Package 'decompDL'

December 4, 2023

Type Package

Title Decomposition Based Deep Learning Models for Time Series Forecasting

Version 0.1.0

Maintainer Kapil Choudhary <kapiliasri@gmail.com>

Description Hybrid model is the most promising forecasting method by combining decomposition and deep learning techniques to improve the accuracy of time series forecasting. Each decomposition technique decomposes a time series into a set of intrinsic mode functions (IMFs), and the obtained IMFs are modelled and forecasted separately using the deep learning models. Finally, the forecasts of all IMFs are combined to provide an ensemble output for the time series. The prediction ability of the developed models are calculated using international monthly price series of maize in terms of evaluation criteria like root mean squared error, mean absolute percentage error and, mean absolute error. For method details see Choudhary, K. et al. (2023). <https://ssca.org.in/media/14_SA44052022_R3_SA_21032023_Girish_Jha_FINAL_Finally.pdf>.

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

Imports keras, tensorflow, reticulate, tsutils, stats, BiocGenerics, utils, graphics, magrittr,Rlibeemd, TSdeeplearning, VMDecomp

Depends R (>= 2.10)

NeedsCompilation no

Author Kapil Choudhary [aut, cre], Girish Kumar Jha [aut, ths, ctb], Ronit Jaiswal [ctb], Rajeev Ranjan Kumar [ctb]

Repository CRAN

Date/Publication 2023-12-04 16:50:02 UTC

R topics documented:

ceemdGRU	2
ceemd STM	4
ceemdRNN	5
Data Maize	7
eemdGRU	8
eemdLSTM	9
eemdRNN	11
emdGRU	13
emdLSTM	14
emdRNN	16
vmdGRU	18
vmdLSTM	19
vmdRNN	21
	23

Index

```
ceemdGRU
```

Complementary Ensemble Empirical Mode Decomposition (CEEMD) Based Long Short Term (GRU) Model

Description

The eemdGRU function computes forecasted value with different forecasting evaluation criteria for EEMD based GRU model.

Usage

```
ceemdGRU(data, spl=0.8, num.IMFs=emd_num_imfs(length(data)),
s.num=4L, num.sift=50L, ensem.size=250L, noise.st=0.2,lg = 4,
LU = 2, Epochs = 2)
```

Arguments

data	Input univariate time series (ts) data.
spl	Index of the split point and separates the data into the training and testing datasets.
num.IMFs	Number of Intrinsic Mode Function (IMF) for input series.
s.num	Integer. Use the S number stopping criterion for the EMD procedure with the given values of S. That is, iterate until the number of extrema and zero crossings in the signal differ at most by one, and stay the same for S consecutive iterations.
num.sift	Number of siftings to find out IMFs.
ensem.size	Number of copies of the input signal to use as the ensemble.
noise.st	Standard deviation of the Gaussian random numbers used as additional noise. This value is relative to the standard deviation of the input series.

ceemdGRU

lg	Lag of time series data.
LU	Number of unit in GRU layer.
Epochs	Number of epochs.

Details

A time series is decomposed by CEEMD into a set of intrinsic mode functions (IMFs) and a residual, which are modelled and predicted independently using GRU models. Finally, the ensemble output for the price series is produced by combining the forecasts of all IMFs and residuals.

Value

TotalIMF	Total number of IMFs.
AllIMF	List of all IMFs with residual for input series.
data_test	Testing set used to measure the out of sample performance.
AllIMF_forecast	
	Forecasted value of all individual IMF.
FinalCEEMDGRU_f	orecast
	Final forecasted value of the CEEMD based GRU model. It is obtained by combining the forecasted value of all individual IMF.
MAE_CEEMDGRU	Mean Absolute Error (MAE) for CEEMD based GRU model.
MAPE_CEEMDGRU	Mean Absolute Percentage Error (MAPE) for CEEMD based GRU model.
rmse_CEEMDGRU	Root Mean Square Error (RMSE) for CEEMD based GRU model.
AllIMF_plots	Decomposed IMFs and residual plot.
plot_testset	Test set forecasted vs actual value plot.

References

Choudhary, K., Jha, G.K., Kumar, R.R. and Mishra, D.C. (2019) Agricultural commodity price analysis using ensemble empirical mode decomposition: A case study of daily potato price series. Indian journal of agricultural sciences, 89(5), 882–886.

