
Package ‘ggdist’
March 5, 2024

Title Visualizations of Distributions and Uncertainty

Version 3.3.2

Date 2024-03-03

Maintainer Matthew Kay <mjskay@northwestern.edu>

Description
Provides primitives for visualizing distributions using 'ggplot2' that are particularly tuned for
visualizing uncertainty in either a frequentist or Bayesian mode. Both analytical distribu-
tions (such as
frequentist confidence distributions or Bayesian priors) and distributions represented as sam-
ples (such as
bootstrap distributions or Bayesian posterior samples) are easily visualized. Visualization primi-
tives include
but are not limited to: points with multiple uncertainty intervals,
eye plots (Spiegelhalter D., 1999) <https:
//ideas.repec.org/a/bla/jorssa/v162y1999i1p45-58.html>,
density plots, gradient plots, dot plots (Wilkin-
son L., 1999) <doi:10.1080/00031305.1999.10474474>,
quantile dot plots (Kay M., Kola T., Hullman J., Mun-
son S., 2016) <doi:10.1145/2858036.2858558>,
complementary cumulative distribution function
barplots (Fernandes M., Walls L., Munson S., Hull-
man J., Kay M., 2018) <doi:10.1145/3173574.3173718>,
and fit curves with multiple uncertainty ribbons.

Depends R (>= 3.6.0)

Imports ggplot2 (>= 3.5.0), rlang (>= 0.3.0), cli, scales, grid,
tibble, vctrs, withr, distributional (>= 0.3.2), numDeriv,
glue, quadprog, gtable, Rcpp

Suggests tidyselect, dplyr (>= 1.0.0), fda, posterior, beeswarm (>=
0.4.0), rmarkdown, knitr, testthat (>= 3.0.0), vdiffr (>=
1.0.0), svglite (>= 2.1.0), fontquiver, sysfonts, showtext,
mvtnorm, covr, broom (>= 0.5.6), patchwork, tidyr (>= 1.0.0),
ragg, pkgdown

License GPL (>= 3)

Language en-US

1

https://ideas.repec.org/a/bla/jorssa/v162y1999i1p45-58.html
https://ideas.repec.org/a/bla/jorssa/v162y1999i1p45-58.html
https://doi.org/10.1080/00031305.1999.10474474
https://doi.org/10.1145/2858036.2858558
https://doi.org/10.1145/3173574.3173718

2 R topics documented:

BugReports https://github.com/mjskay/ggdist/issues/new

URL https://mjskay.github.io/ggdist/,

https://github.com/mjskay/ggdist/

VignetteBuilder knitr

RoxygenNote 7.3.1

LazyData true

Encoding UTF-8

Collate ``ggdist-package.R'' ``util.R'' ``compat.R'' ``rd.R'' ``RcppExports.R''
``abstract_geom.R'' ``abstract_stat.R''
``abstract_stat_slabinterval.R'' ``auto_partial.R''
``binning_methods.R'' ``bounder.R'' ``curve_interval.R''
``cut_cdf_qi.R'' ``data.R'' ``density.R'' ``distributions.R''
``draw_key_slabinterval.R'' ``geom.R'' ``geom_slabinterval.R''
``geom_dotsinterval.R'' ``geom_blur_dots.R'' ``geom_interval.R''
``geom_lineribbon.R'' ``geom_pointinterval.R'' ``geom_slab.R''
``geom_spike.R'' ``geom_swarm.R'' ``guide_rampbar.R''
``lkjcorr_marginal.R'' ``parse_dist.R'' ``partial_colour_ramp.R''
``point_interval.R'' ``position_dodgejust.R'' ``pr.R''
``rd_dotsinterval.R'' ``rd_slabinterval.R'' ``rd_spike.R''
``rd_lineribbon.R'' ``scale_colour_ramp.R'' ``scale_thickness.R''
``scale_side_mirrored.R'' ``scale_.R'' ``smooth.R'' ``stat.R''
``stat_slabinterval.R'' ``stat_dotsinterval.R'' ``stat_mcse_dots.R''
``stat_pointinterval.R'' ``stat_interval.R'' ``stat_lineribbon.R''
``stat_spike.R'' ``student_t.R'' ``subguide.R'' ``testthat.R''
``theme_ggdist.R'' ``tidy_format_translators.R'' ``weighted_ecdf.R''
``weighted_hist.R'' ``weighted_quantile.R'' ``deprecated.R''

Config/testthat/edition 3

LinkingTo Rcpp

NeedsCompilation yes

Author Matthew Kay [aut, cre],
Brenton M. Wiernik [ctb]

Repository CRAN

Date/Publication 2024-03-05 05:30:23 UTC

R topics documented:
ggdist-package . 4
align . 5
auto_partial . 7
bandwidth . 9
bin_dots . 10
blur . 12
bounder_cdf . 13

https://github.com/mjskay/ggdist/issues/new
https://mjskay.github.io/ggdist/
https://github.com/mjskay/ggdist/

R topics documented: 3

bounder_cooke . 15
bounder_range . 16
breaks . 16
curve_interval . 18
cut_cdf_qi . 22
density_bounded . 24
density_histogram . 27
density_unbounded . 30
find_dotplot_binwidth . 32
geom_blur_dots . 34
geom_dots . 42
geom_dotsinterval . 50
geom_interval . 60
geom_lineribbon . 64
geom_pointinterval . 68
geom_slab . 73
geom_slabinterval . 78
geom_spike . 85
geom_swarm . 89
geom_weave . 97
ggdist-deprecated . 105
guide_rampbar . 107
lkjcorr_marginal . 109
marginalize_lkjcorr . 111
parse_dist . 113
partial_colour_ramp . 116
point_interval . 117
position_dodgejust . 122
Pr_ . 125
ramp_colours . 127
scale_colour_ramp . 128
scale_side_mirrored . 130
scale_thickness . 132
smooth_density . 136
smooth_discrete . 139
smooth_none . 141
stat_ccdfinterval . 142
stat_cdfinterval . 152
stat_dots . 162
stat_dotsinterval . 171
stat_eye . 181
stat_gradientinterval . 191
stat_halfeye . 202
stat_histinterval . 211
stat_interval . 221
stat_lineribbon . 227
stat_mcse_dots . 232
stat_pointinterval . 241

4 ggdist-package

stat_ribbon . 248
stat_slab . 253
stat_slabinterval . 261
stat_spike . 272
student_t . 280
sub-geometry-scales . 282
subguide_axis . 287
subguide_none . 289
theme_ggdist . 290
tidy-format-translators . 291
weighted_ecdf . 293
weighted_quantile . 294

Index 297

ggdist-package Visualizations of Distributions and Uncertainty

Description

ggdist is an R package that aims to make it easy to integrate popular Bayesian modeling methods
into a tidy data + ggplot workflow.

Details

ggdist is an R package that provides a flexible set of ggplot2 geoms and stats designed espe-
cially for visualizing distributions and uncertainty. It is designed for both frequentist and Bayesian
uncertainty visualization, taking the view that uncertainty visualization can be unified through the
perspective of distribution visualization: for frequentist models, one visualizes confidence distribu-
tions or bootstrap distributions (see vignette("freq-uncertainty-vis")); for Bayesian models,
one visualizes probability distributions (see vignette("tidybayes", package = "tidybayes")).

The geom_slabinterval() / stat_slabinterval() family (see vignette("slabinterval"))
makes it easy to visualize point summaries and intervals, eye plots, half-eye plots, ridge plots,
CCDF bar plots, gradient plots, histograms, and more.

The geom_dotsinterval() / stat_dotsinterval() family (see vignette("dotsinterval"))
makes it easy to visualize dot+interval plots, Wilkinson dotplots, beeswarm plots, and quantile
dotplots.

The geom_lineribbon() / stat_lineribbon() family (see vignette("lineribbon")) makes it
easy to visualize fit lines with an arbitrary number of uncertainty bands.

Author(s)

Maintainer: Matthew Kay <mjskay@northwestern.edu>

Other contributors:

• Brenton M. Wiernik <brenton@wiernik.org> [contributor]

align 5

See Also

Useful links:

• https://mjskay.github.io/ggdist/

• https://github.com/mjskay/ggdist/

• Report bugs at https://github.com/mjskay/ggdist/issues/new

align Break (bin) alignment methods

Description

Methods for aligning breaks (bins) in histograms, as used in the align argument to density_histogram().

Supports automatic partial function application.

Usage

align_none(breaks)

align_boundary(breaks, at = 0)

align_center(breaks, at = 0)

Arguments

breaks A sorted vector of breaks (bin edges).

at A scalar numeric giving an alignment point.

• For align_boundary(): align breaks so that a bin edge lines up with at.
• For align_center(): align breaks so that the center of a bin lines up with
at.

Details

These functions take a sorted vector of equally-spaced breaks giving bin edges and return a numeric
offset which, if subtracted from breaks, will align them as desired:

• align_none() performs no alignment (it always returns 0).

• align_boundary() ensures that a bin edge lines up with at.

• align_center() ensures that a bin center lines up with at.

For align_boundary() (respectively align_center()), if no bin edge (or center) in the range of
breaks would line up with at, it ensures that at is an integer multiple of the bin width away from
a bin edge (or center).

https://mjskay.github.io/ggdist/
https://github.com/mjskay/ggdist/
https://github.com/mjskay/ggdist/issues/new

6 align

Value

A scalar numeric returning an offset to be subtracted from breaks.

See Also

density_histogram(), breaks

Examples

library(ggplot2)

set.seed(1234)
x = rnorm(200, 1, 2)

If we manually specify a bin width using breaks_fixed(), the default
alignment (align_none()) will not align bin edges to any "pretty" numbers.
Here is a comparison of the three alignment methods on such a histogram:
ggplot(data.frame(x), aes(x)) +

stat_slab(
aes(y = "align_none()\nor 'none'"),
density = "histogram",
breaks = breaks_fixed(width = 1),
outline_bars = TRUE,
no need to specify align; align_none() is the default
color = "black",

) +
stat_slab(

aes(y = "align_center(at = 0)\nor 'center'"),
density = "histogram",
breaks = breaks_fixed(width = 1),
align = align_center(at = 0), # or align = "center"
outline_bars = TRUE,
color = "black",

) +
stat_slab(

aes(y = "align_boundary(at = 0)\nor 'boundary'"),
density = "histogram",
breaks = breaks_fixed(width = 1),
align = align_boundary(at = 0), # or align = "boundary"
outline_bars = TRUE,
color = "black",

) +
geom_point(aes(y = 0.7), alpha = 0.5) +
labs(

subtitle = "ggdist::stat_slab(density = 'histogram', ...)",
y = "align =",
x = NULL

) +
geom_vline(xintercept = 0, linetype = "22", color = "red")

auto_partial 7

auto_partial Automatic partial function application in ggdist

Description

Several ggdist functions support automatic partial application: when called, if all of their required
arguments have not been provided, the function returns a modified version of itself that uses the
arguments passed to it so far as defaults. Technically speaking, these functions are essentially
"Curried" with respect to their required arguments, but I think "automatic partial application" gets
the idea across more clearly.

Functions supporting automatic partial application include:

• The point_interval() family, such as median_qi(), mean_qi(), mode_hdi(), etc.

• The smooth_ family, such as smooth_bounded(), smooth_unbounded(), smooth_discrete(),
and smooth_bar().

• The density_ family, such as density_bounded(), density_unbounded() and density_histogram().

• The align family.

• The breaks family.

• The bandwidth family.

• The blur family.

Partial application makes it easier to supply custom parameters to these functions when using them
inside other functions, such as geoms and stats. For example, smoothers for geom_dots() can be
supplied in one of three ways:

• as a suffix: geom_dots(smooth = "bounded")

• as a function: geom_dots(smooth = smooth_bounded)

• as a partially-applied function with options: geom_dots(smooth = smooth_bounded(kernel
= "cosine"))

Many other common arguments for ggdist functions work similarly; e.g. density, align, breaks,
bandwidth, and point_interval arguments.

These function families (except point_interval()) also support passing waivers to their optional
arguments: if waiver() is passed to any of these arguments, their default value (or the most
recently-partially-applied non-waiver value) is used instead.

Use the auto_partial() function to create new functions that support automatic partial applica-
tion.

Usage

auto_partial(f, name = NULL, waivable = TRUE)

8 auto_partial

Arguments

f A function

name A character string giving the name of the function, to be used when printing.

waivable logical: if TRUE, optional arguments that get passed a waiver() will keep their
default value (or whatever non-waiver value has been most recently partially
applied for that argument).

Value

A modified version of f that will automatically be partially applied if all of its required arguments
are not given.

