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Introduction

fastFMM is a fast toolkit for fitting functional mixed models using the fast univariate inference (FUI) method
proposed in Cui et al. (2022). Assume the multi-level/longitudinal functional data are of the type Yij(s) on
a grid {s1, ..., sL} of the compact functional domain S. Denote by i = 1, 2, ..., I the index of subject, and
j = 1, 2, ..., Ji the index of longitudinal visit at time tij . In addition to Yij(s), for each visit of each subject,
we also observe Xij = [Xij1, Xij2, ..., Xijp]T ∈ Rp as the fixed and Zij = [Zij1, Zij2, ..., Zijq]T ∈ Rq as
the random effects variables. Denote by g(·) a pre-specified link function and EF (·) the exponential family
distribution. A longitudinal function-on-scalar regression model has the following form:

Yij(s) ∼ EF{µij(s)},

g{µij(s)} = ηij(s) = XT
ijβ(s) + ZT

ijui(s).
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The model above is also called Functional Mixed Model (FMM) in the Functional Data Analysis (FDA) litera-
ture. Many statistical methods have been proposed to fit this model, which in general fall into two categories:
joint methods and marginal methods. FUI is a marginal method that is computationally fast and achieves
similar estimation accuracy compared with the state-of-the-art joint method, such as the refund::pffr()
function.

FUI consists of the following three steps:

1. At each location sl ∈ S, l = 1, 2, ..., L, fit a pointwise generalized linear mixed model (GLMM):

Yij(sl) ∼ EF{µij(sl)},

g{µij(sl)} = ηij(sl) = XT
ijβ(sl) + ZT

ijui(sl).

Here β(sl) is a p × 1 dimensional vector of fixed effects and ui(sl) is a q × 1 dimensional vector of random
effects. Denote the estimates of fixed effects from L separate univariate GLMMs as β̃(s1), β̃(s2), ..., β̃(sL).

2. Smooth the estimated fixed effects β̃(s1), β̃(s2), ..., β̃(sL) along the functional domain. The smoothed
estimators are denoted as {β̂(s), s ∈ S}.

3. Obtain the pointwise and joint confidence bands for fixed effects parameters using analytic approaches
for Gaussian data or a bootstrap of subjects (cluster bootstrap) for Gaussian and non-Gaussian data.

The key insight of the FUI approach is to decompose the complex correlation structure into longitudinal and
functional directions. For more details on the analytic and bootstrap approach, please refer to the paper.

In this vignette, we provide a tutorial on how to use the fui function to fit FMM. The toolkit is currently
implemented in R, but may incorporate C++ to speed up the code in the future development. Notice that
the model function assumes that the data are stored in a data.frame, where the predictors are stored as
separate columns and the outcome is stored as a matrix; see examples for the required format.

Installation

The development version of fastFMM can be downloaded from github by executing:

library(devtools)
install_github("gloewing/fastFMM")

Package Setup

Downloading the development version of the package requires one to install package dependencies. We have
included the code below to install any CRAN packages not already downloaded on your computer.

# install packages (will only install them for the first time)
list.of.packages = c("lme4", "parallel", "cAIC4", "magrittr","dplyr",

"mgcv", "MASS", "lsei", "refund","stringr", "Matrix", "mvtnorm",
"arrangements", "progress", "ggplot2", "gridExtra", "here")

new.packages = list.of.packages[!(list.of.packages %in% installed.packages()[,"Package"])]
if(length(new.packages)){

chooseCRANmirror(ind=75)
install.packages(new.packages, dependencies = TRUE)
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}else{
# load packages if already installed
library(lme4)
library(parallel)
library(cAIC4)
library(magrittr)
library(dplyr)
library(mgcv)
library(MASS)
library(lsei)
library(refund)
library(stringr)
library(Matrix)
library(mvtnorm)
library(arrangements)
library(progress)
library(ggplot2)
library(gridExtra)

}

library(fastFMM) # load our package

Tutorial Guide

To illustrate the main functions in our fastFMM package, we start by analyzing synthetic data in which the
functional domain is defined by time: each functional observation is a short time-series “trial’ ’.

Data Formating

Let’s load the data and take a look at it’s structure.

dat <- read.csv("time_series.csv") # read in data
head(dat[,1:6])

## id trial treatment Y.1 Y.2 Y.3
## 1 1 1 0 -2.779477 -2.2031073 -1.0292572
## 2 1 2 0 -1.581592 -1.5353845 -0.4135614
## 3 1 3 0 -1.378131 -1.2898723 -0.9604425
## 4 1 4 0 -1.896447 -1.1348146 -0.7991782
## 5 1 5 0 -1.301714 -0.5457362 -1.0763990
## 6 1 6 0 -2.111444 -1.6129569 -0.7286003

This dataset has N =
∑I

i=1 ni rows, where ni is the number of repeated measures observations of
subject/cluster i. The first 3 columns of the dataset include the subject ID, and the covariates trial
and treatment. Each of the remaining columns are observations of our functional outcome named
[Y.1, Y.2, ... Y.L] where L is the number of points we observe the function on.