Wu, Z. and Huang, N.E. (2009) Ensemble empirical mode decomposition: a noise assisted data analysis method. Advances in adaptive data analysis, 1(1), 1–41.

See Also

eemdGRU

Examples

data("Data_Maize")
ceemdGRU(Data_Maize)

ceemdLSTM

Complementary Ensemble Empirical Mode Decomposition (CEEMD) Based Long Short Term (LSTM) Model

Description

The eemdLSTM function computes forecasted value with different forecasting evaluation criteria for EEMD based LSTM model.

Usage

```
ceemdLSTM(data, spl=0.8, num.IMFs=emd_num_imfs(length(data)),
s.num=4L, num.sift=50L, ensem.size=250L, noise.st=0.2,lg = 4,
LU = 2, Epochs = 2)
```

Arguments

data	Input univariate time series (ts) data.
spl	Index of the split point and separates the data into the training and testing datasets.
num.IMFs	Number of Intrinsic Mode Function (IMF) for input series.
s.num	Integer. Use the S number stopping criterion for the EMD procedure with the given values of S. That is, iterate until the number of extrema and zero crossings in the signal differ at most by one, and stay the same for S consecutive iterations.
num.sift	Number of siftings to find out IMFs.
ensem.size	Number of copies of the input signal to use as the ensemble.
noise.st	Standard deviation of the Gaussian random numbers used as additional noise. This value is relative to the standard deviation of the input series.
lg	Lag of time series data.
LU	Number of unit in GRU layer.
Epochs	Number of epochs.

Details

A time series is decomposed by CEEMD into a set of intrinsic mode functions (IMFs) and a residual, which are modelled and predicted independently using LSTM models. Finally, the ensemble output for the price series is produced by combining the forecasts of all IMFs and residuals.

TotalIMF	Total number of IMFs.
AllIMF	List of all IMFs with residual for input series.
data_test	Testing set used to measure the out of sample performance.

ceemdRNN

AllIMF_forecast	
	Forecasted value of all individual IMF.
FinalCEEMDLSTM_	forecast
	Final forecasted value of the CEEMD based LSTM model. It is obtained by combining the forecasted value of all individual IMF.
MAE_CEEMDLSTM	Mean Absolute Error (MAE) for CEEMD based LSTM model.
MAPE_CEEMDLSTM	
	Mean Absolute Percentage Error (MAPE) for CEEMD based LSTM model.
<pre>rmse_CEEMDLSTM</pre>	
	Root Mean Square Error (RMSE) for CEEMD based LSTM model.
AllIMF_plots	Decomposed IMFs and residual plot.
plot_testset	Test set forecasted vs actual value plot.

References

Choudhary, K., Jha, G.K., Kumar, R.R. and Mishra, D.C. (2019) Agricultural commodity price analysis using ensemble empirical mode decomposition: A case study of daily potato price series. Indian journal of agricultural sciences, 89(5), 882–886.

Wu, Z. and Huang, N.E. (2009) Ensemble empirical mode decomposition: a noise assisted data analysis method. Advances in adaptive data analysis, 1(1), 1–41.

See Also

eemdLSTM

Examples

data("Data_Maize")
ceemdLSTM(Data_Maize)

ceemdRNN

Complementary Ensemble Empirical Mode Decomposition (CEEMD) Based Long Short Term (RNN) Model

Description

The eemdRNN function computes forecasted value with different forecasting evaluation criteria for EEMD based RNN model.

Usage

```
ceemdRNN(data, spl=0.8, num.IMFs=emd_num_imfs(length(data)),
s.num=4L, num.sift=50L, ensem.size=250L, noise.st=0.2,lg = 4,
LU = 2, Epochs = 2)
```

Arguments

ing
the ngs ons.
ise.

Details

A time series is decomposed by CEEMD into a set of intrinsic mode functions (IMFs) and a residual, which are modelled and predicted independently using RNN models. Finally, the ensemble output for the price series is produced by combining the forecasts of all IMFs and residuals.

Value

TotalIMF	Total number of IMFs.
AllIMF	List of all IMFs with residual for input series.
data_test AllIMF_forecast	Testing set used to measure the out of sample performance.
FinalCEEMDRNN_f	Forecasted value of all individual IMF.
	Final forecasted value of the CEEMD based RNN model. It is obtained by combining the forecasted value of all individual IMF.
MAE_CEEMDRNN	Mean Absolute Error (MAE) for CEEMD based RNN model.
MAPE_CEEMDRNN	Mean Absolute Percentage Error (MAPE) for CEEMD based RNN model.
rmse_CEEMDRNN	Root Mean Square Error (RMSE) for CEEMD based RNN model.
AllIMF_plots	Decomposed IMFs and residual plot.
plot_testset	Test set forecasted vs actual value plot.