Examples

set.seed(1234)
x = rnorm(100)

the first required argument, `x`, of the density_ family is the vector
to calculate a kernel density estimate from. If it is not provided, the
function is partially applied and returned as-is
density_unbounded()

we could create a new function that uses half the default bandwidth
density_half_bw = density_unbounded(adjust = 0.5)
density_half_bw

we can overwrite partially-applied arguments
density_quarter_bw_trimmed = density_half_bw(adjust = 0.25, trim = TRUE)
density_quarter_bw_trimmed

when we eventually call the function and provide the required argument
`x`, it is applied using the arguments we have "saved up" so far
density_quarter_bw_trimmed(x)

create a custom automatically partially applied function
f = auto_partial(function(x, y, z = 3) (x + y) * z)
f()
f(1)
g = f(y = 2)(z = 4)
g
g(1)

pass waiver() to optional arguments to use existing values
f(z = waiver())(1, 2) # uses default z = 3
f(z = 4)(z = waiver())(1, 2) # uses z = 4

bandwidth 9

bandwidth Bandwidth estimators

Description

Bandwidth estimators for densities, used in the bandwidth argument to density functions (e.g.
density_bounded(), density_unbounded()).

Supports automatic partial function application.

Usage

bandwidth_nrd0(x, ...)

bandwidth_nrd(x, ...)

bandwidth_ucv(x, ...)

bandwidth_bcv(x, ...)

bandwidth_SJ(x, ...)

bandwidth_dpi(x, ...)

Arguments

x A numeric vector giving a sample.
... Arguments passed on to stats::bw.SJ

nb number of bins to use.
lower,upper range over which to minimize. The default is almost always sat-

isfactory. hmax is calculated internally from a normal reference bandwidth.
method either "ste" ("solve-the-equation") or "dpi" ("direct plug-in"). Can be

abbreviated.
tol for method "ste", the convergence tolerance for uniroot. The default

leads to bandwidth estimates with only slightly more than one digit accu-
racy, which is sufficient for practical density estimation, but possibly not
for theoretical simulation studies.

Details

These are loose wrappers around the corresponding bw.-prefixed functions in stats. See, for exam-
ple, bw.SJ().

bandwidth_dpi(), which is the default bandwidth estimator in ggdist, is the Sheather-Jones direct
plug-in estimator, i.e. bw.SJ(..., method = "dpi").

Value

A single number giving the bandwidth

10 bin_dots

See Also

density_bounded(), density_unbounded().

bin_dots Bin data values using a dotplot algorithm

Description

Bins the provided data values using one of several dotplot algorithms.

Usage

bin_dots(
x,
y,
binwidth,
heightratio = 1,
stackratio = 1,
layout = c("bin", "weave", "hex", "swarm", "bar"),
side = c("topright", "top", "right", "bottomleft", "bottom", "left", "topleft",

"bottomright", "both"),
orientation = c("horizontal", "vertical", "y", "x"),
overlaps = "nudge"

)

Arguments

x numeric vector of x values

y numeric vector of y values

binwidth bin width

heightratio ratio of bin width to dot height

stackratio ratio of dot height to vertical distance between dot centers

layout The layout method used for the dots:

• "bin" (default): places dots on the off-axis at the midpoint of their bins
as in the classic Wilkinson dotplot. This maintains the alignment of rows
and columns in the dotplot. This layout is slightly different from the classic
Wilkinson algorithm in that: (1) it nudges bins slightly to avoid overlapping
bins and (2) if the input data are symmetrical it will return a symmetrical
layout.

• "weave": uses the same basic binning approach of "bin", but places dots in
the off-axis at their actual positions (unless overlaps = "nudge", in which
case overlaps may be nudged out of the way). This maintains the alignment
of rows but does not align dots within columns.

bin_dots 11

• "hex": uses the same basic binning approach of "bin", but alternates plac-
ing dots + binwidth/4 or - binwidth/4 in the off-axis from the bin center.
This allows hexagonal packing by setting a stackratio less than 1 (some-
thing like 0.9 tends to work).

• "swarm": uses the "compactswarm" layout from beeswarm::beeswarm().
Does not maintain alignment of rows or columns, but can be more compact
and neat looking, especially for sample data (as opposed to quantile dotplots
of theoretical distributions, which may look better with "bin", "weave", or
"hex").

• "bar": for discrete distributions, lays out duplicate values in rectangular
bars.

side Which side to place the slab on. "topright", "top", and "right" are syn-
onyms which cause the slab to be drawn on the top or the right depending on
if orientation is "horizontal" or "vertical". "bottomleft", "bottom",
and "left" are synonyms which cause the slab to be drawn on the bottom or the
left depending on if orientation is "horizontal" or "vertical". "topleft"
causes the slab to be drawn on the top or the left, and "bottomright" causes
the slab to be drawn on the bottom or the right. "both" draws the slab mirrored
on both sides (as in a violin plot).

orientation Whether the dots are laid out horizontally or vertically. Follows the naming
scheme of geom_slabinterval():

• "horizontal" assumes the data values for the dotplot are in the x variable
and that dots will be stacked up in the y direction.

• "vertical" assumes the data values for the dotplot are in the y variable
and that dots will be stacked up in the x direction.

For compatibility with the base ggplot naming scheme for orientation, "x"
can be used as an alias for "vertical" and "y" as an alias for "horizontal".

overlaps How to handle overlapping dots or bins in the "bin", "weave", and "hex" lay-
outs (dots never overlap in the "swarm" or "bar" layouts). For the purposes of
this argument, dots are only considered to be overlapping if they would be over-
lapping when dotsize = 1 and stackratio = 1; i.e. if you set those arguments
to other values, overlaps may still occur. One of:

• "keep": leave overlapping dots as they are. Dots may overlap (usually only
slightly) in the "bin", "weave", and "hex" layouts.

• "nudge": nudge overlapping dots out of the way. Overlaps are avoided
using a constrained optimization which minimizes the squared distance of
dots to their desired positions, subject to the constraint that adjacent dots
do not overlap.

Value

A data.frame with three columns:

• x: the x position of each dot

• y: the y position of each dot

• bin: a unique number associated with each bin (supplied but not used when layout = "swarm")

12 blur

See Also

find_dotplot_binwidth() for an algorithm that finds good bin widths to use with this function;
geom_dotsinterval() for geometries that use these algorithms to create dotplots.

Examples

library(dplyr)
library(ggplot2)

x = qnorm(ppoints(20))
bin_df = bin_dots(x = x, y = 0, binwidth = 0.5, heightratio = 1)
bin_df

we can manually plot the binning above, though this is only recommended
if you are using find_dotplot_binwidth() and bin_dots() to build your own
grob. For practical use it is much easier to use geom_dots(), which will
automatically select good bin widths for you (and which uses
find_dotplot_binwidth() and bin_dots() internally)
bin_df %>%

ggplot(aes(x = x, y = y)) +
geom_point(size = 4) +
coord_fixed()

blur Blur functions for blurry dot plots

Description

Methods for constructing blurs, as used in the blur argument to geom_blur_dots() or stat_mcse_dots().

Supports automatic partial function application.

Usage

blur_gaussian(x, r, sd)

blur_interval(x, r, sd, .width = 0.95)

Arguments

x numeric vector of positive distances from the center of the dot (assumed to be
0) to evaluate blur function at.

r radius of the dot that is being blurred.

sd standard deviation of the dot that is being blurred.

.width for blur_interval(), a probability giving the width of the interval.

bounder_cdf 13

Details

These functions are passed x, r, and sd when geom_blur_dots() draws in order to create a radial
gradient representing each dot in the dotplot. They return values between 0 and 1 giving the opacity
of the dot at each value of x.

blur_gaussian() creates a dot with radius r that has a Gaussian blur with standard deviation sd
applied to it. It does this by calculating α(x; r, σ), the opacity at distance x from the center of a dot
with radius r that has had a Gaussian blur with standard deviation σ = sd applied to it:

α(x; r, σ) = Φ

(
x+ r

σ

)
− Φ

(
x− r
σ

)
blur_interval() creates an interval-type representation around the dot at 50% opacity, where the
interval is a Gaussian quantile interval with mass equal to .width and standard deviation sd.

Value

A vector of length x giving the opacity of the radial gradient representing the dot at each x value.

See Also

geom_blur_dots() and stat_mcse_dots() for geometries making use of blurs.

Examples

see examples in geom_blur_dots()

bounder_cdf Estimate bounds of a distribution using the CDF of its order statistics

Description

Estimate the bounds of the distribution a sample came from using the CDF of the order statistics of
the sample. Use with the bounder argument to density_bounded().

Supports automatic partial function application.

Usage

bounder_cdf(x, p = 0.01)

Arguments

x numeric vector containing a sample to estimate the bounds of.

p scalar in [0, 1]: percentile of the order statistic distribution to use as the estimate.
p = 1 will return range(x); p = 0.5 will give the median estimate, p = 0 will give
a very wide estimate (effectively treating the distribution as unbounded when
used with density_bounded()).

14 bounder_cdf

Details

bounder_cdf() uses the distribution of the order statistics of X to estimate where the first and
last order statistics (i.e. the min and max) of this distribution would be, assuming the sample x is
the distribution. Then, it adjusts the boundary outwards from min(x) (or max(x)) by the distance
between min(x) (or max(x)) and the nearest estimated order statistic.

Taking X = x, the distributions of the first and last order statistics are:

FX(1)
(x) = 1− [1− FX(x)]

n

FX(n)
(x) = FX(x)n

Re-arranging, we can get the inverse CDFs (quantile functions) of each order statistic in terms of
the quantile function of X (which we can estimate from the data), giving us an estimate for the
minimum and maximum order statistic:

x̂1 = F−1
X(1)

(p) = F−1
X

[
1− (1− p)1/n

]
x̂n = F−1

X(n)
(p) = F−1

X

[
p1/n

]
Then the estimated bounds are:

[2 min(x)− x̂1, 2 max(x)− x̂n]

These bounds depend on p, the percentile of the distribution of the order statistic used to form
the estimate. While p = 0.5 (the median) might be a reasonable choice (and gives results similar
to bounder_cooke()), this tends to be a bit too aggressive in "detecting" bounded distributions,
especially in small sample sizes. Thus, we use a default of p = 0.01, which tends to be very
conservative in small samples (in that it usually gives results roughly equivalent to an unbounded
distribution), but which still performs well on bounded distributions when sample sizes are larger
(in the thousands).

Value

A length-2 numeric vector giving an estimate of the minimum and maximum bounds of the distri-
bution that x came from.

See Also

The bounder argument to density_bounded().

Other bounds estimators: bounder_cooke(), bounder_range()

bounder_cooke 15

bounder_cooke Estimate bounds of a distribution using Cooke’s method

Description

Estimate the bounds of the distribution a sample came from using Cooke’s method. Use with the
bounder argument to density_bounded().

Supports automatic partial function application.

Usage

bounder_cooke(x)

Arguments

x numeric vector containing a sample to estimate the bounds of.

Details

Estimate the bounds of a distribution using the method from Cooke (1979); i.e. method 2.3 from
Loh (1984). These bounds are:

[
2X(1) −

∑n
i=1

[(
1− i−1

n

)n − (1− i
n

)n]
X(i)

2X(n) −
∑n

i=1

[(
1− n−i

n

)n − (1− n+1−i
n

)n]
X(i)

]
Where X(i) is the ith order statistic of x (i.e. its ith-smallest value).

Value

A length-2 numeric vector giving an estimate of the minimum and maximum bounds of the distri-
bution that x came from.

References

Cooke, P. (1979). Statistical inference for bounds of random variables. Biometrika 66(2), 367–374.
doi:10.1093/biomet/66.2.367.

Loh, W. Y. (1984). Estimating an endpoint of a distribution with resampling methods. The Annals
of Statistics 12(4), 1543–1550. doi:10.1214/aos/1176346811

See Also

The bounder argument to density_bounded().

Other bounds estimators: bounder_cdf(), bounder_range()

https://doi.org/10.1093/biomet/66.2.367
https://doi.org/10.1214/aos/1176346811

16 breaks

bounder_range Estimate bounds of a distribution using the range of the sample

Description

Estimate the bounds of the distribution a sample came from using the range of the sample. Use with
the bounder argument to density_bounded().

Supports automatic partial function application.

Usage

bounder_range(x)

Arguments

x numeric vector containing a sample to estimate the bounds of.

Details

Estimate the bounds of a distribution using range(x).

Value

A length-2 numeric vector giving an estimate of the minimum and maximum bounds of the distri-
bution that x came from.

See Also

The bounder argument to density_bounded().

