,
seconds_launch = 86400,
seconds_idle = Inf,
seconds_wall = Inf,
seconds_exit = NULL,
tasks_max = Inf,
tasks_timers = 0L,

https://github.com/mschubert/clustermq/tree/master/inst

30 crew_controller_slurm

reset_globals = TRUE,
reset_packages = FALSE,
reset_options = FALSE,
garbage_collection = FALSE,
launch_max = 5L,
verbose = FALSE,
command_submit = as.character(Sys.which("sbatch")),
command_terminate = as.character(Sys.which("scancel")),
command_delete = NULL,
script_directory = tempdir(),
script_lines = character(0L),
slurm_log_output = "/dev/null",
slurm_log_error = "/dev/null",
slurm_memory_gigabytes_per_cpu = NULL,
slurm_cpus_per_task = NULL,
slurm_time_minutes = 1440,
slurm_partition = NULL

)

Arguments

name Name of the client object. If NULL, a name is automatically generated.

workers Integer, maximum number of parallel workers to run.

host IP address of the mirai client to send and receive tasks. If NULL, the host defaults
to the local IP address.

port TCP port to listen for the workers. If NULL, then an available ephemeral port is
automatically chosen.

tls A TLS configuration object from crew_tls().

tls_enable Deprecated on 2023-09-15 in version 0.4.1. Use argument tls instead.

tls_config Deprecated on 2023-09-15 in version 0.4.1. Use argument tls instead.
seconds_interval

Number of seconds between polling intervals waiting for certain internal syn-
chronous operations to complete, such as checking mirai::status()

seconds_timeout

Number of seconds until timing out while waiting for certain synchronous oper-
ations to complete, such as checking mirai::status().

seconds_launch Seconds of startup time to allow. A worker is unconditionally assumed to be
alive from the moment of its launch until seconds_launch seconds later. After
seconds_launch seconds, the worker is only considered alive if it is actively
connected to its assign websocket.

seconds_idle Maximum number of seconds that a worker can idle since the completion of
the last task. If exceeded, the worker exits. But the timer does not launch until
tasks_timers tasks have completed. See the idletime argument of mirai::daemon().
crew does not excel with perfectly transient workers because it does not micro-
manage the assignment of tasks to workers, so please allow enough idle time for
a new worker to be delegated a new task.

crew_controller_slurm 31

seconds_wall Soft wall time in seconds. The timer does not launch until tasks_timers tasks
have completed. See the walltime argument of mirai::daemon().

seconds_exit Deprecated on 2023-09-21 in version 0.1.2.9000. No longer necessary.

tasks_max Maximum number of tasks that a worker will do before exiting. See the maxtasks
argument of mirai::daemon(). crew does not excel with perfectly transient
workers because it does not micromanage the assignment of tasks to workers, it
is recommended to set tasks_max to a value greater than 1.

tasks_timers Number of tasks to do before activating the timers for seconds_idle and seconds_wall.
See the timerstart argument of mirai::daemon().

reset_globals TRUE to reset global environment variables between tasks, FALSE to leave them
alone.

reset_packages TRUE to unload any packages loaded during a task (runs between each task),
FALSE to leave packages alone.

reset_options TRUE to reset global options to their original state between each task, FALSE oth-
erwise. It is recommended to only set reset_options = TRUE if reset_packages
is also TRUE because packages sometimes rely on options they set at loading
time.

garbage_collection

TRUE to run garbage collection between tasks, FALSE to skip.

launch_max Positive integer of length 1, maximum allowed consecutive launch attempts
which do not complete any tasks. Enforced on a worker-by-worker basis. The
futile launch count resets to back 0 for each worker that completes a task. It is
recommended to set launch_max above 0 because sometimes workers are un-
productive under perfectly ordinary circumstances. But launch_max should still
be small enough to detect errors in the underlying platform.

verbose Logical, whether to see console output and error messages when submitting
worker.

command_submit Character of length 1, file path to the executable to submit a worker job.
command_terminate

Character of length 1, file path to the executable to terminate a worker job. Set
to "" to skip manually terminating the worker. Unless there is an issue with the
platform, the job should still exit thanks to the NNG-powered network program-
ming capabilities of mirai. Still, if you set command_terminate = "", you are
assuming extra responsibility for manually monitoring your jobs on the cluster
and manually terminating jobs as appropriate.

command_delete Deprecated on 2024-01-08 (version 0.1.4.9001). Use command_terminate in-
stead.

script_directory

Character of length 1, directory path to the job scripts. Just before each job
submission, a job script is created in this folder. Script base names are unique to
each launcher and worker, and the launcher deletes the script when the worker
is manually terminated. tempdir() is the default, but it might not work for
some systems. tools::R_user_dir("crew.cluster", which = "cache") is
another reasonable choice.