References

Choudhary, K., Jha, G.K., Kumar, R.R. and Mishra, D.C. (2019) Agricultural commodity price analysis using ensemble empirical mode decomposition: A case study of daily potato price series. Indian journal of agricultural sciences, 89(5), 882–886.

Wu, Z. and Huang, N.E. (2009) Ensemble empirical mode decomposition: a noise assisted data analysis method. Advances in adaptive data analysis, 1(1), 1–41.

Data_Maize

See Also

eemdRNN

Examples

```
data("Data_Maize")
ceemdRNN(Data_Maize)
```

Data_Maize

Monthly International Maize Price Data

Description

Monthly international Maize price (Dollor per million ton) from January 2010 to June 2020.

Usage

data("Data_Maize")

Format

A time series data with 126 observations.

price a time series

Details

Dataset contains 126 observations of monthly international Maize price (Dollor per million ton). It is obtained from World Bank "Pink sheet".

Source

https://www.worldbank.org/en/research/commodity-markets

References

https://www.worldbank.org/en/research/commodity-markets

Examples

data(Data_Maize)

eemdGRU

Description

The eemdGRU function computes forecasted value with different forecasting evaluation criteria for EEMD based GRU model.

Usage

```
eemdGRU(data, spl=0.8, num.IMFs=emd_num_imfs(length(data)),
s.num=4L, num.sift=50L, ensem.size=250L, noise.st=0.2,lg = 4,LU = 2, Epochs = 2)
```

Arguments

data	Input univariate time series (ts) data.
spl	Index of the split point and separates the data into the training and testing datasets.
num.IMFs	Number of Intrinsic Mode Function (IMF) for input series.
s.num	Integer. Use the S number stopping criterion for the EMD procedure with the given values of S. That is, iterate until the number of extrema and zero crossings in the signal differ at most by one, and stay the same for S consecutive iterations.
num.sift	Number of siftings to find out IMFs.
ensem.size	Number of copies of the input signal to use as the ensemble.
noise.st	Standard deviation of the Gaussian random numbers used as additional noise. This value is relative to the standard deviation of the input series.
lg	Lag of time series data.
LU	Number of unit in GRU layer.
Epochs	Number of epochs.

Details

A time series is decomposed by EEMD into a set of intrinsic mode functions (IMFs) and a residual, which are modelled and predicted independently using GRU models. Finally, the ensemble output for the price series is produced by combining the forecasts of all IMFs and residuals. EEMD overcomes the limitation of the mode mixing and end effect problems of the empirical mode decomposition (EMD).

TotalIMF	Total number of IMFs.
AllIMF	List of all IMFs with residual for input series.
data_test	Testing set used to measure the out of sample performance.

eemdLSTM

AllIMF_forecas	t
	Forecasted value of all individual IMF.
FinalEEMDGRU_f	orecast
	Final forecasted value of the EEMD based GRU model. It is obtained by com- bining the forecasted value of all individual IMF.
MAE_EEMDGRU	Mean Absolute Error (MAE) for EEMD based GRU model.
MAPE_EEMDGRU	Mean Absolute Percentage Error (MAPE) for EEMD based GRU model.
rmse_EEMDGRU	Root Mean Square Error (RMSE) for EEMD based GRU model.
AllIMF_plots	Decomposed IMFs and residual plot.
plot_testset	Test set forecasted vs actual value plot.

References

Choudhary, K., Jha, G.K., Kumar, R.R. and Mishra, D.C. (2019) Agricultural commodity price analysis using ensemble empirical mode decomposition: A case study of daily potato price series. Indian journal of agricultural sciences, 89(5), 882–886.

Wu, Z. and Huang, N.E. (2009) Ensemble empirical mode decomposition: a noise assisted data analysis method. Advances in adaptive data analysis, 1(1), 1–41.

See Also

emdGRU

Examples

data("Data_Maize")
eemdGRU(Data_Maize)

eemdLSTM

Ensemble Empirical Mode Decomposition (EEMD) Based Long Short Term (LSTM) Model

Description

The eemdLSTM function computes forecasted value with different forecasting evaluation criteria for EEMD based LSTM model.