Other bounds estimators: bounder_cdf(), bounder_cooke()

breaks Break (bin) selection algorithms for histograms

Description

Methods for determining breaks (bins) in histograms, as used in the breaks argument to density_histogram().

Supports automatic partial function application.

breaks 17

Usage

breaks_fixed(x, weights = NULL, width = 1)

breaks_Sturges(x, weights = NULL)

breaks_Scott(x, weights = NULL)

breaks_FD(x, weights = NULL, digits = 5)

breaks_quantiles(x, weights = NULL, max_n = "Scott", min_width = 0.5)

Arguments

x A numeric vector giving a sample.

weights A numeric vector of length(x) giving sample weights.

width For breaks_fixed(), the desired bin width.

digits For breaks_FD(), the number of significant digits to keep when rounding in
the Freedman-Diaconis algorithm. For an explanation of this parameter, see the
documentation of the corresponding parameter in grDevices::nclass.FD().

max_n For breaks_quantiles(), either a scalar numeric giving the maximum number
of bins, or another breaks function (or string giving the suffix of the name of a
function prefixed with "breaks_") that will return the maximum number of
bins. breaks_quantiles() will construct at most max_n bins.

min_width For breaks_quantiles(), a scalar numeric between 0 and 1 giving the mini-
mum bin width as a proportion of diff(range(x)) / max_n.

Details

These functions take a sample and its weights and return a value suitable for the breaks argument
to density_histogram() that will determine the histogram breaks.

• breaks_fixed() allows you to manually specify a fixed bin width.

• breaks_Sturges(), breaks_Scott(), and breaks_FD() implement weighted versions of
their corresponding base functions. They return a scalar numeric giving the number of bins.
See nclass.Sturges(), nclass.scott(), and nclass.FD().

• breaks_quantiles() constructs irregularly-sized bins using max_n + 1 (possibly weighted)
quantiles of x. The final number of bins is at most max_n, as small bins (ones whose bin width
is less than half the range of the data divided by max_n times min_width) will be merged into
adjacent bins.

Value

Either a single number (giving the number of bins) or a vector giving the edges between bins.

See Also

density_histogram(), align

18 curve_interval

Examples

library(ggplot2)

set.seed(1234)
x = rnorm(200, 1, 2)

Let's compare the different break-selection algorithms on this data:
ggplot(data.frame(x), aes(x)) +

stat_slab(
aes(y = "breaks_fixed(width = 0.5)"),
density = "histogram",
breaks = breaks_fixed(width = 0.5),
outline_bars = TRUE,
color = "black",

) +
stat_slab(

aes(y = "breaks_Sturges()\nor 'Sturges'"),
density = "histogram",
breaks = "Sturges",
outline_bars = TRUE,
color = "black",

) +
stat_slab(

aes(y = "breaks_Scott()\nor 'Scott'"),
density = "histogram",
breaks = "Scott",
outline_bars = TRUE,
color = "black",

) +
stat_slab(

aes(y = "breaks_FD()\nor 'FD'"),
density = "histogram",
breaks = "FD",
outline_bars = TRUE,
color = "black",

) +
geom_point(aes(y = 0.7), alpha = 0.5) +
labs(

subtitle = "ggdist::stat_slab(density = 'histogram', ...)",
y = "breaks =",
x = NULL

)

curve_interval Curvewise point and interval summaries for tidy data frames of draws
from distributions

Description

Translates draws from distributions in a grouped data frame into a set of point and interval sum-
maries using a curve boxplot-inspired approach.

curve_interval 19

Usage

curve_interval(
.data,
...,
.along = NULL,
.width = 0.5,
na.rm = FALSE,
.interval = c("mhd", "mbd", "bd", "bd-mbd")

)

S3 method for class 'matrix'
curve_interval(
.data,
...,
.along = NULL,
.width = 0.5,
na.rm = FALSE,
.interval = c("mhd", "mbd", "bd", "bd-mbd")

)

S3 method for class 'rvar'
curve_interval(
.data,
...,
.along = NULL,
.width = 0.5,
na.rm = FALSE,
.interval = c("mhd", "mbd", "bd", "bd-mbd")

)

S3 method for class 'data.frame'
curve_interval(
.data,
...,
.along = NULL,
.width = 0.5,
na.rm = FALSE,
.interval = c("mhd", "mbd", "bd", "bd-mbd"),
.simple_names = TRUE,
.exclude = c(".chain", ".iteration", ".draw", ".row")

)

Arguments

.data One of:

• A data frame (or grouped data frame as returned by dplyr::group_by())
that contains draws to summarize.

• A posterior::rvar vector.

20 curve_interval

• A matrix; in which case the first dimension should be draws and the second
dimension values of the curve.

... Bare column names or expressions that, when evaluated in the context of .data,
represent draws to summarize. If this is empty, then by default all columns that
are not group columns and which are not in .exclude (by default ".chain",
".iteration", ".draw", and ".row") will be summarized. This can be nu-
meric columns, list columns containing numeric vectors, or posterior::rvar()s.

.along Which columns are the input values to the function describing the curve (e.g.,
the "x" values). Supports tidyselect syntax. Intervals are calculated jointly with
respect to these variables, conditional on all other grouping variables in the data
frame. The default (NULL) causes curve_interval() to use all grouping vari-
ables in the input data frame as the value for .along, which will generate the
most conservative intervals. However, if you want to calculate intervals for
some function y = f(x) conditional on some other variable(s) (say, conditional
on a factor g), you would group by g, then use .along = x to calculate inter-
vals jointly over x conditional on g. To avoid selecting any variables as input
values to the function describing the curve, use character(); this will pro-
duce conditional intervals only (the result in this case should be very similar to
median_qi()). Currently only supported when .data is a data frame.

.width vector of probabilities to use that determine the widths of the resulting intervals.
If multiple probabilities are provided, multiple rows per group are generated,
each with a different probability interval (and value of the corresponding .width
column).

na.rm logical value indicating whether NA values should be stripped before the compu-
tation proceeds. If FALSE (the default), the presence of NA values in the columns
to be summarized will generally result in an error. If TRUE, NA values will be
removed in the calculation of intervals so long as .interval is "mhd"; other
methods do not currently support na.rm. Be cautious in applying this param-
eter: in general, it is unclear what a joint interval should be when any of the
values are missing!

.interval The method used to calculate the intervals. Currently, all methods rank the
curves using some measure of data depth, then create envelopes containing the
.width% "deepest" curves. Available methods are:

• "mhd": mean halfspace depth (Fraiman and Muniz 2001).
• "mbd": modified band depth (Sun and Genton 2011): calls fda::fbplot()

with method = "MBD".
• "bd": band depth (Sun and Genton 2011): calls fda::fbplot() with method
= "BD2".

• "bd-mbd": band depth, breaking ties with modified band depth (Sun and
Genton 2011): calls fda::fbplot() with method = "Both".

.simple_names When TRUE and only a single column / vector is to be summarized, use the name
.lower for the lower end of the interval and .upper for the upper end. When
FALSE and .data is a data frame, names the lower and upper intervals for each
column x x.lower and x.upper.

.exclude A character vector of names of columns to be excluded from summarization
if no column names are specified to be summarized. Default ignores several
meta-data column names used in ggdist and tidybayes.

curve_interval 21

Details

Intervals are calculated by ranking the curves using some measure of data depth, then using binary
search to find a cutoff k such that an envelope containing the k% "deepest" curves also contains
.width% of the curves, for each value of .width (note that k and .width are not necessarily the
same). This is in contrast to most functional boxplot or curve boxplot approaches, which tend to
simply take the .width% deepest curves, and are generally quite conservative (i.e. they may contain
more than .width% of the curves).

See Mirzargar et al. (2014) or Juul et al. (2020) for an accessible introduction to data depth and
curve boxplots / functional boxplots.

Value

A data frame containing point summaries and intervals, with at least one column corresponding
to the point summary, one to the lower end of the interval, one to the upper end of the interval,
the width of the interval (.width), the type of point summary (.point), and the type of interval
(.interval).

Author(s)

Matthew Kay

References

Fraiman, Ricardo and Graciela Muniz. (2001). "Trimmed means for functional data". Test 10:
419–440. doi:10.1007/BF02595706.

Sun, Ying and Marc G. Genton. (2011). "Functional Boxplots". Journal of Computational and
Graphical Statistics, 20(2): 316-334. doi:10.1198/jcgs.2011.09224

Mirzargar, Mahsa, Ross T Whitaker, and Robert M Kirby. (2014). "Curve Boxplot: Generalization
of Boxplot for Ensembles of Curves". IEEE Transactions on Visualization and Computer Graphics.
20(12): 2654-2663. doi:10.1109/TVCG.2014.2346455

Juul Jonas, Kaare Græsbøll, Lasse Engbo Christiansen, and Sune Lehmann. (2020). "Fixed-
time descriptive statistics underestimate extremes of epidemic curve ensembles". arXiv e-print.
arXiv:2007.05035

See Also

point_interval() for pointwise intervals. See vignette("lineribbon") for more examples and
discussion of the differences between pointwise and curvewise intervals.

Examples

library(dplyr)
library(ggplot2)

generate a set of curves
k = 11 # number of curves
n = 201

https://doi.org/10.1007/BF02595706
https://doi.org/10.1198/jcgs.2011.09224
https://doi.org/10.1109/TVCG.2014.2346455
https://arxiv.org/abs/2007.05035

22 cut_cdf_qi

df = tibble(
.draw = rep(1:k, n),
mean = rep(seq(-5,5, length.out = k), n),
x = rep(seq(-15,15,length.out = n), each = k),
y = dnorm(x, mean, 3)

)

see pointwise intervals...
df %>%

group_by(x) %>%
median_qi(y, .width = c(.5)) %>%
ggplot(aes(x = x, y = y)) +
geom_lineribbon(aes(ymin = .lower, ymax = .upper)) +
geom_line(aes(group = .draw), alpha=0.15, data = df) +
scale_fill_brewer() +
ggtitle("50% pointwise intervals with point_interval()") +
theme_ggdist()

... compare them to curvewise intervals
df %>%

group_by(x) %>%
curve_interval(y, .width = c(.5)) %>%
ggplot(aes(x = x, y = y)) +
geom_lineribbon(aes(ymin = .lower, ymax = .upper)) +
geom_line(aes(group = .draw), alpha=0.15, data = df) +
scale_fill_brewer() +
ggtitle("50% curvewise intervals with curve_interval()") +
theme_ggdist()

cut_cdf_qi Categorize values from a CDF into quantile intervals

Description

Given a vector of probabilities from a cumulative distribution function (CDF) and a list of desired
quantile intervals, return a vector categorizing each element of the input vector according to which
quantile interval it falls into. NOTE: While this function can be used for (and was originally
designed for) drawing slabs with intervals overlaid on the density, this is can now be done more
easily by mapping the .width or level computed variable to slab fill or color. See Examples.

Usage

cut_cdf_qi(p, .width = c(0.66, 0.95, 1), labels = NULL)

Arguments

p A numeric vector of values from a cumulative distribution function, such as val-
ues returned by p-prefixed distribution functions in base R (e.g. pnorm()), the

cut_cdf_qi 23

cdf() function, or values of the cdf computed aesthetic from the stat_slabinterval()
family of stats.

.width vector of probabilities to use that determine the widths of the resulting intervals.

labels One of:

• NULL to use the default labels (.width converted to a character vector).
• A character vector giving labels (must be same length as .width)
• A function that takes numeric probabilities as input and returns labels as

output (a good candidate might be scales::percent_format()).

Value

An ordered factor of the same length as p giving the quantile interval to which each value of p
belongs.

See Also

See stat_slabinterval() and its shortcut stats, which generate cdf aesthetics that can be used
with cut_cdf_qi() to draw slabs colored by their intervals.

Examples

library(ggplot2)
library(dplyr)
library(scales)
library(distributional)

theme_set(theme_ggdist())

NOTE: cut_cdf_qi() used to be the recommended way to do intervals overlaid
on densities, like this...
tibble(x = dist_normal(0, 1)) %>%

ggplot(aes(xdist = x)) +
stat_slab(

aes(fill = after_stat(cut_cdf_qi(cdf)))
) +
scale_fill_brewer(direction = -1)

... however this is now more easily and flexibly accomplished by directly
mapping .width or level onto fill:
tibble(x = dist_normal(0, 1)) %>%

ggplot(aes(xdist = x)) +
stat_slab(

aes(fill = after_stat(level)),
.width = c(.66, .95, 1)

) +
scale_fill_brewer()

See vignette("slabinterval") for more examples. The remaining examples
below using cut_cdf_qi() are kept for posterity.