32 crew_controller_slurm

script_lines Optional character vector of additional lines to be added to the job script just
after the more common flags. An example would be script_lines = "module
load R" if your cluster supports R through an environment module.

slurm_log_output

Character of length 1, file pattern to control the locations of the SLURM worker
log files. By default, both standard output and standard error go to the same file.
slurm_log_output = "crew_log_%A.txt" translates to a line of #SBATCH --output=crew_log_%A.txt
in the SLURM job script, where %A is replaced by the job ID of the worker. The
default is /dev/null to omit these logs. Set slurm_log_output = NULL to omit
this line from the job script.

slurm_log_error

Character of length 1, file pattern for standard error. slurm_log_error = "crew_log_%A.txt"
translates to a line of #SBATCH --error=crew_log_%A.txt in the SLURM
job script, where %A is replaced by the job ID of the worker. The default is
/dev/null to omit these logs. Set slurm_log_error = NULL to omit this line
from the job script.

slurm_memory_gigabytes_per_cpu

Positive numeric of length 1 with the gigabytes of memory required per CPU.
slurm_memory_gigabytes_per_cpu = 2.40123 translates to a line of #SBATCH --mem-per-cpu=2041M
in the SLURM job script. slurm_memory_gigabytes_per_cpu = NULL omits
this line.

slurm_cpus_per_task

Optional positive integer of length 1, number of CPUs for the worker. slurm_cpus_per_task
= 4 translates to a line of #SBATCH --cpus-per-task=4 in the SLURM job
script. slurm_cpus_per_task = NULL omits this line.

slurm_time_minutes

Numeric of length 1, number of minutes to designate as the wall time of crew
each worker instance on the SLURM cluster. slurm_time_minutes = 60 trans-
lates to a line of #SBATCH --time=60 in the SLURM job script. slurm_time_minutes
= NULL omits this line.

slurm_partition

Character of length 1, name of the SLURM partition to create workers on.
slurm_partition = "partition1,partition2" translates to a line of #SBATCH --partition=partition1,partition2
in the SLURM job script. slurm_partition = NULL omits this line.

Details

WARNING: the crew.cluster SLURM plugin is experimental and has not actually been tested on
a SLURM cluster. Please proceed with caution and report bugs to https://github.com/wlandau/
crew.cluster.

Attribution

The template files at https://github.com/mschubert/clustermq/tree/master/inst informed
the development of the crew launcher plugins in crew.cluster, and we would like to thank
Michael Schubert for developing clustermq and releasing it under the permissive Apache License
2.0. See the NOTICE and README.md files in the crew.cluster source code for additional attribu-
tion.

https://github.com/wlandau/crew.cluster
https://github.com/wlandau/crew.cluster
https://github.com/mschubert/clustermq/tree/master/inst

crew_launcher_lsf 33

See Also

Other slurm: crew_class_launcher_slurm, crew_class_monitor_slurm, crew_launcher_slurm(),
crew_monitor_slurm()

Examples

if (identical(Sys.getenv("CREW_EXAMPLES"), "true")) {
controller <- crew_controller_slurm()
controller$start()
controller$push(name = "task", command = sqrt(4))
controller$wait()
controller$pop()$result
controller$terminate()
}

crew_launcher_lsf [Experimental] Create a launcher with LSF workers.

Description

Create an R6 object to launch and maintain workers as LSF jobs.

Usage

crew_launcher_lsf(
name = NULL,
seconds_interval = 0.5,
seconds_timeout = 60,
seconds_launch = 86400,
seconds_idle = Inf,
seconds_wall = Inf,
tasks_max = Inf,
tasks_timers = 0L,
reset_globals = TRUE,
reset_packages = FALSE,
reset_options = FALSE,
garbage_collection = FALSE,
launch_max = 5L,
tls = crew::crew_tls(mode = "automatic"),
verbose = FALSE,
command_submit = as.character(Sys.which("bsub")),
command_terminate = as.character(Sys.which("bkill")),
command_delete = NULL,
script_directory = tempdir(),
script_lines = character(0L),
lsf_cwd = getwd(),
lsf_log_output = "/dev/null",

34 crew_launcher_lsf

lsf_log_error = "/dev/null",
lsf_memory_gigabytes_limit = NULL,
lsf_memory_gigabytes_required = NULL,
lsf_cores = NULL

)

Arguments

name Name of the launcher.
seconds_interval

Number of seconds between polling intervals waiting for certain internal syn-
chronous operations to complete, such as checking mirai::status().

seconds_timeout

Number of seconds until timing out while waiting for certain synchronous oper-
ations to complete, such as checking mirai::status().

seconds_launch Seconds of startup time to allow. A worker is unconditionally assumed to be
alive from the moment of its launch until seconds_launch seconds later. After
seconds_launch seconds, the worker is only considered alive if it is actively
connected to its assign websocket.

seconds_idle Maximum number of seconds that a worker can idle since the completion of
the last task. If exceeded, the worker exits. But the timer does not launch until
tasks_timers tasks have completed. See the idletime argument of mirai::daemon().
crew does not excel with perfectly transient workers because it does not micro-
manage the assignment of tasks to workers, so please allow enough idle time for
a new worker to be delegated a new task.

seconds_wall Soft wall time in seconds. The timer does not launch until tasks_timers tasks
have completed. See the walltime argument of mirai::daemon().

tasks_max Maximum number of tasks that a worker will do before exiting. See the maxtasks
argument of mirai::daemon(). crew does not excel with perfectly transient
workers because it does not micromanage the assignment of tasks to workers, it
is recommended to set tasks_max to a value greater than 1.

tasks_timers Number of tasks to do before activating the timers for seconds_idle and seconds_wall.
See the timerstart argument of mirai::daemon().

reset_globals TRUE to reset global environment variables between tasks, FALSE to leave them
alone.

reset_packages TRUE to unload any packages loaded during a task (runs between each task),
FALSE to leave packages alone.

reset_options TRUE to reset global options to their original state between each task, FALSE oth-
erwise. It is recommended to only set reset_options = TRUE if reset_packages
is also TRUE because packages sometimes rely on options they set at loading
time.

garbage_collection

TRUE to run garbage collection between tasks, FALSE to skip.