Usage

```
eemdLSTM(data, spl=0.8, num.IMFs=emd_num_imfs(length(data)),
s.num=4L, num.sift=50L, ensem.size=250L, noise.st=0.2,lg = 4, LU = 2, Epochs = 2)
```

Arguments

data	Input univariate time series (ts) data.
spl	Index of the split point and separates the data into the training and testing datasets.
num.IMFs	Number of Intrinsic Mode Function (IMF) for input series.
s.num	Integer. Use the S number stopping criterion for the EMD procedure with the given values of S. That is, iterate until the number of extrema and zero crossings in the signal differ at most by one, and stay the same for S consecutive iterations.
num.sift	Number of siftings to find out IMFs.
ensem.size	Number of copies of the input signal to use as the ensemble.
noise.st	Standard deviation of the Gaussian random numbers used as additional noise. This value is relative to the standard deviation of the input series.
lg	Lag of time series data.
LU	Number of unit in GRU layer.
Epochs	Number of epochs.

Details

A time series is decomposed by EEMD into a set of intrinsic mode functions (IMFs) and a residual, which are modelled and predicted independently using LSTM models. Finally, the ensemble output for the price series is produced by combining the forecasts of all IMFs and residuals. EEMD overcomes the limitation of the mode mixing and end effect problems of the empirical mode decomposition (EMD).

TotalIMF	Total number of IMFs.	
AllIMF	List of all IMFs with residual for input series.	
data_test	Testing set used to measure the out of sample performance.	
AllIMF_forecast		
	Forecasted value of all individual IMF.	
FinalEEMDLSTM_forecast		
	Final forecasted value of the EEMD based LSTM model. It is obtained by combining the forecasted value of all individual IMF.	
MAE_EEMDLSTM	Mean Absolute Error (MAE) for EEMD based LSTM model.	
MAPE_EEMDLSTM	Mean Absolute Percentage Error (MAPE) for EEMD based LSTM model.	
rmse_EEMDLSTM	Root Mean Square Error (RMSE) for EEMD based LSTM model.	
AllIMF_plots	Decomposed IMFs and residual plot.	
plot_testset	Test set forecasted vs actual value plot.	

eemdRNN

References

Choudhary, K., Jha, G.K., Kumar, R.R. and Mishra, D.C. (2019) Agricultural commodity price analysis using ensemble empirical mode decomposition: A case study of daily potato price series. Indian journal of agricultural sciences, 89(5), 882–886.

Wu, Z. and Huang, N.E. (2009) Ensemble empirical mode decomposition: a noise assisted data analysis method. Advances in adaptive data analysis, 1(1), 1–41.

See Also

emdLSTM

Examples

data("Data_Maize")
eemdLSTM(Data_Maize)

eemdRNN

Ensemble Empirical Mode Decomposition (EEMD) Based RNN Model

Description

The eemdRNN function computes forecasted value with different forecasting evaluation criteria for EEMD based RNN model.

Usage

```
eemdRNN(data, spl=0.8, num.IMFs=emd_num_imfs(length(data)),
s.num=4L, num.sift=50L, ensem.size=250L, noise.st=0.2,lg = 4,
LU = 2, Epochs = 2)
```

Arguments

data	Input univariate time series (ts) data.
spl	Index of the split point and separates the data into the training and testing datasets.
num.IMFs	Number of Intrinsic Mode Function (IMF) for input series.
s.num	Integer. Use the S number stopping criterion for the EMD procedure with the given values of S. That is, iterate until the number of extrema and zero crossings in the signal differ at most by one, and stay the same for S consecutive iterations.
num.sift	Number of siftings to find out IMFs.
ensem.size	Number of copies of the input signal to use as the ensemble.
noise.st	Standard deviation of the Gaussian random numbers used as additional noise. This value is relative to the standard deviation of the input series.

eemdRNN

lg	Lag of time series data.
LU	Number of unit in RNN layer.
Epochs	Number of epochs.

Details

A time series is decomposed by EEMD into a set of intrinsic mode functions (IMFs) and a residual, which are modelled and predicted independently using RNN models. Finally, the ensemble output for the price series is produced by combining the forecasts of all IMFs and residuals. EEMD overcomes the limitation of the mode mixing and end effect problems of the empirical mode decomposition (EMD).