24 density_bounded

With a halfeye (or other geom with slab and interval), NA values will
show up in the fill scale from the CDF function applied to the internal
interval geometry data and can be ignored, hence na.translate = FALSE
tibble(x = dist_normal(0, 1)) %>%

ggplot(aes(xdist = x)) +
stat_halfeye(aes(
fill = after_stat(cut_cdf_qi(cdf, .width = c(.5, .8, .95, 1)))

)) +
scale_fill_brewer(direction = -1, na.translate = FALSE)

we could also use the labels parameter to apply nicer formatting
and provide a better name for the legend, and omit the 100% interval
if desired
tibble(x = dist_normal(0, 1)) %>%

ggplot(aes(xdist = x)) +
stat_halfeye(aes(

fill = after_stat(cut_cdf_qi(
cdf,
.width = c(.5, .8, .95),
labels = percent_format(accuracy = 1)

))
)) +
labs(fill = "Interval") +
scale_fill_brewer(direction = -1, na.translate = FALSE)

density_bounded Bounded density estimator using the reflection method

Description

Bounded density estimator using the reflection method.

Supports automatic partial function application.

Usage

density_bounded(
x,
weights = NULL,
n = 512,
bandwidth = "dpi",
adjust = 1,
kernel = "gaussian",
trim = FALSE,
bounds = c(NA, NA),
bounder = "cdf",
adapt = 1,
na.rm = FALSE,

density_bounded 25

...,
range_only = FALSE

)

Arguments

x numeric vector containing a sample to compute a density estimate for.

weights optional numeric vector of weights to apply to x.

n numeric: the number of grid points to evaluate the density estimator at.

bandwidth bandwidth of the density estimator. One of:

• a numeric: the bandwidth, as the standard deviation of the kernel
• a function: a function taking x (the sample) and returning the bandwidth
• a string: the suffix of the name of a function starting with "bandwidth_"

that will be used to determine the bandwidth. See bandwidth for a list.

adjust numeric: the bandwidth for the density estimator is multiplied by this value. See
stats::density().

kernel string: the smoothing kernel to be used. This must partially match one of
"gaussian", "rectangular", "triangular", "epanechnikov", "biweight",
"cosine", or "optcosine". See stats::density().

trim Should the density estimate be trimmed to the bounds of the data?

bounds length-2 vector of min and max bounds. If a bound is NA, then that bound is
estimated from the data using the method specified by bounder.

bounder Method to use to find missing (NA) bounds. A function that takes a numeric
vector of values and returns a length-2 vector of the estimated lower and upper
bound of the distribution. Can also be a string giving the suffix of the name of
such a function that starts with "bounder_". Useful values include:

• "cdf": Use the CDF of the the minimum and maximum order statistics of
the sample to estimate the bounds. See bounder_cdf().

• "cooke": Use the method from Cooke (1979); i.e. method 2.3 from Loh
(1984). See bounder_cooke().

• "range": Use the range of x (i.e the min or max). See bounder_range().

adapt (very experimental) The name and interpretation of this argument are subject
to change without notice. Positive integer. If adapt > 1, uses an adaptive ap-
proach to calculate the density. First, uses the adaptive bandwidth algorithm of
Abramson (1982) to determine local (pointwise) bandwidths, then groups these
bandwidths into adapt groups, then calculates and sums the densities from each
group. You can set this to a very large number (e.g. Inf) for a fully adaptive ap-
proach, but this will be very slow; typically something around 100 yields nearly
identical results.

na.rm Should missing (NA) values in x be removed?

... Additional arguments (ignored).

range_only If TRUE, the range of the output of this density estimator is computed and is
returned in the $x element of the result, and c(NA, NA) is returned in $y. This
gives a faster way to determine the range of the output than density_XXX(n =
2).

26 density_bounded

Value

An object of class "density", mimicking the output format of stats::density(), with the fol-
lowing components:

• x: The grid of points at which the density was estimated.

• y: The estimated density values.

• bw: The bandwidth.

• n: The sample size of the x input argument.

• call: The call used to produce the result, as a quoted expression.

• data.name: The deparsed name of the x input argument.

• has.na: Always FALSE (for compatibility).

• cdf: Values of the (possibly weighted) empirical cumulative distribution function at x. See
weighted_ecdf().

This allows existing methods for density objects, like print() and plot(), to work if desired.
This output format (and in particular, the x and y components) is also the format expected by the
density argument of the stat_slabinterval() and the smooth_ family of functions.

References

Cooke, P. (1979). Statistical inference for bounds of random variables. Biometrika 66(2), 367–374.
doi:10.1093/biomet/66.2.367.

Loh, W. Y. (1984). Estimating an endpoint of a distribution with resampling methods. The Annals
of Statistics 12(4), 1543–1550. doi:10.1214/aos/1176346811

See Also

Other density estimators: density_histogram(), density_unbounded()

Examples

library(distributional)
library(dplyr)
library(ggplot2)

For compatibility with existing code, the return type of density_bounded()
is the same as stats::density(), ...
set.seed(123)
x = rbeta(5000, 1, 3)
d = density_bounded(x)
d

... thus, while designed for use with the `density` argument of
stat_slabinterval(), output from density_bounded() can also be used with
base::plot():
plot(d)

here we'll use the same data as above, but pick either density_bounded()

https://doi.org/10.1093/biomet/66.2.367
https://doi.org/10.1214/aos/1176346811

density_histogram 27

or density_unbounded() (which is equivalent to stats::density()). Notice
how the bounded density (green) is biased near the boundary of the support,
while the unbounded density is not.
data.frame(x) %>%

ggplot() +
stat_slab(
aes(xdist = dist), data = data.frame(dist = dist_beta(1, 3)),
alpha = 0.25

) +
stat_slab(aes(x), density = "bounded", fill = NA, color = "#d95f02", alpha = 0.5) +
stat_slab(aes(x), density = "unbounded", fill = NA, color = "#1b9e77", alpha = 0.5) +
scale_thickness_shared() +
theme_ggdist()

We can also supply arguments to the density estimators by using their
full function names instead of the string suffix; e.g. we can supply
the exact bounds of c(0,1) rather than using the bounds of the data.
data.frame(x) %>%

ggplot() +
stat_slab(

aes(xdist = dist), data = data.frame(dist = dist_beta(1, 3)),
alpha = 0.25

) +
stat_slab(

aes(x), fill = NA, color = "#d95f02", alpha = 0.5,
density = density_bounded(bounds = c(0,1))

) +
scale_thickness_shared() +
theme_ggdist()

density_histogram Histogram density estimator

Description

Histogram density estimator.

Supports automatic partial function application.

Usage

density_histogram(
x,
weights = NULL,
breaks = "Scott",
align = "none",
outline_bars = FALSE,
na.rm = FALSE,
...,
range_only = FALSE

)

28 density_histogram

Arguments

x numeric vector containing a sample to compute a density estimate for.

weights optional numeric vector of weights to apply to x.

breaks Determines the breakpoints defining bins. Defaults to "Scott". Similar to (but
not exactly the same as) the breaks argument to graphics::hist(). One of:

• A scalar (length-1) numeric giving the number of bins
• A vector numeric giving the breakpoints between histogram bins
• A function taking x and weights and returning either the number of bins or

a vector of breakpoints
• A string giving the suffix of a function that starts with "breaks_". ggdist

provides weighted implementations of the "Sturges", "Scott", and "FD"
break-finding algorithms from graphics::hist(), as well as breaks_fixed()
for manually setting the bin width. See breaks.

For example, breaks = "Sturges" will use the breaks_Sturges() algorithm,
breaks = 9 will create 9 bins, and breaks = breaks_fixed(width = 1) will set
the bin width to 1.

align Determines how to align the breakpoints defining bins. Default ("none") per-
forms no alignment. One of:

• A scalar (length-1) numeric giving an offset that is subtracted from the
breaks. The offset must be between 0 and the bin width.

• A function taking a sorted vector of breaks (bin edges) and returning an
offset to subtract from the breaks.

• A string giving the suffix of a function that starts with "align_" used to
determine the alignment, such as align_none(), align_boundary(), or
align_center().

For example, align = "none" will provide no alignment, align = align_center(at
= 0) will center a bin on 0, and align = align_boundary(at = 0) will align a
bin edge on 0.

outline_bars Should outlines in between the bars (i.e. density values of 0) be included?

na.rm Should missing (NA) values in x be removed?

... Additional arguments (ignored).

range_only If TRUE, the range of the output of this density estimator is computed and is
returned in the $x element of the result, and c(NA, NA) is returned in $y. This
gives a faster way to determine the range of the output than density_XXX(n =
2).

Value

An object of class "density", mimicking the output format of stats::density(), with the fol-
lowing components:

• x: The grid of points at which the density was estimated.

• y: The estimated density values.

• bw: The bandwidth.

density_histogram 29

• n: The sample size of the x input argument.

• call: The call used to produce the result, as a quoted expression.

• data.name: The deparsed name of the x input argument.

• has.na: Always FALSE (for compatibility).

• cdf: Values of the (possibly weighted) empirical cumulative distribution function at x. See
weighted_ecdf().

This allows existing methods for density objects, like print() and plot(), to work if desired.
This output format (and in particular, the x and y components) is also the format expected by the
density argument of the stat_slabinterval() and the smooth_ family of functions.

See Also

Other density estimators: density_bounded(), density_unbounded()

Examples

library(distributional)
library(dplyr)
library(ggplot2)

For compatibility with existing code, the return type of density_unbounded()
is the same as stats::density(), ...
set.seed(123)
x = rbeta(5000, 1, 3)
d = density_histogram(x)
d

... thus, while designed for use with the `density` argument of
stat_slabinterval(), output from density_histogram() can also be used with
base::plot():
plot(d)

here we'll use the same data as above with stat_slab():
data.frame(x) %>%

ggplot() +
stat_slab(
aes(xdist = dist), data = data.frame(dist = dist_beta(1, 3)),
alpha = 0.25

) +
stat_slab(aes(x), density = "histogram", fill = NA, color = "#d95f02", alpha = 0.5) +
scale_thickness_shared() +
theme_ggdist()

30 density_unbounded

density_unbounded Unbounded density estimator

Description

Unbounded density estimator using stats::density().

Supports automatic partial function application.

Usage

density_unbounded(
x,
weights = NULL,
n = 512,
bandwidth = "dpi",
adjust = 1,
kernel = "gaussian",
trim = FALSE,
adapt = 1,
na.rm = FALSE,
...,
range_only = FALSE

)

Arguments

x numeric vector containing a sample to compute a density estimate for.

weights optional numeric vector of weights to apply to x.

n numeric: the number of grid points to evaluate the density estimator at.

bandwidth bandwidth of the density estimator. One of:

• a numeric: the bandwidth, as the standard deviation of the kernel
• a function: a function taking x (the sample) and returning the bandwidth
• a string: the suffix of the name of a function starting with "bandwidth_"

that will be used to determine the bandwidth. See bandwidth for a list.

adjust numeric: the bandwidth for the density estimator is multiplied by this value. See
stats::density().

kernel string: the smoothing kernel to be used. This must partially match one of
"gaussian", "rectangular", "triangular", "epanechnikov", "biweight",
"cosine", or "optcosine". See stats::density().

trim Should the density estimate be trimmed to the bounds of the data?

adapt (very experimental) The name and interpretation of this argument are subject
to change without notice. Positive integer. If adapt > 1, uses an adaptive ap-
proach to calculate the density. First, uses the adaptive bandwidth algorithm of
Abramson (1982) to determine local (pointwise) bandwidths, then groups these

density_unbounded 31

bandwidths into adapt groups, then calculates and sums the densities from each
group. You can set this to a very large number (e.g. Inf) for a fully adaptive ap-
proach, but this will be very slow; typically something around 100 yields nearly
identical results.

na.rm Should missing (NA) values in x be removed?

... Additional arguments (ignored).

range_only If TRUE, the range of the output of this density estimator is computed and is
returned in the $x element of the result, and c(NA, NA) is returned in $y. This
gives a faster way to determine the range of the output than density_XXX(n =
2).

Value

An object of class "density", mimicking the output format of stats::density(), with the fol-
lowing components:

• x: The grid of points at which the density was estimated.

• y: The estimated density values.

• bw: The bandwidth.

• n: The sample size of the x input argument.

• call: The call used to produce the result, as a quoted expression.

• data.name: The deparsed name of the x input argument.

• has.na: Always FALSE (for compatibility).

• cdf: Values of the (possibly weighted) empirical cumulative distribution function at x. See
weighted_ecdf().

This allows existing methods for density objects, like print() and plot(), to work if desired.
This output format (and in particular, the x and y components) is also the format expected by the
density argument of the stat_slabinterval() and the smooth_ family of functions.