launch_max Positive integer of length 1, maximum allowed consecutive launch attempts
which do not complete any tasks. Enforced on a worker-by-worker basis. The
futile launch count resets to back 0 for each worker that completes a task. It is

crew_launcher_lsf 35

recommended to set launch_max above 0 because sometimes workers are un-
productive under perfectly ordinary circumstances. But launch_max should still
be small enough to detect errors in the underlying platform.

tls A TLS configuration object from crew_tls().

verbose Logical, whether to see console output and error messages when submitting
worker.

command_submit Character of length 1, file path to the executable to submit a worker job.
command_terminate

Character of length 1, file path to the executable to terminate a worker job. Set
to "" to skip manually terminating the worker. Unless there is an issue with the
platform, the job should still exit thanks to the NNG-powered network program-
ming capabilities of mirai. Still, if you set command_terminate = "", you are
assuming extra responsibility for manually monitoring your jobs on the cluster
and manually terminating jobs as appropriate.

command_delete Deprecated on 2024-01-08 (version 0.1.4.9001). Use command_terminate in-
stead.

script_directory

Character of length 1, directory path to the job scripts. Just before each job
submission, a job script is created in this folder. Script base names are unique to
each launcher and worker, and the launcher deletes the script when the worker
is manually terminated. tempdir() is the default, but it might not work for
some systems. tools::R_user_dir("crew.cluster", which = "cache") is
another reasonable choice.

script_lines Optional character vector of additional lines to be added to the job script just
after the more common flags. An example would be script_lines = "module
load R" if your cluster supports R through an environment module.

lsf_cwd Character of length 1, directory to launch the worker from (as opposed to the
system default). lsf_cwd = "/home" translates to a line of #BSUB -cwd /home
in the LSF job script. lsf_cwd = getwd() is the default, which launches workers
from the current working directory. Set lsf_cwd = NULL to omit this line from
the job script.

lsf_log_output Character of length 1, file pattern to control the locations of the LSF worker
log files. By default, both standard output and standard error go to the same file.
lsf_log_output = "crew_log_%J.log" translates to a line of #BSUB -o crew_log_%J.log
in the LSF job script, where %J is replaced by the job ID of the worker. The de-
fault is /dev/null to omit these logs. Set lsf_log_output = NULL to omit this
line from the job script.

lsf_log_error Character of length 1, file pattern for standard error. lsf_log_error = "crew_error_%J.err"
translates to a line of #BSUB -e crew_error_%J.err in the LSF job script,
where %J is replaced by the job ID of the worker. The default is /dev/null to
omit these logs. Set lsf_log_error = NULL to omit this line from the job script.

lsf_memory_gigabytes_limit

Positive numeric of length 1 with the limit in gigabytes lsf_memory_gigabytes_limit
= 4 translates to a line of #BSUB -M 4G in the LSF job script. lsf_memory_gigabytes_limit
= NULL omits this line.

36 crew_launcher_pbs

lsf_memory_gigabytes_required

Positive numeric of length 1 with the memory requirement in gigabytes lsf_memory_gigabytes_required
= 4 translates to a line of #BSUB -R 'rusage[mem=4G]' in the LSF job script.
lsf_memory_gigabytes_required = NULL omits this line.

lsf_cores Optional positive integer of length 1, number of CPU cores for the worker.
lsf_cores = 4 translates to a line of #BSUB -n 4 in the LSF job script. lsf_cores
= NULL omits this line.

Details

WARNING: the crew.cluster LSF plugin is experimental. Please proceed with caution and report
bugs to https://github.com/wlandau/crew.cluster.

To launch a LSF worker, this launcher creates a temporary job script with a call to crew::crew_worker()
and submits it as an LSF job with sbatch. To see most of the lines of the job script in advance, use
the script() method of the launcher. It has all the lines except for the job name and the call to
crew::crew_worker(), both of which will be inserted at the last minute when it is time to actually
launch a worker.

Attribution

The template files at https://github.com/mschubert/clustermq/tree/master/inst informed
the development of the crew launcher plugins in crew.cluster, and we would like to thank
Michael Schubert for developing clustermq and releasing it under the permissive Apache License
2.0. See the NOTICE and README.md files in the crew.cluster source code for additional attribu-
tion.

See Also

Other lsf: crew_class_launcher_lsf, crew_controller_lsf()

crew_launcher_pbs [Experimental] Create a launcher with PBS or TORQUE workers.

Description

Create an R6 object to launch and maintain workers as jobs on a PBS or TORQUE cluster.

Usage

crew_launcher_pbs(
name = NULL,
seconds_interval = 0.5,
seconds_timeout = 60,
seconds_launch = 86400,
seconds_idle = Inf,
seconds_wall = Inf,
tasks_max = Inf,

https://github.com/wlandau/crew.cluster
https://github.com/mschubert/clustermq/tree/master/inst

crew_launcher_pbs 37

tasks_timers = 0L,
reset_globals = TRUE,
reset_packages = FALSE,
reset_options = FALSE,
garbage_collection = FALSE,
launch_max = 5L,
tls = crew::crew_tls(mode = "automatic"),
verbose = FALSE,
command_submit = as.character(Sys.which("qsub")),
command_terminate = as.character(Sys.which("qdel")),
command_delete = NULL,
script_directory = tempdir(),
script_lines = character(0L),
pbs_cwd = TRUE,
pbs_log_output = "/dev/null",
pbs_log_error = NULL,
pbs_log_join = TRUE,
pbs_memory_gigabytes_required = NULL,
pbs_cores = NULL,
pbs_walltime_hours = 12