When we specify a model below using the fui() function, it will take the columns starting with the string
‘Y.’ and assume they are ordered from left to right. For that reason, make sure no other variables begin with
the same substring.
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Alternatively, instead of relying on the column names, we can save the matrix N × L matrix associated with
our functional outcomes as a “column’ ’ of a dataframe.

Y_mat <- dat[,-seq(1,3)]
head(Y_mat[,1:5])

Now we save the Y_mat matrix as a “column’ ’ in the dataframe:

dat <- data.frame(Y = Y_mat, dat[,seq(1,3)])

The fui() function accepts either format style.

Model Fitting and Function Arguments

Let’s start with a simple model not too unlike the functional version of a paired-samples t-test: we include
the binary treatment covariate with a random slope. Observe that the syntax for the model formula is
based off of the lmer() function in the lme4 package. The model is then:

Yij(s) = β0(s) + Xijβ1(s) + ui(s) + ϵij(s)
We start with implementation of the model with analytic inference.

mod <- fui(Y ~ treatment + # main effect of cue
(1 | id), # random intercept

data = dat)

Unless specified otherwise, fui() assumes a Gaussian family and provides inference based on an analytic
form. Below we fit a similar model but include a random subject-specific random slope for treatment.

• If we instead wished to use bootstrap confidence intervals, we simply set the argument analytic=FALSE.
The number of bootstrap replicates can be set with the argument boot. This defaults to boot=500.

• Both analytic and bootstrap inference can be sped up substantially by parallelizing the univariate
model-fitting with parallel=TRUE. The number of cores used for parallelizing can be specified in
num_cores. Otherwise, R will set this automatically based on the number of cores available on your
computer.

• The family argument is the standard GLM family from R stats::glm(). More specifically, our
package allows for any family in the glmer() and lmer() functions offered by the lme4 package.

• At times one might wish to analyze only a subset of the functional domain by, for example, downsam-
pling the number of points of the functional outcome, or using only certain subintervals. This can be
set by providing a vector of indices of which points of the functional outcome to use in the analysis
using the argvals argument. For example, the following analyzes every 3rd point of the functional
outcome.

Y_mat <- dat[,-seq(1,3)]
L <- ncol(Y_mat) # number of columns of functional outcome

mod <- fui(Y ~ treatment + # main effect of cue
(treatment | id), # random intercept
data = dat,
argvals = seq(from = 1, to = L, by = 3) # every 3rd data point
)
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• We may wish to compare model fit between multiple models. To speed this process up, we can turn
off the full inference by setting var = FALSE and then use the AIC and BIC naturally outputted in the
model objects.

Y_mat <- dat[,-seq(1,3)]
L <- ncol(Y_mat) # number of columns of functional outcome

# model 1: random slope model
mod1 <- fui(Y ~ treatment + # main effect of cue

(treatment | id), # random intercept
data = dat,
var = FALSE)

## [1] "Step 1: Fit Massively Univariate Mixed Models"
## [1] "Step 2: Smoothing"

## Complete!
## -Use plot_fui() function to plot estimates
## -For more information, run the command: ?plot_fui

# model 2: random intercept model
mod2 <- fui(Y ~ treatment + # main effect of cue

(1 | id), # random intercept
data = dat,
var = FALSE)

## [1] "Step 1: Fit Massively Univariate Mixed Models"
## [1] "Step 2: Smoothing"

## Complete!
## -Use plot_fui() function to plot estimates
## -For more information, run the command: ?plot_fui

# compare model fits
colMeans(mod1$aic)

## AIC BIC cAIC
## 1003.879 1024.662 NA

colMeans(mod2$aic)

## AIC BIC cAIC
## 1000.806 1014.662 NA

Since model 2 has a lower average AIC, one might wish to proceed with inference using that model.

• For any complex random effect structures (e.g., nested) or anytime more than one variable is specified
on the righthand side of the | symbol in the random effects formula , the column name in the data
data.frame corresponding to the subject-ID should be specified in the argument subj_ID to avoid any
confusion. See the example below:
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mod <- fui(Y ~ treatment + # main effect of cue
(treatment | id/trial), # random intercept
data = dat,
subj_ID = "id")

Model Fit Plots

After fitting a model, one can quickly visualize estimates and 95% confidence intervals with out plot function.

mod <- fui(Y ~ treatment + # main effect of cue
(1 | id), # random intercept
data = dat)

## [1] "Step 1: Fit Massively Univariate Mixed Models"
## [1] "Step 2: Smoothing"
## [1] "Step 3: Inference (Analytic)"
## [1] "Step 3.1: Preparation"
## [1] "Step 3.1.1: Method of Moments Covariance Estimator Random Intercept"
## [1] "Step 3.1.2: Smooth G"
## [1] "Step 3.2: First step"
## [1] "Step 3.3: Second step"

## Complete!
## -Use plot_fui() function to plot estimates.
## -For more information, run the command: ?plot_fui

fui_plot <- plot_fui(mod)
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In some cases, especially if the functional domain is time, one may wish to rescale the x-axis (using the
x_rescale argument) according to the sampling rate and align the plot to a certain time-point (using the
align_x argument). We also allow the user to adjust how many rows the plots are plotted on (through the
nrow argument). Each coefficient’s plot can be given a plot title through the vector argument title_names
and the x-axis can be named through the xlab argument.