See Also

Other density estimators: density_bounded(), density_histogram()

Examples

library(distributional)
library(dplyr)
library(ggplot2)

For compatibility with existing code, the return type of density_unbounded()
is the same as stats::density(), ...
set.seed(123)
x = rbeta(5000, 1, 3)
d = density_unbounded(x)
d

... thus, while designed for use with the `density` argument of

32 find_dotplot_binwidth

stat_slabinterval(), output from density_unbounded() can also be used with
base::plot():
plot(d)

here we'll use the same data as above, but pick either density_bounded()
or density_unbounded() (which is equivalent to stats::density()). Notice
how the bounded density (green) is biased near the boundary of the support,
while the unbounded density is not.
data.frame(x) %>%

ggplot() +
stat_slab(
aes(xdist = dist), data = data.frame(dist = dist_beta(1, 3)),
alpha = 0.25

) +
stat_slab(aes(x), density = "bounded", fill = NA, color = "#d95f02", alpha = 0.5) +
stat_slab(aes(x), density = "unbounded", fill = NA, color = "#1b9e77", alpha = 0.5) +
scale_thickness_shared() +
theme_ggdist()

find_dotplot_binwidth Dynamically select a good bin width for a dotplot

Description

Searches for a nice-looking bin width to use to draw a dotplot such that the height of the dotplot fits
within a given space (maxheight).

Usage

find_dotplot_binwidth(
x,
maxheight,
heightratio = 1,
stackratio = 1,
layout = c("bin", "weave", "hex", "swarm", "bar")

)

Arguments

x numeric vector of values

maxheight maximum height of the dotplot

heightratio ratio of bin width to dot height

stackratio ratio of dot height to vertical distance between dot centers

layout The layout method used for the dots:

• "bin" (default): places dots on the off-axis at the midpoint of their bins
as in the classic Wilkinson dotplot. This maintains the alignment of rows
and columns in the dotplot. This layout is slightly different from the classic

find_dotplot_binwidth 33

Wilkinson algorithm in that: (1) it nudges bins slightly to avoid overlapping
bins and (2) if the input data are symmetrical it will return a symmetrical
layout.

• "weave": uses the same basic binning approach of "bin", but places dots in
the off-axis at their actual positions (unless overlaps = "nudge", in which
case overlaps may be nudged out of the way). This maintains the alignment
of rows but does not align dots within columns.

• "hex": uses the same basic binning approach of "bin", but alternates plac-
ing dots + binwidth/4 or - binwidth/4 in the off-axis from the bin center.
This allows hexagonal packing by setting a stackratio less than 1 (some-
thing like 0.9 tends to work).

• "swarm": uses the "compactswarm" layout from beeswarm::beeswarm().
Does not maintain alignment of rows or columns, but can be more compact
and neat looking, especially for sample data (as opposed to quantile dotplots
of theoretical distributions, which may look better with "bin", "weave", or
"hex").

• "bar": for discrete distributions, lays out duplicate values in rectangular
bars.

Details

This dynamic bin selection algorithm uses a binary search over the number of bins to find a bin
width such that if the input data (x) is binned using a Wilkinson-style dotplot algorithm the height
of the tallest bin will be less than maxheight.

This algorithm is used by geom_dotsinterval() (and its variants) to automatically select bin
widths. Unless you are manually implementing you own dotplot grob or geom, you probably do not
need to use this function directly

Value

A suitable bin width such that a dotplot created with this bin width and heightratio should have
its tallest bin be less than or equal to maxheight.

See Also

bin_dots() for an algorithm can bin dots using bin widths selected by this function; geom_dotsinterval()
for geometries that use these algorithms to create dotplots.

Examples

library(dplyr)
library(ggplot2)

x = qnorm(ppoints(20))
binwidth = find_dotplot_binwidth(x, maxheight = 4, heightratio = 1)
binwidth

bin_df = bin_dots(x = x, y = 0, binwidth = binwidth, heightratio = 1)

34 geom_blur_dots

bin_df

we can manually plot the binning above, though this is only recommended
if you are using find_dotplot_binwidth() and bin_dots() to build your own
grob. For practical use it is much easier to use geom_dots(), which will
automatically select good bin widths for you (and which uses
find_dotplot_binwidth() and bin_dots() internally)
bin_df %>%

ggplot(aes(x = x, y = y)) +
geom_point(size = 4) +
coord_fixed()

geom_blur_dots Blurry dot plot (geom)

Description

Variant of geom_dots() for creating blurry dotplots. Accepts an sd aesthetic that gives the standard
deviation of the blur applied to the dots. Requires a graphics engine supporting radial gradients.
Unlike geom_dots(), all dots must be circular, so this geom does not support the shape aesthetic.

Usage

geom_blur_dots(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
blur = "gaussian",
binwidth = NA,
dotsize = 1.07,
stackratio = 1,
layout = "bin",
overlaps = "nudge",
smooth = "none",
overflow = "warn",
verbose = FALSE,
orientation = NA,
subguide = "none",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

geom_blur_dots 35

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer, either as a ggproto
Geom subclass or as a string naming the stat stripped of the stat_ prefix (e.g.
"count" rather than "stat_count")

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function. Setting this equal to "dodge" (position_dodge()) or "dodgejust"
(position_dodgejust()) can be useful if you have overlapping geometries.

... Other arguments passed to layer(). These are often aesthetics, used to set an
aesthetic to a fixed value, like colour = "red" or linewidth = 3 (see Aesthet-
ics, below). They may also be parameters to the paired geom/stat.

blur Blur function to apply to dots. One of:

• A function that takes a numeric vector of distances from the dot center, the
dot radius, and the standard deviation of the blur and returns a vector of
opacities in [0, 1], such as blur_gaussian() or blur_interval().

• A string indicating what blur function to use, as the suffix to a function
name starting with blur_; e.g. "gaussian" (the default) applies blur_gaussian().

binwidth The bin width to use for laying out the dots. One of:

• NA (the default): Dynamically select the bin width based on the size of the
plot when drawn. This will pick a binwidth such that the tallest stack of
dots is at most scale in height (ideally exactly scale in height, though this
is not guaranteed).

• A length-1 (scalar) numeric or unit object giving the exact bin width.
• A length-2 (vector) numeric or unit object giving the minimum and maxi-

mum desired bin width. The bin width will be dynamically selected within
these bounds.

If the value is numeric, it is assumed to be in units of data. The bin width
(or its bounds) can also be specified using unit(), which may be useful if it
is desired that the dots be a certain point size or a certain percentage of the
width/height of the viewport. For example, unit(0.1, "npc") would make
dots that are exactly 10% of the viewport size along whichever dimension the
dotplot is drawn; unit(c(0, 0.1), "npc") would make dots that are at most
10% of the viewport size (while still ensuring the tallest stack is less than or
equal to scale).

36 geom_blur_dots

dotsize The width of the dots relative to the binwidth. The default, 1.07, makes dots
be just a bit wider than the bin width, which is a manually-tuned parameter
that tends to work well with the default circular shape, preventing gaps between
bins from appearing to be too large visually (as might arise from dots being
precisely the binwidth). If it is desired to have dots be precisely the binwidth,
set dotsize = 1.

stackratio The distance between the center of the dots in the same stack relative to the dot
height. The default, 1, makes dots in the same stack just touch each other.

layout The layout method used for the dots:

• "bin" (default): places dots on the off-axis at the midpoint of their bins
as in the classic Wilkinson dotplot. This maintains the alignment of rows
and columns in the dotplot. This layout is slightly different from the classic
Wilkinson algorithm in that: (1) it nudges bins slightly to avoid overlapping
bins and (2) if the input data are symmetrical it will return a symmetrical
layout.

• "weave": uses the same basic binning approach of "bin", but places dots in
the off-axis at their actual positions (unless overlaps = "nudge", in which
case overlaps may be nudged out of the way). This maintains the alignment
of rows but does not align dots within columns.

• "hex": uses the same basic binning approach of "bin", but alternates plac-
ing dots + binwidth/4 or - binwidth/4 in the off-axis from the bin center.
This allows hexagonal packing by setting a stackratio less than 1 (some-
thing like 0.9 tends to work).

• "swarm": uses the "compactswarm" layout from beeswarm::beeswarm().
Does not maintain alignment of rows or columns, but can be more compact
and neat looking, especially for sample data (as opposed to quantile dotplots
of theoretical distributions, which may look better with "bin", "weave", or
"hex").

• "bar": for discrete distributions, lays out duplicate values in rectangular
bars.

overlaps How to handle overlapping dots or bins in the "bin", "weave", and "hex" lay-
outs (dots never overlap in the "swarm" or "bar" layouts). For the purposes of
this argument, dots are only considered to be overlapping if they would be over-
lapping when dotsize = 1 and stackratio = 1; i.e. if you set those arguments
to other values, overlaps may still occur. One of:

• "keep": leave overlapping dots as they are. Dots may overlap (usually only
slightly) in the "bin", "weave", and "hex" layouts.

• "nudge": nudge overlapping dots out of the way. Overlaps are avoided
using a constrained optimization which minimizes the squared distance of
dots to their desired positions, subject to the constraint that adjacent dots
do not overlap.

smooth Smoother to apply to dot positions. One of:

• A function that takes a numeric vector of dot positions and returns a smoothed
version of that vector, such as smooth_bounded(), smooth_unbounded(),
smooth_discrete(), or smooth_bar()‘.

geom_blur_dots 37

• A string indicating what smoother to use, as the suffix to a function name
starting with smooth_; e.g. "none" (the default) applies smooth_none(),
which simply returns the given vector without applying smoothing.

Smoothing is most effective when the smoother is matched to the support of the
distribution; e.g. using smooth_bounded(bounds = ...).

overflow How to handle overflow of dots beyond the extent of the geom when a minimum
binwidth (or an exact binwidth) is supplied. One of:

• "keep": Keep the overflow, drawing dots outside the geom bounds.
• "warn": Keep the overflow, but produce a warning suggesting solutions,

such as setting binwidth = NA or overflow = "compress".
• "compress": Compress the layout. Reduces the binwidth to the size

necessary to keep the dots within bounds, then adjusts stackratio and
dotsize so that the apparent dot size is the user-specified minimum binwidth
times the user-specified dotsize.

If you find the default layout has dots that are too small, and you are okay with
dots overlapping, consider setting overflow = "compress" and supplying an
exact or minimum dot size using binwidth.

verbose If TRUE, print out the bin width of the dotplot. Can be useful if you want to start
from an automatically-selected bin width and then adjust it manually. Bin width
is printed both as data units and as normalized parent coordinates or "npc"s (see
unit()). Note that if you just want to scale the selected bin width to fit within a
desired area, it is probably easier to use scale than to copy and scale binwidth
manually, and if you just want to provide constraints on the bin width, you can
pass a length-2 vector to binwidth.

orientation Whether this geom is drawn horizontally or vertically. One of:

• NA (default): automatically detect the orientation based on how the aesthet-
ics are assigned. Automatic detection works most of the time.

• "horizontal" (or "y"): draw horizontally, using the y aesthetic to identify
different groups. For each group, uses the x, xmin, xmax, and thickness
aesthetics to draw points, intervals, and slabs.

• "vertical" (or "x"): draw vertically, using the x aesthetic to identify dif-
ferent groups. For each group, uses the y, ymin, ymax, and thickness
aesthetics to draw points, intervals, and slabs.

For compatibility with the base ggplot naming scheme for orientation, "x"
can be used as an alias for "vertical" and "y" as an alias for "horizontal"
(ggdist had an orientation parameter before base ggplot did, hence the dis-
crepancy).

subguide Sub-guide used to annotate the thickness scale. One of:

• A function that takes a scale argument giving a ggplot2::Scale object and
an orientation argument giving the orientation of the geometry and then
returns a grid::grob that will draw the axis annotation, such as subguide_axis()
(to draw a traditional axis) or subguide_none() (to draw no annotation).
See subguide_axis() for a list of possibilities and examples.

• A string giving the name of such a function when prefixed with "subguide";
e.g. "axis" or "none".

38 geom_blur_dots

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Details

The dots family of stats and geoms are similar to geom_dotplot() but with a number of differences:

• Dots geoms act like slabs in geom_slabinterval() and can be given x positions (or y posi-
tions when in a horizontal orientation).

• Given the available space to lay out dots, the dots geoms will automatically determine how
many bins to use to fit the available space.

• Dots geoms use a dynamic layout algorithm that lays out dots from the center out if the input
data are symmetrical, guaranteeing that symmetrical data results in a symmetrical plot. The
layout algorithm also prevents dots from overlapping each other.