Value

TotalIMF	Total number of IMFs.
AllIMF	List of all IMFs with residual for input series.
data_test	Testing set used to measure the out of sample performance.
AllIMF_forecast	
	Forecasted value of all individual IMF.
FinalEEMDRNN_fo	recast
	Final forecasted value of the EEMD based RNN model. It is obtained by combining the forecasted value of all individual IMF.
MAE_EEMDRNN	Mean Absolute Error (MAE) for EEMD based RNN model.
MAPE_EEMDRNN	Mean Absolute Percentage Error (MAPE) for EEMD based RNN model.
rmse_EEMDRNN	Root Mean Square Error (RMSE) for EEMD based RNN model.
AllIMF_plots	Decomposed IMFs and residual plot.
plot_testset	Test set forecasted vs actual value plot.

References

Choudhary, K., Jha, G.K., Kumar, R.R. and Mishra, D.C. (2019) Agricultural commodity price analysis using ensemble empirical mode decomposition: A case study of daily potato price series. Indian journal of agricultural sciences, 89(5), 882–886.

Wu, Z. and Huang, N.E. (2009) Ensemble empirical mode decomposition: a noise assisted data analysis method. Advances in adaptive data analysis, 1(1), 1–41.

See Also

emdRNN

Examples

```
data("Data_Maize")
eemdRNN(Data_Maize)
```

emdGRU

Description

The emdGRU function computes forecasted value with different forecasting evaluation criteria for EMD based GRU model.

Usage

```
emdGRU(data, spl=0.8, num.IMFs=emd_num_imfs(length(data)),
s.num=4L, num.sift=50L,lg = 4, LU = 2, Epochs = 2)
```

Arguments

data	Input univariate time series (ts) data.
spl	Index of the split point and separates the data into the training and testing datasets.
num.IMFs	Number of Intrinsic Mode Function (IMF) for input series.
s.num	Integer. Use the S number stopping criterion for the EMD procedure with the given values of S. That is, iterate until the number of extrema and zero crossings in the signal differ at most by one, and stay the same for S consecutive iterations.
num.sift	Number of siftings to find out IMFs.
lg	Lag of time series data.
LU	Number of unit in GRU layer.
Epochs	Number of epochs.

Details

A time series is decomposed by EMD into a set of intrinsic mode functions (IMFs) and a residual, which are modelled and predicted independently using GRU models. Finally, the ensemble output for the price series is produced by combining the forecasts of all IMFs and residuals.

TotalIMF	Total number of IMFs.	
AllIMF	List of all IMFs with residual for input series.	
data_test	Testing set used to measure the out of sample performance.	
AllIMF_forecast		
	Forecasted value of all individual IMF.	
FinalEMDGRU_forecast		
	Final forecasted value of the EMD based GRU model. It is obtained by combining the forecasted value of all individual IMF.	
MAE_EMDGRU	Mean Absolute Error (MAE) for EMD based GRU model.	

MAPE_EMDGRU	Mean Absolute Percentage Error (MAPE) for EMD based GRU model.
rmse_EMDGRU	Root Mean Square Error (RMSE) for EMD based GRU model.
AllIMF_plots	Decomposed IMFs and residual plot.
plot_testset	Test set forecasted vs actual value plot.

References

Choudhary, K., Jha, G.K., Kumar, R.R. and Mishra, D.C. (2019) Agricultural commodity price analysis using ensemble empirical mode decomposition: A case study of daily potato price series. Indian journal of agricultural sciences, 89(5), 882–886.

Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q. and Liu, H.H. (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non stationary time series analysis. In Proceedings of the Royal Society of London A: mathematical, physical and engineering sciences. 454, 903–995.

Jha, G.K. and Sinha, K. (2014) Time delay neural networks for time series prediction: An application to the monthly wholesale price of oilseeds in India. Neural Computing and Applications, 24, 563–571.

See Also

EMDGRU

Examples

```
data("Data_Maize")
emdGRU(Data_Maize)
```

emdLSTM

Empirical Mode Decomposition (EMD) Based Long Short Term (LSTM) Model

Description

The emdLSTM function computes forecasted value with different forecasting evaluation criteria for EMD based LSTM model.