)

Arguments

name Name of the launcher.
seconds_interval

Number of seconds between polling intervals waiting for certain internal syn-
chronous operations to complete, such as checking mirai::status().

seconds_timeout

Number of seconds until timing out while waiting for certain synchronous oper-
ations to complete, such as checking mirai::status().

seconds_launch Seconds of startup time to allow. A worker is unconditionally assumed to be
alive from the moment of its launch until seconds_launch seconds later. After
seconds_launch seconds, the worker is only considered alive if it is actively
connected to its assign websocket.

seconds_idle Maximum number of seconds that a worker can idle since the completion of
the last task. If exceeded, the worker exits. But the timer does not launch until
tasks_timers tasks have completed. See the idletime argument of mirai::daemon().
crew does not excel with perfectly transient workers because it does not micro-
manage the assignment of tasks to workers, so please allow enough idle time for
a new worker to be delegated a new task.

seconds_wall Soft wall time in seconds. The timer does not launch until tasks_timers tasks
have completed. See the walltime argument of mirai::daemon().

tasks_max Maximum number of tasks that a worker will do before exiting. See the maxtasks
argument of mirai::daemon(). crew does not excel with perfectly transient
workers because it does not micromanage the assignment of tasks to workers, it
is recommended to set tasks_max to a value greater than 1.

38 crew_launcher_pbs

tasks_timers Number of tasks to do before activating the timers for seconds_idle and seconds_wall.
See the timerstart argument of mirai::daemon().

reset_globals TRUE to reset global environment variables between tasks, FALSE to leave them
alone.

reset_packages TRUE to unload any packages loaded during a task (runs between each task),
FALSE to leave packages alone.

reset_options TRUE to reset global options to their original state between each task, FALSE oth-
erwise. It is recommended to only set reset_options = TRUE if reset_packages
is also TRUE because packages sometimes rely on options they set at loading
time.

garbage_collection

TRUE to run garbage collection between tasks, FALSE to skip.

launch_max Positive integer of length 1, maximum allowed consecutive launch attempts
which do not complete any tasks. Enforced on a worker-by-worker basis. The
futile launch count resets to back 0 for each worker that completes a task. It is
recommended to set launch_max above 0 because sometimes workers are un-
productive under perfectly ordinary circumstances. But launch_max should still
be small enough to detect errors in the underlying platform.

tls A TLS configuration object from crew_tls().

verbose Logical, whether to see console output and error messages when submitting
worker.

command_submit Character of length 1, file path to the executable to submit a worker job.
command_terminate

Character of length 1, file path to the executable to terminate a worker job. Set
to "" to skip manually terminating the worker. Unless there is an issue with the
platform, the job should still exit thanks to the NNG-powered network program-
ming capabilities of mirai. Still, if you set command_terminate = "", you are
assuming extra responsibility for manually monitoring your jobs on the cluster
and manually terminating jobs as appropriate.

command_delete Deprecated on 2024-01-08 (version 0.1.4.9001). Use command_terminate in-
stead.

script_directory

Character of length 1, directory path to the job scripts. Just before each job
submission, a job script is created in this folder. Script base names are unique to
each launcher and worker, and the launcher deletes the script when the worker
is manually terminated. tempdir() is the default, but it might not work for
some systems. tools::R_user_dir("crew.cluster", which = "cache") is
another reasonable choice.

script_lines Optional character vector of additional lines to be added to the job script just
after the more common flags. An example would be script_lines = "module
load R" if your cluster supports R through an environment module.

pbs_cwd Logical of length 1, whether to set the working directory of the worker to the
working directory it was launched from. pbs_cwd = TRUE is translates to a line
of cd "$PBS_O_WORKDIR" in the job script. This line is inserted after the content
of script_lines to make sure the #PBS directives are above system commands.
pbs_cwd = FALSE omits this line.

crew_launcher_pbs 39

pbs_log_output Character of length 1, file or directory path to PBS worker log files for standard
output. pbs_log_output = "VALUE" translates to a line of #PBS -o VALUE in
the PBS job script. The default is /dev/null to omit the logs. If you do supply
a non-/dev/null value, it is recommended to supply a directory path with a
trailing slash so that each worker gets its own set of log files.

pbs_log_error Character of length 1, file or directory path to PBS worker log files for standard
error. pbs_log_error = "VALUE" translates to a line of #PBS -e VALUE in the
PBS job script. The default of NULL omits this line. If you do supply a non-
/dev/null value, it is recommended to supply a directory path with a trailing
slash so that each worker gets its own set of log files.

pbs_log_join Logical, whether to join the stdout and stderr log files together into one file.
pbs_log_join = TRUE translates to a line of #PBS -j oe in the PBS job script,
while pbs_log_join = FALSE is equivalent to #PBS -j n. If pbs_log_join =
TRUE, then pbs_log_error should be NULL.

pbs_memory_gigabytes_required

Optional positive numeric of length 1 with the gigabytes of memory required to
run the worker. pbs_memory_gigabytes_required = 2.4 translates to a line of
#PBS -l mem=2.4gb in the PBS job script. pbs_memory_gigabytes_required
= NULL omits this line.

pbs_cores Optional positive integer of length 1, number of cores per worker ("slots" in
PBS lingo). pbs_cores = 4 translates to a line of #PBS -l ppn=4 in the PBS
job script. pbs_cores = NULL omits this line.

pbs_walltime_hours

Numeric of length 1 with the hours of wall time to request for the job. pbs_walltime_hours
= 23 translates to a line of #PBS -l walltime=23:00:00 in the job script.
pbs_walltime_hours = NULL omits this line.