• The shape of the dots in these geoms can be changed using the slab_shape aesthetic (when
using the dotsinterval family) or the shape or slab_shape aesthetic (when using the dots
family)

Stats and geoms in this family include:

• geom_dots(): dotplots on raw data. Ensures the dotplot fits within available space by reduc-
ing the size of the dots automatically (may result in very small dots).

• geom_swarm() and geom_weave(): dotplots on raw data with defaults intended to create
"beeswarm" plots. Used side = "both" by default, and sets the default dot size to the same
size as geom_point() (binwidth = unit(1.5, "mm")), allowing dots to overlap instead of
getting very small.

• stat_dots(): dotplots on raw data, distributional objects, and posterior::rvar()s

• geom_dotsinterval(): dotplot + interval plots on raw data with already-calculated intervals
(rarely useful directly).

• stat_dotsinterval(): dotplot + interval plots on raw data, distributional objects, and
posterior::rvar()s (will calculate intervals for you).

• geom_blur_dots(): blurry dotplots that allow the standard deviation of a blur applied to each
dot to be specified using the sd aesthetic.

• stat_mcse_dots(): blurry dotplots of quantiles using the Monte Carlo Standard Error of
each quantile.

stat_dots() and stat_dotsinterval(), when used with the quantiles argument, are partic-
ularly useful for constructing quantile dotplots, which can be an effective way to communicate
uncertainty using a frequency framing that may be easier for laypeople to understand (Kay et al.
2016, Fernandes et al. 2018).

geom_blur_dots 39

Value

A ggplot2::Geom representing a blurry dot geometry which can be added to a ggplot() object.

Aesthetics

The dots+interval stats and geoms have a wide variety of aesthetics that control the appearance of
their three sub-geometries: the dots (aka the slab), the point, and the interval.
Positional aesthetics

• x: x position of the geometry

• y: y position of the geometry

Dots-specific (aka Slab-specific) aesthetics

• sd: The standard deviation (in data units) of the blur associated with each dot.

• order: The order in which data points are stacked within bins. Can be used to create the effect
of "stacked" dots by ordering dots according to a discrete variable. If omitted (NULL), the value
of the data points themselves are used to determine stacking order. Only applies when layout
is "bin" or "hex", as the other layout methods fully determine both x and y positions.

• side: Which side to place the slab on. "topright", "top", and "right" are synonyms
which cause the slab to be drawn on the top or the right depending on if orientation
is "horizontal" or "vertical". "bottomleft", "bottom", and "left" are synonyms
which cause the slab to be drawn on the bottom or the left depending on if orientation
is "horizontal" or "vertical". "topleft" causes the slab to be drawn on the top or the
left, and "bottomright" causes the slab to be drawn on the bottom or the right. "both" draws
the slab mirrored on both sides (as in a violin plot).

• scale: What proportion of the region allocated to this geom to use to draw the slab. If scale
= 1, slabs that use the maximum range will just touch each other. Default is 0.9 to leave some
space between adjacent slabs. For a comprehensive discussion and examples of slab scaling
and normalization, see the thickness scale article.

• justification: Justification of the interval relative to the slab, where 0 indicates bottom/left
justification and 1 indicates top/right justification (depending on orientation). If justification
is NULL (the default), then it is set automatically based on the value of side: when side is
"top"/"right" justification is set to 0, when side is "bottom"/"left" justification
is set to 1, and when side is "both" justification is set to 0.5.

• datatype: When using composite geoms directly without a stat (e.g. geom_slabinterval()),
datatype is used to indicate which part of the geom a row in the data targets: rows with
datatype = "slab" target the slab portion of the geometry and rows with datatype = "interval"
target the interval portion of the geometry. This is set automatically when using ggdist stats.

Interval-specific aesthetics

• xmin: Left end of the interval sub-geometry (if orientation = "horizontal").

• xmax: Right end of the interval sub-geometry (if orientation = "horizontal").

• ymin: Lower end of the interval sub-geometry (if orientation = "vertical").

• ymax: Upper end of the interval sub-geometry (if orientation = "vertical").

https://mjskay.github.io/ggdist/articles/thickness.html

40 geom_blur_dots

Color aesthetics

• colour: (or color) The color of the interval and point sub-geometries. Use the slab_color,
interval_color, or point_color aesthetics (below) to set sub-geometry colors separately.

• fill: The fill color of the slab and point sub-geometries. Use the slab_fill or point_fill
aesthetics (below) to set sub-geometry colors separately.

• alpha: The opacity of the slab, interval, and point sub-geometries. Use the slab_alpha,
interval_alpha, or point_alpha aesthetics (below) to set sub-geometry colors separately.

• colour_ramp: (or color_ramp) A secondary scale that modifies the color scale to "ramp" to
another color. See scale_colour_ramp() for examples.

• fill_ramp: A secondary scale that modifies the fill scale to "ramp" to another color. See
scale_fill_ramp() for examples.

Line aesthetics

• linewidth: Width of the line used to draw the interval (except with geom_slab(): then
it is the width of the slab). With composite geometries including an interval and slab, use
slab_linewidth to set the line width of the slab (see below). For interval, raw linewidth
values are transformed according to the interval_size_domain and interval_size_range
parameters of the geom (see above).

• size: Determines the size of the point. If linewidth is not provided, size will also deter-
mines the width of the line used to draw the interval (this allows line width and point size to be
modified together by setting only size and not linewidth). Raw size values are transformed
according to the interval_size_domain, interval_size_range, and fatten_point pa-
rameters of the geom (see above). Use the point_size aesthetic (below) to set sub-geometry
size directly without applying the effects of interval_size_domain, interval_size_range,
and fatten_point.

• stroke: Width of the outline around the point sub-geometry.

• linetype: Type of line (e.g., "solid", "dashed", etc) used to draw the interval and the
outline of the slab (if it is visible). Use the slab_linetype or interval_linetype aesthetics
(below) to set sub-geometry line types separately.

Slab-specific color and line override aesthetics

• slab_fill: Override for fill: the fill color of the slab.

• slab_colour: (or slab_color) Override for colour/color: the outline color of the slab.

• slab_alpha: Override for alpha: the opacity of the slab.

• slab_linewidth: Override for linwidth: the width of the outline of the slab.

• slab_linetype: Override for linetype: the line type of the outline of the slab.

• slab_shape: Override for shape: the shape of the dots used to draw the dotplot slab.

Interval-specific color and line override aesthetics

• interval_colour: (or interval_color) Override for colour/color: the color of the inter-
val.

• interval_alpha: Override for alpha: the opacity of the interval.

geom_blur_dots 41

• interval_linetype: Override for linetype: the line type of the interval.

Point-specific color and line override aesthetics

• point_fill: Override for fill: the fill color of the point.

• point_colour: (or point_color) Override for colour/color: the outline color of the point.

• point_alpha: Override for alpha: the opacity of the point.

• point_size: Override for size: the size of the point.

Deprecated aesthetics

• slab_size: Use slab_linewidth.

• interval_size: Use interval_linewidth.

Other aesthetics (these work as in standard geoms)

• width

• height

• group

See examples of some of these aesthetics in action in vignette("dotsinterval"). Learn more
about the sub-geom override aesthetics (like interval_color) in the scales documentation. Learn
more about basic ggplot aesthetics in vignette("ggplot2-specs").

References

Kay, M., Kola, T., Hullman, J. R., & Munson, S. A. (2016). When (ish) is My Bus? User-centered
Visualizations of Uncertainty in Everyday, Mobile Predictive Systems. Conference on Human Fac-
tors in Computing Systems - CHI ’16, 5092–5103. doi:10.1145/2858036.2858558.

Fernandes, M., Walls, L., Munson, S., Hullman, J., & Kay, M. (2018). Uncertainty Displays Using
Quantile Dotplots or CDFs Improve Transit Decision-Making. Conference on Human Factors in
Computing Systems - CHI ’18. doi:10.1145/3173574.3173718.

See Also

See geom_dotsinterval() for the geometry this shortcut is based on.

See vignette("dotsinterval") for a variety of examples of use.

Other dotsinterval geoms: geom_dots(), geom_dotsinterval(), geom_swarm(), geom_weave()

Examples

library(dplyr)
library(ggplot2)

theme_set(theme_ggdist())

set.seed(1234)

https://doi.org/10.1145/2858036.2858558
https://doi.org/10.1145/3173574.3173718

42 geom_dots

x = rnorm(1000)

manually calculate quantiles and their MCSE
this could also be done more succinctly with stat_mcse_dots()
p = ppoints(100)
df = data.frame(

q = quantile(x, p),
se = posterior::mcse_quantile(x, p)

)

df %>%
ggplot(aes(x = q, sd = se)) +
geom_blur_dots()

df %>%
ggplot(aes(x = q, sd = se)) +
or blur = blur_interval(.width = .95) to set the interval width
geom_blur_dots(blur = "interval")

geom_dots Dot plot (shortcut geom)

Description

Shortcut version of geom_dotsinterval() for creating dot plots. Geoms based on geom_dotsinterval()
create dotplots that automatically ensure the plot fits within the available space.

Roughly equivalent to:

geom_dotsinterval(
show_point = FALSE,
show_interval = FALSE

)

Usage

geom_dots(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
binwidth = NA,
dotsize = 1.07,
stackratio = 1,
layout = "bin",
overlaps = "nudge",
smooth = "none",

geom_dots 43

overflow = "warn",
verbose = FALSE,
orientation = NA,
subguide = "none",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer, either as a ggproto
Geom subclass or as a string naming the stat stripped of the stat_ prefix (e.g.
"count" rather than "stat_count")

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function. Setting this equal to "dodge" (position_dodge()) or "dodgejust"
(position_dodgejust()) can be useful if you have overlapping geometries.

... Other arguments passed to layer(). These are often aesthetics, used to set an
aesthetic to a fixed value, like colour = "red" or linewidth = 3 (see Aesthet-
ics, below). They may also be parameters to the paired geom/stat.

binwidth The bin width to use for laying out the dots. One of:

• NA (the default): Dynamically select the bin width based on the size of the
plot when drawn. This will pick a binwidth such that the tallest stack of
dots is at most scale in height (ideally exactly scale in height, though this
is not guaranteed).

• A length-1 (scalar) numeric or unit object giving the exact bin width.
• A length-2 (vector) numeric or unit object giving the minimum and maxi-

mum desired bin width. The bin width will be dynamically selected within
these bounds.

If the value is numeric, it is assumed to be in units of data. The bin width
(or its bounds) can also be specified using unit(), which may be useful if it
is desired that the dots be a certain point size or a certain percentage of the
width/height of the viewport. For example, unit(0.1, "npc") would make
dots that are exactly 10% of the viewport size along whichever dimension the

44 geom_dots

dotplot is drawn; unit(c(0, 0.1), "npc") would make dots that are at most
10% of the viewport size (while still ensuring the tallest stack is less than or
equal to scale).

dotsize The width of the dots relative to the binwidth. The default, 1.07, makes dots
be just a bit wider than the bin width, which is a manually-tuned parameter
that tends to work well with the default circular shape, preventing gaps between
bins from appearing to be too large visually (as might arise from dots being
precisely the binwidth). If it is desired to have dots be precisely the binwidth,
set dotsize = 1.

stackratio The distance between the center of the dots in the same stack relative to the dot
height. The default, 1, makes dots in the same stack just touch each other.

layout The layout method used for the dots:

• "bin" (default): places dots on the off-axis at the midpoint of their bins
as in the classic Wilkinson dotplot. This maintains the alignment of rows
and columns in the dotplot. This layout is slightly different from the classic
Wilkinson algorithm in that: (1) it nudges bins slightly to avoid overlapping
bins and (2) if the input data are symmetrical it will return a symmetrical
layout.

• "weave": uses the same basic binning approach of "bin", but places dots in
the off-axis at their actual positions (unless overlaps = "nudge", in which
case overlaps may be nudged out of the way). This maintains the alignment
of rows but does not align dots within columns.

• "hex": uses the same basic binning approach of "bin", but alternates plac-
ing dots + binwidth/4 or - binwidth/4 in the off-axis from the bin center.
This allows hexagonal packing by setting a stackratio less than 1 (some-
thing like 0.9 tends to work).

• "swarm": uses the "compactswarm" layout from beeswarm::beeswarm().
Does not maintain alignment of rows or columns, but can be more compact
and neat looking, especially for sample data (as opposed to quantile dotplots
of theoretical distributions, which may look better with "bin", "weave", or
"hex").