Usage

```
emdLSTM(data, spl=0.8, num.IMFs=emd_num_imfs(length(data)),
s.num=4L, num.sift=50L,lg = 4, LU = 2, Epochs = 2)
```

emdLSTM

Arguments

data	Input univariate time series (ts) data.
spl	Index of the split point and separates the data into the training and testing datasets.
num.IMFs	Number of Intrinsic Mode Function (IMF) for input series.
s.num	Integer. Use the S number stopping criterion for the EMD procedure with the given values of S. That is, iterate until the number of extrema and zero crossings in the signal differ at most by one, and stay the same for S consecutive iterations.
num.sift	Number of siftings to find out IMFs.
lg	Lag of time series data.
LU	Number of unit in LSTM layer.
Epochs	Number of epochs.

Details

A time series is decomposed by EMD into a set of intrinsic mode functions (IMFs) and a residual, which are modelled and predicted independently using LSTM models. Finally, the ensemble output for the price series is produced by combining the forecasts of all IMFs and residuals.

Value

TotalIMF	Total number of IMFs.	
AllIMF	List of all IMFs with residual for input series.	
data_test	Testing set used to measure the out of sample performance.	
AllIMF_forecast		
	Forecasted value of all individual IMF.	
FinalEMDLSTM_forecast		
	Final forecasted value of the EMD based LSTM model. It is obtained by combining the forecasted value of all individual IMF.	
MAE_EMDLSTM	Mean Absolute Error (MAE) for EMD based LSTM model.	
MAPE_EMDLSTM	Mean Absolute Percentage Error (MAPE) for EMD based LSTM model.	
rmse_EMDLSTM	Root Mean Square Error (RMSE) for EMD based LSTM model.	
AllIMF_plots	Decomposed IMFs and residual plot.	
plot_testset	Test set forecasted vs actual value plot.	

References

Choudhary, K., Jha, G.K., Kumar, R.R. and Mishra, D.C. (2019) Agricultural commodity price analysis using ensemble empirical mode decomposition: A case study of daily potato price series. Indian journal of agricultural sciences, 89(5), 882–886.

Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q. and Liu, H.H. (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non stationary time series analysis. In Proceedings of the Royal Society of London A: mathematical, physical and engineering sciences. 454, 903–995.

Jha, G.K. and Sinha, K. (2014) Time delay neural networks for time series prediction: An application to the monthly wholesale price of oilseeds in India. Neural Computing and Applications, 24, 563–571.

See Also

EMDLSTM

Examples

data("Data_Maize")
emdLSTM(Data_Maize)

emdRNN

Empirical Mode Decomposition (EMD) Based RNN Model

Description

The emdRNN function computes forecasted value with different forecasting evaluation criteria for EMD based RNN model.

Usage

```
emdRNN(data, spl=0.8, num.IMFs=emd_num_imfs(length(data)),
s.num=4L, num.sift=50L,lg = 4, LU = 2, Epochs = 2)
```

Arguments

data	Input univariate time series (ts) data.
spl	Index of the split point and separates the data into the training and testing datasets.
num.IMFs	Number of Intrinsic Mode Function (IMF) for input series.
s.num	Integer. Use the S number stopping criterion for the EMD procedure with the given values of S. That is, iterate until the number of extrema and zero crossings in the signal differ at most by one, and stay the same for S consecutive iterations.
num.sift	Number of siftings to find out IMFs.
lg	Lag of time series data.
LU	Number of unit in RNN layer.
Epochs	Number of epochs.

Details

A time series is decomposed by EMD into a set of intrinsic mode functions (IMFs) and a residual, which are modelled and predicted independently using RNN models. Finally, the ensemble output for the price series is produced by combining the forecasts of all IMFs and residuals.

16

emdRNN

Value

TotalIMF	Total number of IMFs.	
AllIMF	List of all IMFs with residual for input series.	
data_test	Testing set used to measure the out of sample performance.	
AllIMF_forecast		
	Forecasted value of all individual IMF.	
FinalEMDRNN_for	ecast	
	Final forecasted value of the EMD based RNN model. It is obtained by combining the forecasted value of all individual IMF.	
MAE_EMDRNN	Mean Absolute Error (MAE) for EMD based RNN model.	
MAPE_EMDRNN	Mean Absolute Percentage Error (MAPE) for EMD based RNN model.	
rmse_EMDRNN	Root Mean Square Error (RMSE) for EMD based RNN model.	
AllIMF_plots	Decomposed IMFs and residual plot.	
plot_testset	Test set forecasted vs actual value plot.	