Details

WARNING: the crew.cluster PBS plugin is experimental and has not actually been tested on
a PBS cluster. Please proceed with caution and report bugs to https://github.com/wlandau/
crew.cluster.

To launch a PBS/TORQUE worker, this launcher creates a temporary job script with a call to
crew::crew_worker() and submits it as an PBS job with qsub. To see most of the lines of the
job script in advance, use the script() method of the launcher. It has all the lines except for the
job name and the call to crew::crew_worker(), both of which will be inserted at the last minute
when it is time to actually launch a worker.

Attribution

The template files at https://github.com/mschubert/clustermq/tree/master/inst informed
the development of the crew launcher plugins in crew.cluster, and we would like to thank
Michael Schubert for developing clustermq and releasing it under the permissive Apache License
2.0. See the NOTICE and README.md files in the crew.cluster source code for additional attribu-
tion.

https://github.com/wlandau/crew.cluster
https://github.com/wlandau/crew.cluster
https://github.com/mschubert/clustermq/tree/master/inst

40 crew_launcher_sge

See Also

Other pbs: crew_class_launcher_pbs, crew_controller_pbs()

crew_launcher_sge [Maturing] Create a launcher with Sun Grid Engine (SGE) workers.

Description

Create an R6 object to launch and maintain workers as Sun Grid Engine (SGE) jobs.

Usage

crew_launcher_sge(
name = NULL,
seconds_interval = 0.5,
seconds_timeout = 60,
seconds_launch = 86400,
seconds_idle = Inf,
seconds_wall = Inf,
tasks_max = Inf,
tasks_timers = 0L,
reset_globals = TRUE,
reset_packages = FALSE,
reset_options = FALSE,
garbage_collection = FALSE,
launch_max = 5L,
tls = crew::crew_tls(mode = "automatic"),
verbose = FALSE,
command_submit = as.character(Sys.which("qsub")),
command_terminate = as.character(Sys.which("qdel")),
command_delete = NULL,
script_directory = tempdir(),
script_lines = character(0L),
sge_cwd = TRUE,
sge_envvars = FALSE,
sge_log_output = "/dev/null",
sge_log_error = NULL,
sge_log_join = TRUE,
sge_memory_gigabytes_limit = NULL,
sge_memory_gigabytes_required = NULL,
sge_cores = NULL,
sge_gpu = NULL

)

crew_launcher_sge 41

Arguments

name Name of the launcher.
seconds_interval

Number of seconds between polling intervals waiting for certain internal syn-
chronous operations to complete, such as checking mirai::status().

seconds_timeout

Number of seconds until timing out while waiting for certain synchronous oper-
ations to complete, such as checking mirai::status().

seconds_launch Seconds of startup time to allow. A worker is unconditionally assumed to be
alive from the moment of its launch until seconds_launch seconds later. After
seconds_launch seconds, the worker is only considered alive if it is actively
connected to its assign websocket.

seconds_idle Maximum number of seconds that a worker can idle since the completion of
the last task. If exceeded, the worker exits. But the timer does not launch until
tasks_timers tasks have completed. See the idletime argument of mirai::daemon().
crew does not excel with perfectly transient workers because it does not micro-
manage the assignment of tasks to workers, so please allow enough idle time for
a new worker to be delegated a new task.

seconds_wall Soft wall time in seconds. The timer does not launch until tasks_timers tasks
have completed. See the walltime argument of mirai::daemon().

tasks_max Maximum number of tasks that a worker will do before exiting. See the maxtasks
argument of mirai::daemon(). crew does not excel with perfectly transient
workers because it does not micromanage the assignment of tasks to workers, it
is recommended to set tasks_max to a value greater than 1.

tasks_timers Number of tasks to do before activating the timers for seconds_idle and seconds_wall.
See the timerstart argument of mirai::daemon().

reset_globals TRUE to reset global environment variables between tasks, FALSE to leave them
alone.

reset_packages TRUE to unload any packages loaded during a task (runs between each task),
FALSE to leave packages alone.

reset_options TRUE to reset global options to their original state between each task, FALSE oth-
erwise. It is recommended to only set reset_options = TRUE if reset_packages
is also TRUE because packages sometimes rely on options they set at loading
time.

garbage_collection

TRUE to run garbage collection between tasks, FALSE to skip.

launch_max Positive integer of length 1, maximum allowed consecutive launch attempts
which do not complete any tasks. Enforced on a worker-by-worker basis. The
futile launch count resets to back 0 for each worker that completes a task. It is
recommended to set launch_max above 0 because sometimes workers are un-
productive under perfectly ordinary circumstances. But launch_max should still
be small enough to detect errors in the underlying platform.

tls A TLS configuration object from crew_tls().

verbose Logical, whether to see console output and error messages when submitting
worker.