• "bar": for discrete distributions, lays out duplicate values in rectangular
bars.

overlaps How to handle overlapping dots or bins in the "bin", "weave", and "hex" lay-
outs (dots never overlap in the "swarm" or "bar" layouts). For the purposes of
this argument, dots are only considered to be overlapping if they would be over-
lapping when dotsize = 1 and stackratio = 1; i.e. if you set those arguments
to other values, overlaps may still occur. One of:

• "keep": leave overlapping dots as they are. Dots may overlap (usually only
slightly) in the "bin", "weave", and "hex" layouts.

• "nudge": nudge overlapping dots out of the way. Overlaps are avoided
using a constrained optimization which minimizes the squared distance of
dots to their desired positions, subject to the constraint that adjacent dots
do not overlap.

smooth Smoother to apply to dot positions. One of:

geom_dots 45

• A function that takes a numeric vector of dot positions and returns a smoothed
version of that vector, such as smooth_bounded(), smooth_unbounded(),
smooth_discrete(), or smooth_bar()‘.

• A string indicating what smoother to use, as the suffix to a function name
starting with smooth_; e.g. "none" (the default) applies smooth_none(),
which simply returns the given vector without applying smoothing.

Smoothing is most effective when the smoother is matched to the support of the
distribution; e.g. using smooth_bounded(bounds = ...).

overflow How to handle overflow of dots beyond the extent of the geom when a minimum
binwidth (or an exact binwidth) is supplied. One of:

• "keep": Keep the overflow, drawing dots outside the geom bounds.
• "warn": Keep the overflow, but produce a warning suggesting solutions,

such as setting binwidth = NA or overflow = "compress".
• "compress": Compress the layout. Reduces the binwidth to the size

necessary to keep the dots within bounds, then adjusts stackratio and
dotsize so that the apparent dot size is the user-specified minimum binwidth
times the user-specified dotsize.

If you find the default layout has dots that are too small, and you are okay with
dots overlapping, consider setting overflow = "compress" and supplying an
exact or minimum dot size using binwidth.

verbose If TRUE, print out the bin width of the dotplot. Can be useful if you want to start
from an automatically-selected bin width and then adjust it manually. Bin width
is printed both as data units and as normalized parent coordinates or "npc"s (see
unit()). Note that if you just want to scale the selected bin width to fit within a
desired area, it is probably easier to use scale than to copy and scale binwidth
manually, and if you just want to provide constraints on the bin width, you can
pass a length-2 vector to binwidth.

orientation Whether this geom is drawn horizontally or vertically. One of:
• NA (default): automatically detect the orientation based on how the aesthet-

ics are assigned. Automatic detection works most of the time.
• "horizontal" (or "y"): draw horizontally, using the y aesthetic to identify

different groups. For each group, uses the x, xmin, xmax, and thickness
aesthetics to draw points, intervals, and slabs.

• "vertical" (or "x"): draw vertically, using the x aesthetic to identify dif-
ferent groups. For each group, uses the y, ymin, ymax, and thickness
aesthetics to draw points, intervals, and slabs.

For compatibility with the base ggplot naming scheme for orientation, "x"
can be used as an alias for "vertical" and "y" as an alias for "horizontal"
(ggdist had an orientation parameter before base ggplot did, hence the dis-
crepancy).

subguide Sub-guide used to annotate the thickness scale. One of:
• A function that takes a scale argument giving a ggplot2::Scale object and

an orientation argument giving the orientation of the geometry and then
returns a grid::grob that will draw the axis annotation, such as subguide_axis()
(to draw a traditional axis) or subguide_none() (to draw no annotation).
See subguide_axis() for a list of possibilities and examples.

46 geom_dots

• A string giving the name of such a function when prefixed with "subguide";
e.g. "axis" or "none".

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Details

The dots family of stats and geoms are similar to geom_dotplot() but with a number of differences:

• Dots geoms act like slabs in geom_slabinterval() and can be given x positions (or y posi-
tions when in a horizontal orientation).

• Given the available space to lay out dots, the dots geoms will automatically determine how
many bins to use to fit the available space.

• Dots geoms use a dynamic layout algorithm that lays out dots from the center out if the input
data are symmetrical, guaranteeing that symmetrical data results in a symmetrical plot. The
layout algorithm also prevents dots from overlapping each other.

• The shape of the dots in these geoms can be changed using the slab_shape aesthetic (when
using the dotsinterval family) or the shape or slab_shape aesthetic (when using the dots
family)

Stats and geoms in this family include:

• geom_dots(): dotplots on raw data. Ensures the dotplot fits within available space by reduc-
ing the size of the dots automatically (may result in very small dots).

• geom_swarm() and geom_weave(): dotplots on raw data with defaults intended to create
"beeswarm" plots. Used side = "both" by default, and sets the default dot size to the same
size as geom_point() (binwidth = unit(1.5, "mm")), allowing dots to overlap instead of
getting very small.

• stat_dots(): dotplots on raw data, distributional objects, and posterior::rvar()s
• geom_dotsinterval(): dotplot + interval plots on raw data with already-calculated intervals

(rarely useful directly).
• stat_dotsinterval(): dotplot + interval plots on raw data, distributional objects, and
posterior::rvar()s (will calculate intervals for you).

• geom_blur_dots(): blurry dotplots that allow the standard deviation of a blur applied to each
dot to be specified using the sd aesthetic.

• stat_mcse_dots(): blurry dotplots of quantiles using the Monte Carlo Standard Error of
each quantile.

stat_dots() and stat_dotsinterval(), when used with the quantiles argument, are partic-
ularly useful for constructing quantile dotplots, which can be an effective way to communicate
uncertainty using a frequency framing that may be easier for laypeople to understand (Kay et al.
2016, Fernandes et al. 2018).

geom_dots 47

Value

A ggplot2::Geom representing a dot geometry which can be added to a ggplot() object.

Aesthetics

The dots+interval stats and geoms have a wide variety of aesthetics that control the appearance of
their three sub-geometries: the dots (aka the slab), the point, and the interval.
Positional aesthetics

• x: x position of the geometry

• y: y position of the geometry

Dots-specific (aka Slab-specific) aesthetics

• family: The font family used to draw the dots.

• order: The order in which data points are stacked within bins. Can be used to create the effect
of "stacked" dots by ordering dots according to a discrete variable. If omitted (NULL), the value
of the data points themselves are used to determine stacking order. Only applies when layout
is "bin" or "hex", as the other layout methods fully determine both x and y positions.

• side: Which side to place the slab on. "topright", "top", and "right" are synonyms
which cause the slab to be drawn on the top or the right depending on if orientation
is "horizontal" or "vertical". "bottomleft", "bottom", and "left" are synonyms
which cause the slab to be drawn on the bottom or the left depending on if orientation
is "horizontal" or "vertical". "topleft" causes the slab to be drawn on the top or the
left, and "bottomright" causes the slab to be drawn on the bottom or the right. "both" draws
the slab mirrored on both sides (as in a violin plot).

• scale: What proportion of the region allocated to this geom to use to draw the slab. If scale
= 1, slabs that use the maximum range will just touch each other. Default is 0.9 to leave some
space between adjacent slabs. For a comprehensive discussion and examples of slab scaling
and normalization, see the thickness scale article.

• justification: Justification of the interval relative to the slab, where 0 indicates bottom/left
justification and 1 indicates top/right justification (depending on orientation). If justification
is NULL (the default), then it is set automatically based on the value of side: when side is
"top"/"right" justification is set to 0, when side is "bottom"/"left" justification
is set to 1, and when side is "both" justification is set to 0.5.

• datatype: When using composite geoms directly without a stat (e.g. geom_slabinterval()),
datatype is used to indicate which part of the geom a row in the data targets: rows with
datatype = "slab" target the slab portion of the geometry and rows with datatype = "interval"
target the interval portion of the geometry. This is set automatically when using ggdist stats.

Interval-specific aesthetics

• xmin: Left end of the interval sub-geometry (if orientation = "horizontal").

• xmax: Right end of the interval sub-geometry (if orientation = "horizontal").

• ymin: Lower end of the interval sub-geometry (if orientation = "vertical").

• ymax: Upper end of the interval sub-geometry (if orientation = "vertical").

https://mjskay.github.io/ggdist/articles/thickness.html

48 geom_dots

Point-specific aesthetics

• shape: Shape type used to draw the point sub-geometry.

Color aesthetics

• colour: (or color) The color of the interval and point sub-geometries. Use the slab_color,
interval_color, or point_color aesthetics (below) to set sub-geometry colors separately.

• fill: The fill color of the slab and point sub-geometries. Use the slab_fill or point_fill
aesthetics (below) to set sub-geometry colors separately.

• alpha: The opacity of the slab, interval, and point sub-geometries. Use the slab_alpha,
interval_alpha, or point_alpha aesthetics (below) to set sub-geometry colors separately.

• colour_ramp: (or color_ramp) A secondary scale that modifies the color scale to "ramp" to
another color. See scale_colour_ramp() for examples.

• fill_ramp: A secondary scale that modifies the fill scale to "ramp" to another color. See
scale_fill_ramp() for examples.

Line aesthetics

• linewidth: Width of the line used to draw the interval (except with geom_slab(): then
it is the width of the slab). With composite geometries including an interval and slab, use
slab_linewidth to set the line width of the slab (see below). For interval, raw linewidth
values are transformed according to the interval_size_domain and interval_size_range
parameters of the geom (see above).

• size: Determines the size of the point. If linewidth is not provided, size will also deter-
mines the width of the line used to draw the interval (this allows line width and point size to be
modified together by setting only size and not linewidth). Raw size values are transformed
according to the interval_size_domain, interval_size_range, and fatten_point pa-
rameters of the geom (see above). Use the point_size aesthetic (below) to set sub-geometry
size directly without applying the effects of interval_size_domain, interval_size_range,
and fatten_point.

• stroke: Width of the outline around the point sub-geometry.

• linetype: Type of line (e.g., "solid", "dashed", etc) used to draw the interval and the
outline of the slab (if it is visible). Use the slab_linetype or interval_linetype aesthetics
(below) to set sub-geometry line types separately.

Slab-specific color and line override aesthetics

• slab_fill: Override for fill: the fill color of the slab.

• slab_colour: (or slab_color) Override for colour/color: the outline color of the slab.

• slab_alpha: Override for alpha: the opacity of the slab.

• slab_linewidth: Override for linwidth: the width of the outline of the slab.

• slab_linetype: Override for linetype: the line type of the outline of the slab.

• slab_shape: Override for shape: the shape of the dots used to draw the dotplot slab.

Interval-specific color and line override aesthetics

geom_dots 49

• interval_colour: (or interval_color) Override for colour/color: the color of the inter-
val.

• interval_alpha: Override for alpha: the opacity of the interval.

• interval_linetype: Override for linetype: the line type of the interval.

Point-specific color and line override aesthetics

• point_fill: Override for fill: the fill color of the point.

• point_colour: (or point_color) Override for colour/color: the outline color of the point.

• point_alpha: Override for alpha: the opacity of the point.

• point_size: Override for size: the size of the point.

Deprecated aesthetics

• slab_size: Use slab_linewidth.

• interval_size: Use interval_linewidth.

Other aesthetics (these work as in standard geoms)

• width

• height

• group

See examples of some of these aesthetics in action in vignette("dotsinterval"). Learn more
about the sub-geom override aesthetics (like interval_color) in the scales documentation. Learn
more about basic ggplot aesthetics in vignette("ggplot2-specs").

References

Kay, M., Kola, T., Hullman, J. R., & Munson, S. A. (2016). When (ish) is My Bus? User-centered
Visualizations of Uncertainty in Everyday, Mobile Predictive Systems. Conference on Human Fac-
tors in Computing Systems - CHI ’16, 5092–5103. doi:10.1145/2858036.2858558.

Fernandes, M., Walls, L., Munson, S., Hullman, J., & Kay, M. (2018). Uncertainty Displays Using
Quantile Dotplots or CDFs Improve Transit Decision-Making. Conference on Human Factors in
Computing Systems - CHI ’18. doi:10.1145/3173574.3173718.

See Also

See stat_dots() for the stat version, intended for use on sample data or analytical distributions.

See geom_dotsinterval() for the geometry this shortcut is based on.

See vignette("dotsinterval") for a variety of examples of use.