align_time <- 1 # cue onset is at 2 seconds
sampling_Hz <- 15 # sampling rate
# plot titles: interpretation of beta coefficients
plot_names <- c("Intercept", "Mean Signal Difference: Cue1 - Cue0")
fui_plot <- plot_fui(mod, # model fit object

x_rescale = sampling_Hz, # rescale x-axis to sampling rate
align_x = align_time, # align to cue onset
title_names = plot_names,
xlab = "Time (s)",
num_row = 2)
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One can access the regression coefficient estimates and associated pointwise and joint 95% confidence intervals
by looking at the object outputted from the plot_fui() function. This is stored in the object which is a
list that has p elements (one for each fixed effect). Each element in that list (named according to the
corresponding fixed effects covariate) is a data-frame that has L rows (L is number of points observed along
the functional domain) and columns for coefficient estimates and 95% CIs.

Advanced Options

Additional fui() arguments

• Note that the package automatically outputs the status of the code at each step, but this can be turned
off by setting silent = FALSE.

• The number of knots for smoothing can be adjusted by nknots_min argument which defaults to L/2.

• The manner for tuning the smoothing hyperparameter (see mgcv package for more information) can
be adjusted through the argument smooth_method. Options are GCV and GCV.Cp and REML. Defaults
to GCV.Cp.

• The type of spline is adjusted in the argument splines. Options include tp, ts, cr, cs te, ds, bs,
gp and more (see smooth.terms page from the mgcv package for more information). Defaults to thin
plate: tp.

• design_mat specifies whether the design matrix is returned. Defaults to FALSE.

• residuals specifies whether the residuals of the univariate GLMM fits are returned. Defaults to FALSE.
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• G_return specifies whether the covariance matrices G() are returned. See Cui et al. (2022) for more
information. Defaults to FALSE.

• caic specifies whether conditional AIC model fit criteria are returned alongside AIC and BIC. Defaults
to FALSE.

• REs specifies whether the BLUP random effect estimates from the univariate GLMM fits are returned.
These estimates are directly taken from the output of lmer() and glmer(). Defaults to FALSE.

• non_neg specifies whether any non-negativity constraints are placed on variance terms in the Method
of Moments estimator for G(). We recommend keeping this at its default non_neg=0.

• MoM specifies the type of Method of Moments estimator for G(). It is possible that for very large
datasets and certain random effects structures that MoM=1 may reduce the computational burden but
the statistical performance of this setting is unknown. We therefore highly recommend keeping this at
its default MoM=2.

Additional plot_fui() arguments

• num_row specifies the number of rows the plots will be displayed on. Defaults to p/2
• align_x aligns the plot to a certain point on the functional domain and sets this as “0.’ ’ This is

particularly useful if time is the functional domain. Defaults to 0.
• x_rescale rescales the x-axis of plots which is especially useful if time is the functional domain and

one wishes to, for example, account for the sampling rate. Defaults to 1.
• title_names Allows one to change the titles of the plots. Takes in a vector of strings. Defaults to

NULL which uses the variable names in the dataframe for titles.
• y_val_lim is a positive scalar that extends the y-axis by a factor for visual purposes. Defaults to 1.10.

Typically does not require adjustment.
• ylim takes in a 2 × 1 vector that specifies limits of the y-axis in plots.
• y_scal_orig a positive scalar that determines how much to reduce the length of the y-axis on the

bottom. Typically does not require adjustment. Defaults to 0.05.
• xlab takes in a string for the x-axis title (i.e., the functional domain). Defaults to “Time (s)’ ’

Troubleshooting

• You are welcome to contact us about fastFMM at gloewinger@gmail.com with any questions or error
reports.

• This GitHub account gloewing/fastFMM hosts the development version of fastFMM.

• The following warning messages can occur

– “Warning messages: 1: In sqrt(Eigen$values) : NaNs produced’ ’ – this can occur when using
bootstrap confidence intervals because of the used functional PCA functions. It can be safely
ignored.

– ‘Warning in checkConv(attr(opt, "derivs"), opt, ctrl = control checkConv: Model
failed to converge with max|grad'' -- this is alme4‘ warning message: for data sets
with many observations or for models with many parameters (e.g., random effects, fixed effects),
convergence warnings are not uncommon. This warning message comes from point-wise mixed
model fits. Therefore if these warnings are issued for many points along the functional domain,
you may want to consider your fixed or random effect specification. If the warning is only issued
for a few points on the functional domain, you may not need to alter your model specification.
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– ‘Warning in checkConv(attr(opt, "derivs"), opt.par, ctrl = control.checkConv,
: Model is nearly unidentifiable: very large eigenvalue: - Rescale variables?
Model is nearly unidentifiable: large eigenvalue ratio'' -- This is alme4warning
message --This warning can frequently be resolved by scaling continuous covariates,
for example, with the commandscale()--For more information on thelme4‘ package,
warning messages, model syntax and general mixed modeling information, see: Doug Bates.
lme4: Mixed-effects modeling with R (2022).
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