42 crew_launcher_sge

command_submit Character of length 1, file path to the executable to submit a worker job.
command_terminate

Character of length 1, file path to the executable to terminate a worker job. Set
to "" to skip manually terminating the worker. Unless there is an issue with the
platform, the job should still exit thanks to the NNG-powered network program-
ming capabilities of mirai. Still, if you set command_terminate = "", you are
assuming extra responsibility for manually monitoring your jobs on the cluster
and manually terminating jobs as appropriate.

command_delete Deprecated on 2024-01-08 (version 0.1.4.9001). Use command_terminate in-
stead.

script_directory

Character of length 1, directory path to the job scripts. Just before each job
submission, a job script is created in this folder. Script base names are unique to
each launcher and worker, and the launcher deletes the script when the worker
is manually terminated. tempdir() is the default, but it might not work for
some systems. tools::R_user_dir("crew.cluster", which = "cache") is
another reasonable choice.

script_lines Optional character vector of additional lines to be added to the job script just
after the more common flags. An example would be script_lines = "module
load R" if your cluster supports R through an environment module.

sge_cwd Logical of length 1, whether to launch the worker from the current working
directory (as opposed to the user home directory). sge_cwd = TRUE translates to
a line of #$ -cwd in the SGE job script. sge_cwd = FALSE omits this line.

sge_envvars Logical of length 1, whether to forward the environment variables of the current
session to the SGE worker. sge_envvars = TRUE translates to a line of #$ -V in
the SGE job script. sge_envvars = FALSE omits this line.

sge_log_output Character of length 1, file or directory path to SGE worker log files for standard
output. sge_log_output = "VALUE" translates to a line of #$ -o VALUE in the
SGE job script. The default is /dev/null to omit the logs. If you do supply
a non-/dev/null value, it is recommended to supply a directory path with a
trailing slash so that each worker gets its own set of log files.

sge_log_error Character of length 1, file or directory path to SGE worker log files for standard
error. sge_log_error = "VALUE" translates to a line of #$ -e VALUE in the
SGE job script. The default of NULL omits this line. If you do supply a non-
/dev/null value, it is recommended to supply a directory path with a trailing
slash so that each worker gets its own set of log files.

sge_log_join Logical, whether to join the stdout and stderr log files together into one file.
sge_log_join = TRUE translates to a line of #$ -j y in the SGE job script,
while sge_log_join = FALSE is equivalent to #$ -j n. If sge_log_join =
TRUE, then sge_log_error should be NULL.

sge_memory_gigabytes_limit

Optional numeric of length 1 with the maximum number of gigabytes of mem-
ory a worker is allowed to consume. If the worker consumes more than this level
of memory, then SGE will terminate it. sge_memory_gigabytes_limit = 5.7"
translates to a line of "#$ -l h_rss=5.7G" in the SGE job script. sge_memory_gigabytes_limit
= NULL omits this line.

crew_launcher_slurm 43

sge_memory_gigabytes_required

Optional positive numeric of length 1 with the gigabytes of memory required to
run the worker. sge_memory_gigabytes_required = 2.4 translates to a line of
#$ -l m_mem_free=2.4G in the SGE job script. sge_memory_gigabytes_required
= NULL omits this line.

sge_cores Optional positive integer of length 1, number of cores per worker ("slots" in
SGE lingo). sge_cores = 4 translates to a line of #$ -pe smp 4 in the SGE job
script. sge_cores = NULL omits this line.

sge_gpu Optional integer of length 1 with the number of GPUs to request for the worker.
sge_gpu = 1 translates to a line of "#$ -l gpu=1" in the SGE job script. sge_gpu
= NULL omits this line.

Details

To launch a Sun Grid Engine (SGE) worker, this launcher creates a temporary job script with a call
to crew::crew_worker() and submits it as an SGE job with qsub. To see most of the lines of the
job script in advance, use the script() method of the launcher. It has all the lines except for the
job name and the call to crew::crew_worker(), both of which will be inserted at the last minute
when it is time to actually launch a worker.

Attribution

The template files at https://github.com/mschubert/clustermq/tree/master/inst informed
the development of the crew launcher plugins in crew.cluster, and we would like to thank
Michael Schubert for developing clustermq and releasing it under the permissive Apache License
2.0. See the NOTICE and README.md files in the crew.cluster source code for additional attribu-
tion.

See Also

Other sge: crew_class_launcher_sge, crew_class_monitor_sge, crew_controller_sge(),
crew_monitor_sge()

crew_launcher_slurm [Experimental] Create a launcher with SLURM workers.

Description

Create an R6 object to launch and maintain workers as SLURM jobs.

Usage

crew_launcher_slurm(
name = NULL,
seconds_interval = 0.5,
seconds_timeout = 60,
seconds_launch = 86400,

https://github.com/mschubert/clustermq/tree/master/inst

44 crew_launcher_slurm

seconds_idle = Inf,
seconds_wall = Inf,
tasks_max = Inf,
tasks_timers = 0L,
reset_globals = TRUE,
reset_packages = FALSE,
reset_options = FALSE,
garbage_collection = FALSE,
launch_max = 5L,
tls = crew::crew_tls(mode = "automatic"),
verbose = FALSE,
command_submit = as.character(Sys.which("sbatch")),
command_terminate = as.character(Sys.which("scancel")),
command_delete = NULL,
script_directory = tempdir(),
script_lines = character(0L),
slurm_log_output = "/dev/null",
slurm_log_error = "/dev/null",
slurm_memory_gigabytes_per_cpu = NULL,
slurm_cpus_per_task = NULL,
slurm_time_minutes = 1440,
slurm_partition = NULL

)

Arguments

name Name of the launcher.
seconds_interval

Number of seconds between polling intervals waiting for certain internal syn-
chronous operations to complete, such as checking mirai::status().

seconds_timeout

Number of seconds until timing out while waiting for certain synchronous oper-
ations to complete, such as checking mirai::status().