References

Choudhary, K., Jha, G.K., Kumar, R.R. and Mishra, D.C. (2019) Agricultural commodity price analysis using ensemble empirical mode decomposition: A case study of daily potato price series. Indian journal of agricultural sciences, 89(5), 882–886.

Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q. and Liu, H.H. (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non stationary time series analysis. In Proceedings of the Royal Society of London A: mathematical, physical and engineering sciences. 454, 903–995.

Jha, G.K. and Sinha, K. (2014) Time delay neural networks for time series prediction: An application to the monthly wholesale price of oilseeds in India. Neural Computing and Applications, 24, 563–571.

See Also

EMDRNN

Examples

```
data("Data_Maize")
emdRNN(Data_Maize)
```

vmdGRU

Description

This function computes forecasted value with different forecasting evaluation criteria for Variational Mode Decomposition (VMD) Based GRU Model.

Usage

vmdGRU (data, spl=0.8, n=4, alpha=2000, tau=0, D=FALSE, LU = 2, Epochs = 2)

Arguments

data	Input univariate time series (ts) data.
spl	The forecast horizon.
n	The number of IMFs.
alpha	The balancing parameter.
tau	Time-step of the dual ascent.
D	a boolean.
LU	Number of unit in GRU layer.
Epochs	Number of epochs.

Details

The Variational Mode Decomposition method is a novel adaptive, non-recursive signal decomposition technology, which was introduced by Dragomiretskiy and Zosso (2014). VMD method helps to solve current decomposition methods limitation such as lacking mathematical theory, recursive sifting process which not allows for backward error correction, hard-band limits, the requirement to predetermine filter bank boundaries, and sensitivity to noise. It decomposes a series into sets of IMFs. GRU used to forecast decomposed components individually . Finally, the prediction results of all components are aggregated to formulate an ensemble output for the input time series.

TotalIMF	Total number of IMFs.
AllIMF	List of all IMFs with residual for input series.
data_test	Testing set used to measure the out of sample performance.
AllIMF_forecast	
	Forecasted value of all individual IMF.
FinalVMDGRU_for	ecast
	Final forecasted value of the VMD based GRU model. It is obtained by combining the forecasted value of all individual IMF.
MAE_VMDGRU	Mean Absolute Error (MAE) for VMD based GRU model.

MAPE_VMDGRU	Mean Absolute Percentage Error (MAPE) for VMD based GRU model.
rmse_VMDGRU	Root Mean Square Error (RMSE) for VMD based GRU model.
AllIMF_plots	Decomposed IMFs and residual plot.
plot_testset	Test set forecasted vs actual value plot.

References

Choudhary, K., Jha, G.K., Kumar, R.R. and Mishra, D.C. (2019) Agricultural commodity price analysis using ensemble empirical mode decomposition: A case study of daily potato price series. Indian journal of agricultural sciences, 89(5), 882–886.

Wu, Z. and Huang, N.E. (2009) Ensemble empirical mode decomposition: a noise assisted data analysis method. Advances in adaptive data analysis, 1(1), 1–41.

See Also

emdGRU

Examples

data("Data_Maize")
vmdGRU(Data_Maize)

vmdLSTM

Variational Mode Decomposition Based LSTM Model

Description

This function computes forecasted value with different forecasting evaluation criteria for Variational Mode Decomposition (VMD) Based LSTM Model.

Usage

```
vmdLSTM (data, spl=0.8, n=4, alpha=2000, tau=0, D=FALSE, LU = 2, Epochs = 2)
```

Arguments

data	Input univariate time series (ts) data.
spl	The forecast horizon.
n	The number of IMFs.
alpha	The balancing parameter.
tau	Time-step of the dual ascent.
D	a boolean.
LU	Number of unit in GRU layer.
Epochs	Number of epochs.

Details

The Variational Mode Decomposition method is a novel adaptive, non-recursive signal decomposition technology, which was introduced by Dragomiretskiy and Zosso (2014). VMD method helps to solve current decomposition methods limitation such as lacking mathematical theory, recursive sifting process which not allows for backward error correction, hard-band limits, the requirement to predetermine filter bank boundaries, and sensitivity to noise. It decomposes a series into sets of IMFs. LSTM used to forecast decomposed components individually . Finally, the prediction results of all components are aggregated to formulate an ensemble output for the input time series.