seconds_launch Seconds of startup time to allow. A worker is unconditionally assumed to be
alive from the moment of its launch until seconds_launch seconds later. After
seconds_launch seconds, the worker is only considered alive if it is actively
connected to its assign websocket.

seconds_idle Maximum number of seconds that a worker can idle since the completion of
the last task. If exceeded, the worker exits. But the timer does not launch until
tasks_timers tasks have completed. See the idletime argument of mirai::daemon().
crew does not excel with perfectly transient workers because it does not micro-
manage the assignment of tasks to workers, so please allow enough idle time for
a new worker to be delegated a new task.

seconds_wall Soft wall time in seconds. The timer does not launch until tasks_timers tasks
have completed. See the walltime argument of mirai::daemon().

tasks_max Maximum number of tasks that a worker will do before exiting. See the maxtasks
argument of mirai::daemon(). crew does not excel with perfectly transient

crew_launcher_slurm 45

workers because it does not micromanage the assignment of tasks to workers, it
is recommended to set tasks_max to a value greater than 1.

tasks_timers Number of tasks to do before activating the timers for seconds_idle and seconds_wall.
See the timerstart argument of mirai::daemon().

reset_globals TRUE to reset global environment variables between tasks, FALSE to leave them
alone.

reset_packages TRUE to unload any packages loaded during a task (runs between each task),
FALSE to leave packages alone.

reset_options TRUE to reset global options to their original state between each task, FALSE oth-
erwise. It is recommended to only set reset_options = TRUE if reset_packages
is also TRUE because packages sometimes rely on options they set at loading
time.

garbage_collection

TRUE to run garbage collection between tasks, FALSE to skip.

launch_max Positive integer of length 1, maximum allowed consecutive launch attempts
which do not complete any tasks. Enforced on a worker-by-worker basis. The
futile launch count resets to back 0 for each worker that completes a task. It is
recommended to set launch_max above 0 because sometimes workers are un-
productive under perfectly ordinary circumstances. But launch_max should still
be small enough to detect errors in the underlying platform.

tls A TLS configuration object from crew_tls().

verbose Logical, whether to see console output and error messages when submitting
worker.

command_submit Character of length 1, file path to the executable to submit a worker job.
command_terminate

Character of length 1, file path to the executable to terminate a worker job. Set
to "" to skip manually terminating the worker. Unless there is an issue with the
platform, the job should still exit thanks to the NNG-powered network program-
ming capabilities of mirai. Still, if you set command_terminate = "", you are
assuming extra responsibility for manually monitoring your jobs on the cluster
and manually terminating jobs as appropriate.

command_delete Deprecated on 2024-01-08 (version 0.1.4.9001). Use command_terminate in-
stead.

script_directory

Character of length 1, directory path to the job scripts. Just before each job
submission, a job script is created in this folder. Script base names are unique to
each launcher and worker, and the launcher deletes the script when the worker
is manually terminated. tempdir() is the default, but it might not work for
some systems. tools::R_user_dir("crew.cluster", which = "cache") is
another reasonable choice.

script_lines Optional character vector of additional lines to be added to the job script just
after the more common flags. An example would be script_lines = "module
load R" if your cluster supports R through an environment module.

slurm_log_output

Character of length 1, file pattern to control the locations of the SLURM worker
log files. By default, both standard output and standard error go to the same file.

46 crew_launcher_slurm

slurm_log_output = "crew_log_%A.txt" translates to a line of #SBATCH --output=crew_log_%A.txt
in the SLURM job script, where %A is replaced by the job ID of the worker. The
default is /dev/null to omit these logs. Set slurm_log_output = NULL to omit
this line from the job script.

slurm_log_error

Character of length 1, file pattern for standard error. slurm_log_error = "crew_log_%A.txt"
translates to a line of #SBATCH --error=crew_log_%A.txt in the SLURM
job script, where %A is replaced by the job ID of the worker. The default is
/dev/null to omit these logs. Set slurm_log_error = NULL to omit this line
from the job script.

slurm_memory_gigabytes_per_cpu

Positive numeric of length 1 with the gigabytes of memory required per CPU.
slurm_memory_gigabytes_per_cpu = 2.40123 translates to a line of #SBATCH --mem-per-cpu=2041M
in the SLURM job script. slurm_memory_gigabytes_per_cpu = NULL omits
this line.

slurm_cpus_per_task

Optional positive integer of length 1, number of CPUs for the worker. slurm_cpus_per_task
= 4 translates to a line of #SBATCH --cpus-per-task=4 in the SLURM job
script. slurm_cpus_per_task = NULL omits this line.

slurm_time_minutes

Numeric of length 1, number of minutes to designate as the wall time of crew
each worker instance on the SLURM cluster. slurm_time_minutes = 60 trans-
lates to a line of #SBATCH --time=60 in the SLURM job script. slurm_time_minutes
= NULL omits this line.

slurm_partition

Character of length 1, name of the SLURM partition to create workers on.
slurm_partition = "partition1,partition2" translates to a line of #SBATCH --partition=partition1,partition2
in the SLURM job script. slurm_partition = NULL omits this line.

Details

WARNING: the crew.cluster SLURM plugin is experimental and has not actually been tested on
a SLURM cluster. Please proceed with caution and report bugs to https://github.com/wlandau/
crew.cluster.

To launch a SLURM worker, this launcher creates a temporary job script with a call to crew::crew_worker()
and submits it as an SLURM job with sbatch. To see most of the lines of the job script in advance,
use the script() method of the launcher. It has all the lines except for the job name and the call to
crew::crew_worker(), both of which will be inserted at the last minute when it is time to actually
launch a worker.

Attribution

The template files at https://github.com/mschubert/clustermq/tree/master/inst informed
the development of the crew launcher plugins in crew.cluster, and we would like to thank
Michael Schubert for developing clustermq and releasing it under the permissive Apache License
2.0. See the NOTICE and README.md files in the crew.cluster source code for additional attribu-
tion.

https://github.com/wlandau/crew.cluster
https://github.com/wlandau/crew.cluster
https://github.com/mschubert/clustermq/tree/master/inst

crew_monitor_sge 47

See Also

Other slurm: crew_class_launcher_slurm, crew_class_monitor_slurm, crew_controller_slurm(),
crew_monitor_slurm()

crew_monitor_sge [Experimental] Create a SGE monitor object.

Description

Create an R6 object to monitor SGE cluster jobs.

Usage

crew_monitor_sge(
verbose = TRUE,
command_list = as.character(Sys.which("qstat")),
command_terminate = as.character(Sys.which("qdel"))

)

Arguments

verbose Logical, whether to see console output and error messages when submitting
worker.

command_list Character of length 1, file path to the executable to list jobs.

command_terminate

Character of length 1, file path to the executable to terminate a worker job. Set
to "" to skip manually terminating the worker. Unless there is an issue with the
platform, the job should still exit thanks to the NNG-powered network program-
ming capabilities of mirai. Still, if you set command_terminate = "", you are
assuming extra responsibility for manually monitoring your jobs on the cluster
and manually terminating jobs as appropriate.

See Also

Other sge: crew_class_launcher_sge, crew_class_monitor_sge, crew_controller_sge(),
crew_launcher_sge()

48 crew_monitor_slurm

crew_monitor_slurm [Experimental] Create a SLURM monitor object.

Description

Create an R6 object to monitor SLURM cluster jobs.

Usage

crew_monitor_slurm(
verbose = TRUE,
command_list = as.character(Sys.which("squeue")),
command_terminate = as.character(Sys.which("scancel"))

)

Arguments

verbose Logical, whether to see console output and error messages when submitting
worker.

command_list Character of length 1, file path to the executable to list jobs.
command_terminate

Character of length 1, file path to the executable to terminate a worker job. Set
to "" to skip manually terminating the worker. Unless there is an issue with the
platform, the job should still exit thanks to the NNG-powered network program-
ming capabilities of mirai. Still, if you set command_terminate = "", you are
assuming extra responsibility for manually monitoring your jobs on the cluster
and manually terminating jobs as appropriate.

See Also

Other slurm: crew_class_launcher_slurm, crew_class_monitor_slurm, crew_controller_slurm(),
crew_launcher_slurm()

Index

∗ help
crew.cluster-package, 2

∗ lsf
crew_class_launcher_lsf, 3
crew_controller_lsf, 18
crew_launcher_lsf, 33

∗ pbs
crew_class_launcher_pbs, 6
crew_controller_pbs, 21
crew_launcher_pbs, 36

∗ sge
crew_class_launcher_sge, 9
crew_class_monitor_sge, 16
crew_controller_sge, 25
crew_launcher_sge, 40
crew_monitor_sge, 47

∗ slurm
crew_class_launcher_slurm, 12
crew_class_monitor_slurm, 17
crew_controller_slurm, 29
crew_launcher_slurm, 43
crew_monitor_slurm, 48

crew.cluster-package, 2
crew.cluster::crew_class_launcher_cluster,

3, 6, 10, 13
crew.cluster::crew_class_monitor_cluster,

16, 17
crew::crew_class_launcher, 3, 6, 10, 13
crew_class_launcher_lsf, 3, 21, 36
crew_class_launcher_pbs, 6, 25, 40
crew_class_launcher_sge, 9, 16, 29, 43, 47
crew_class_launcher_slurm, 12, 18, 33, 47,

48
crew_class_monitor_sge, 12, 16, 29, 43, 47
crew_class_monitor_slurm, 15, 17, 33, 47,

48
crew_controller_lsf, 6, 18, 36
crew_controller_pbs, 9, 21, 40
crew_controller_sge, 12, 16, 25, 43, 47

crew_controller_slurm, 15, 18, 29, 47, 48
crew_launcher_lsf, 6, 21, 33
crew_launcher_lsf(), 3–5
crew_launcher_pbs, 9, 25, 36
crew_launcher_pbs(), 6–8
crew_launcher_sge, 12, 16, 29, 40, 47
crew_launcher_sge(), 8–11, 14
crew_launcher_slurm, 15, 18, 33, 43, 48
crew_launcher_slurm(), 8, 11, 13, 14
crew_monitor_sge, 12, 16, 29, 43, 47
crew_monitor_sge(), 16
crew_monitor_slurm, 15, 18, 33, 47, 48
crew_monitor_slurm(), 17
crew_tls(), 19, 22, 26, 30, 35, 38, 41, 45

49

	crew.cluster-package
	crew_class_launcher_lsf
	crew_class_launcher_pbs
	crew_class_launcher_sge
	crew_class_launcher_slurm
	crew_class_monitor_sge
	crew_class_monitor_slurm
	crew_controller_lsf
	crew_controller_pbs
	crew_controller_sge
	crew_controller_slurm
	crew_launcher_lsf
	crew_launcher_pbs
	crew_launcher_sge
	crew_launcher_slurm
	crew_monitor_sge
	crew_monitor_slurm
	Index