Value

TotalIMF	Total number of IMFs.	
AllIMF	List of all IMFs with residual for input series.	
data_test	Testing set used to measure the out of sample performance.	
AllIMF_forecast		
	Forecasted value of all individual IMF.	
FinalVMDLSTM_forecast		
	Final forecasted value of the VMD based LSTM model. It is obtained by com- bining the forecasted value of all individual IMF.	
MAE_VMDLSTM	Mean Absolute Error (MAE) for VMD based LSTM model.	
MAPE_VMDLSTM	Mean Absolute Percentage Error (MAPE) for VMD based LSTM model.	
rmse_VMDLSTM	Root Mean Square Error (RMSE) for VMD based LSTM model.	
AllIMF_plots	Decomposed IMFs and residual plot.	
plot_testset	Test set forecasted vs actual value plot.	

References

Choudhary, K., Jha, G.K., Kumar, R.R. and Mishra, D.C. (2019) Agricultural commodity price analysis using ensemble empirical mode decomposition: A case study of daily potato price series. Indian journal of agricultural sciences, 89(5), 882–886.

Wu, Z. and Huang, N.E. (2009) Ensemble empirical mode decomposition: a noise assisted data analysis method. Advances in adaptive data analysis, 1(1), 1–41.

See Also

emdLSTM

Examples

```
data("Data_Maize")
vmdLSTM(Data_Maize)
```

20

Description

This function computes forecasted value with different forecasting evaluation criteria for Variational Mode Decomposition (VMD) Based RNN Model.

Usage

vmdRNN (data, spl=0.8, n=4, alpha=2000, tau=0, D=FALSE, LU = 2, Epochs = 2)

Arguments

data	Input univariate time series (ts) data.
spl	The forecast horizon.
n	The number of IMFs.
alpha	The balancing parameter.
tau	Time-step of the dual ascent.
D	a boolean.
LU	Number of unit in RNN layer.
Epochs	Number of epochs.

Details

The Variational Mode Decomposition method is a novel adaptive, non-recursive signal decomposition technology, which was introduced by Dragomiretskiy and Zosso (2014). VMD method helps to solve current decomposition methods limitation such as lacking mathematical theory, recursive sifting process which not allows for backward error correction, hard-band limits, the requirement to predetermine filter bank boundaries, and sensitivity to noise. It decomposes a series into sets of IMFs. RNN used to forecast decomposed components individually . Finally, the prediction results of all components are aggregated to formulate an ensemble output for the input time series.

TotalIMF	Total number of IMFs.
AllIMF	List of all IMFs with residual for input series.
data_test	Testing set used to measure the out of sample performance.
AllIMF_forecast	
	Forecasted value of all individual IMF.
FinalVMDRNN_forecast	
	Final forecasted value of the VMD based RNN model. It is obtained by combining the forecasted value of all individual IMF.
MAE_VMDRNN	Mean Absolute Error (MAE) for VMD based RNN model.

MAPE_VMDRNN	Mean Absolute Percentage Error (MAPE) for VMD based RNN model.
rmse_VMDRNN	Root Mean Square Error (RMSE) for VMD based RNN model.
AllIMF_plots	Decomposed IMFs and residual plot.
plot_testset	Test set forecasted vs actual value plot.

References

Choudhary, K., Jha, G.K., Kumar, R.R. and Mishra, D.C. (2019) Agricultural commodity price analysis using ensemble empirical mode decomposition: A case study of daily potato price series. Indian journal of agricultural sciences, 89(5), 882–886.

Wu, Z. and Huang, N.E. (2009) Ensemble empirical mode decomposition: a noise assisted data analysis method. Advances in adaptive data analysis, 1(1), 1–41.

See Also

emdRNN

Examples

data("Data_Maize")
vmdRNN(Data_Maize)

Index

```
* GRU
    ceemdGRU, 2
    \texttt{eemdGRU}, \texttt{8}
    emdGRU, 13
    vmdGRU, 18
* LSTM
    ceemdLSTM, 4
    \texttt{eemdLSTM}, 9
    emdLSTM, 14
    vmdLSTM, 19
* RNN
    ceemdRNN, 5
    eemdRNN, 11
    emdRNN, 16
    vmdRNN, 21
* datasets
    Data_Maize, 7
ceemdGRU, 2
ceemdLSTM, 4
ceemdRNN, 5
Data_Maize,7
eemdGRU, 8
eemdLSTM, 9
eemdRNN, 11
emdGRU, 13
emdLSTM, 14
emdRNN, 16
vmdGRU, 18
vmdLSTM, 19
vmdRNN, 21
```