Other dotsinterval geoms: geom_blur_dots(), geom_dotsinterval(), geom_swarm(), geom_weave()

https://doi.org/10.1145/2858036.2858558
https://doi.org/10.1145/3173574.3173718

50 geom_dotsinterval

Examples

library(dplyr)
library(ggplot2)

theme_set(theme_ggdist())

set.seed(12345)
df = tibble(

g = rep(c("a", "b"), 200),
value = rnorm(400, c(0, 3), c(0.75, 1))

)

orientation is detected automatically based on
which axis is discrete

df %>%
ggplot(aes(x = value, y = g)) +
geom_dots()

df %>%
ggplot(aes(y = value, x = g)) +
geom_dots()

geom_dotsinterval Automatic dotplot + point + interval meta-geom

Description

This meta-geom supports drawing combinations of dotplots, points, and intervals. Geoms and stats
based on geom_dotsinterval() create dotplots that automatically determine a bin width that en-
sures the plot fits within the available space. They also ensure dots do not overlap, and allow the gen-
eration of quantile dotplots using the quantiles argument to stat_dotsinterval()/stat_dots().
Generally follows the naming scheme and arguments of the geom_slabinterval() and stat_slabinterval()
family of geoms and stats.

Usage

geom_dotsinterval(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
binwidth = NA,
dotsize = 1.07,
stackratio = 1,
layout = "bin",
overlaps = "nudge",

geom_dotsinterval 51

smooth = "none",
overflow = "warn",
verbose = FALSE,
orientation = NA,
interval_size_domain = c(1, 6),
interval_size_range = c(0.6, 1.4),
fatten_point = 1.8,
arrow = NULL,
show_slab = TRUE,
show_point = TRUE,
show_interval = TRUE,
subguide = "none",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer, either as a ggproto
Geom subclass or as a string naming the stat stripped of the stat_ prefix (e.g.
"count" rather than "stat_count")

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function. Setting this equal to "dodge" (position_dodge()) or "dodgejust"
(position_dodgejust()) can be useful if you have overlapping geometries.

... Other arguments passed to layer(). These are often aesthetics, used to set an
aesthetic to a fixed value, like colour = "red" or linewidth = 3 (see Aesthet-
ics, below). They may also be parameters to the paired geom/stat.

binwidth The bin width to use for laying out the dots. One of:

• NA (the default): Dynamically select the bin width based on the size of the
plot when drawn. This will pick a binwidth such that the tallest stack of
dots is at most scale in height (ideally exactly scale in height, though this
is not guaranteed).

• A length-1 (scalar) numeric or unit object giving the exact bin width.

52 geom_dotsinterval

• A length-2 (vector) numeric or unit object giving the minimum and maxi-
mum desired bin width. The bin width will be dynamically selected within
these bounds.

If the value is numeric, it is assumed to be in units of data. The bin width
(or its bounds) can also be specified using unit(), which may be useful if it
is desired that the dots be a certain point size or a certain percentage of the
width/height of the viewport. For example, unit(0.1, "npc") would make
dots that are exactly 10% of the viewport size along whichever dimension the
dotplot is drawn; unit(c(0, 0.1), "npc") would make dots that are at most
10% of the viewport size (while still ensuring the tallest stack is less than or
equal to scale).

dotsize The width of the dots relative to the binwidth. The default, 1.07, makes dots
be just a bit wider than the bin width, which is a manually-tuned parameter
that tends to work well with the default circular shape, preventing gaps between
bins from appearing to be too large visually (as might arise from dots being
precisely the binwidth). If it is desired to have dots be precisely the binwidth,
set dotsize = 1.

stackratio The distance between the center of the dots in the same stack relative to the dot
height. The default, 1, makes dots in the same stack just touch each other.

layout The layout method used for the dots:

• "bin" (default): places dots on the off-axis at the midpoint of their bins
as in the classic Wilkinson dotplot. This maintains the alignment of rows
and columns in the dotplot. This layout is slightly different from the classic
Wilkinson algorithm in that: (1) it nudges bins slightly to avoid overlapping
bins and (2) if the input data are symmetrical it will return a symmetrical
layout.

• "weave": uses the same basic binning approach of "bin", but places dots in
the off-axis at their actual positions (unless overlaps = "nudge", in which
case overlaps may be nudged out of the way). This maintains the alignment
of rows but does not align dots within columns.

• "hex": uses the same basic binning approach of "bin", but alternates plac-
ing dots + binwidth/4 or - binwidth/4 in the off-axis from the bin center.
This allows hexagonal packing by setting a stackratio less than 1 (some-
thing like 0.9 tends to work).

• "swarm": uses the "compactswarm" layout from beeswarm::beeswarm().
Does not maintain alignment of rows or columns, but can be more compact
and neat looking, especially for sample data (as opposed to quantile dotplots
of theoretical distributions, which may look better with "bin", "weave", or
"hex").

• "bar": for discrete distributions, lays out duplicate values in rectangular
bars.

overlaps How to handle overlapping dots or bins in the "bin", "weave", and "hex" lay-
outs (dots never overlap in the "swarm" or "bar" layouts). For the purposes of
this argument, dots are only considered to be overlapping if they would be over-
lapping when dotsize = 1 and stackratio = 1; i.e. if you set those arguments
to other values, overlaps may still occur. One of:

geom_dotsinterval 53

• "keep": leave overlapping dots as they are. Dots may overlap (usually only
slightly) in the "bin", "weave", and "hex" layouts.

• "nudge": nudge overlapping dots out of the way. Overlaps are avoided
using a constrained optimization which minimizes the squared distance of
dots to their desired positions, subject to the constraint that adjacent dots
do not overlap.

smooth Smoother to apply to dot positions. One of:

• A function that takes a numeric vector of dot positions and returns a smoothed
version of that vector, such as smooth_bounded(), smooth_unbounded(),
smooth_discrete(), or smooth_bar()‘.

• A string indicating what smoother to use, as the suffix to a function name
starting with smooth_; e.g. "none" (the default) applies smooth_none(),
which simply returns the given vector without applying smoothing.

Smoothing is most effective when the smoother is matched to the support of the
distribution; e.g. using smooth_bounded(bounds = ...).

overflow How to handle overflow of dots beyond the extent of the geom when a minimum
binwidth (or an exact binwidth) is supplied. One of:

• "keep": Keep the overflow, drawing dots outside the geom bounds.
• "warn": Keep the overflow, but produce a warning suggesting solutions,

such as setting binwidth = NA or overflow = "compress".
• "compress": Compress the layout. Reduces the binwidth to the size

necessary to keep the dots within bounds, then adjusts stackratio and
dotsize so that the apparent dot size is the user-specified minimum binwidth
times the user-specified dotsize.

If you find the default layout has dots that are too small, and you are okay with
dots overlapping, consider setting overflow = "compress" and supplying an
exact or minimum dot size using binwidth.

verbose If TRUE, print out the bin width of the dotplot. Can be useful if you want to start
from an automatically-selected bin width and then adjust it manually. Bin width
is printed both as data units and as normalized parent coordinates or "npc"s (see
unit()). Note that if you just want to scale the selected bin width to fit within a
desired area, it is probably easier to use scale than to copy and scale binwidth
manually, and if you just want to provide constraints on the bin width, you can
pass a length-2 vector to binwidth.

orientation Whether this geom is drawn horizontally or vertically. One of:

• NA (default): automatically detect the orientation based on how the aesthet-
ics are assigned. Automatic detection works most of the time.

• "horizontal" (or "y"): draw horizontally, using the y aesthetic to identify
different groups. For each group, uses the x, xmin, xmax, and thickness
aesthetics to draw points, intervals, and slabs.

• "vertical" (or "x"): draw vertically, using the x aesthetic to identify dif-
ferent groups. For each group, uses the y, ymin, ymax, and thickness
aesthetics to draw points, intervals, and slabs.

For compatibility with the base ggplot naming scheme for orientation, "x"
can be used as an alias for "vertical" and "y" as an alias for "horizontal"

54 geom_dotsinterval

(ggdist had an orientation parameter before base ggplot did, hence the dis-
crepancy).

interval_size_domain

A length-2 numeric vector giving the minimum and maximum of the values of
the size and linewidth aesthetics that will be translated into actual sizes for
intervals drawn according to interval_size_range (see the documentation for
that argument.)

interval_size_range

A length-2 numeric vector. This geom scales the raw size aesthetic values when
drawing interval and point sizes, as they tend to be too thick when using the
default settings of scale_size_continuous(), which give sizes with a range
of c(1, 6). The interval_size_domain value indicates the input domain of
raw size values (typically this should be equal to the value of the range argu-
ment of the scale_size_continuous() function), and interval_size_range
indicates the desired output range of the size values (the min and max of the
actual sizes used to draw intervals). Most of the time it is not recommended to
change the value of this argument, as it may result in strange scaling of legends;
this argument is a holdover from earlier versions that did not have size aesthetics
targeting the point and interval separately. If you want to adjust the size of the
interval or points separately, you can also use the linewidth or point_size
aesthetics; see sub-geometry-scales.

fatten_point A multiplicative factor used to adjust the size of the point relative to the size
of the thickest interval line. If you wish to specify point sizes directly, you can
also use the point_size aesthetic and scale_point_size_continuous() or
scale_point_size_discrete(); sizes specified with that aesthetic will not be
adjusted using fatten_point.

arrow grid::arrow() giving the arrow heads to use on the interval, or NULL for no
arrows.

show_slab Should the slab portion of the geom be drawn?

show_point Should the point portion of the geom be drawn?

show_interval Should the interval portion of the geom be drawn?

subguide Sub-guide used to annotate the thickness scale. One of:

• A function that takes a scale argument giving a ggplot2::Scale object and
an orientation argument giving the orientation of the geometry and then
returns a grid::grob that will draw the axis annotation, such as subguide_axis()
(to draw a traditional axis) or subguide_none() (to draw no annotation).
See subguide_axis() for a list of possibilities and examples.

• A string giving the name of such a function when prefixed with "subguide";
e.g. "axis" or "none".

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

geom_dotsinterval 55

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Details

The dots family of stats and geoms are similar to geom_dotplot() but with a number of differences:

• Dots geoms act like slabs in geom_slabinterval() and can be given x positions (or y posi-
tions when in a horizontal orientation).

• Given the available space to lay out dots, the dots geoms will automatically determine how
many bins to use to fit the available space.

• Dots geoms use a dynamic layout algorithm that lays out dots from the center out if the input
data are symmetrical, guaranteeing that symmetrical data results in a symmetrical plot. The
layout algorithm also prevents dots from overlapping each other.

• The shape of the dots in these geoms can be changed using the slab_shape aesthetic (when
using the dotsinterval family) or the shape or slab_shape aesthetic (when using the dots
family)

Stats and geoms in this family include:

• geom_dots(): dotplots on raw data. Ensures the dotplot fits within available space by reduc-
ing the size of the dots automatically (may result in very small dots).

• geom_swarm() and geom_weave(): dotplots on raw data with defaults intended to create
"beeswarm" plots. Used side = "both" by default, and sets the default dot size to the same
size as geom_point() (binwidth = unit(1.5, "mm")), allowing dots to overlap instead of
getting very small.

• stat_dots(): dotplots on raw data, distributional objects, and posterior::rvar()s

• geom_dotsinterval(): dotplot + interval plots on raw data with already-calculated intervals
(rarely useful directly).

• stat_dotsinterval(): dotplot + interval plots on raw data, distributional objects, and
posterior::rvar()s (will calculate intervals for you).

• geom_blur_dots(): blurry dotplots that allow the standard deviation of a blur applied to each
dot to be specified using the sd aesthetic.

• stat_mcse_dots(): blurry dotplots of quantiles using the Monte Carlo Standard Error of
each quantile.

stat_dots() and stat_dotsinterval(), when used with the quantiles argument, are partic-
ularly useful for constructing quantile dotplots, which can be an effective way to communicate
uncertainty using a frequency framing that may be easier for laypeople to understand (Kay et al.
2016, Fernandes et al. 2018).

To visualize sample data, such as a data distribution, samples from a bootstrap distribution, or a
Bayesian posterior, you can supply samples to the x or y aesthetic.

To visualize analytical distributions, you can use the xdist or ydist aesthetic. For historical
reasons, you can also use dist to specify the distribution, though this is not recommended as it
does not work as well with orientation detection. These aesthetics can be used as follows:

56 geom_dotsinterval

• xdist, ydist, and dist can be any distribution object from the distributional package (dist_normal(),
dist_beta(), etc) or can be a posterior::rvar() object. Since these functions are vector-
ized, other columns can be passed directly to them in an aes() specification; e.g. aes(dist =
dist_normal(mu, sigma)) will work if mu and sigma are columns in the input data frame.

• dist can be a character vector giving the distribution name. Then the arg1, ... arg9 aes-
thetics (or args as a list column) specify distribution arguments. Distribution names should
correspond to R functions that have "p", "q", and "d" functions; e.g. "norm" is a valid dis-
tribution name because R defines the pnorm(), qnorm(), and dnorm() functions for Normal
distributions.
See the parse_dist() function for a useful way to generate dist and args values from
human-readable distribution specs (like "normal(0,1)"). Such specs are also produced by
other packages (like the brms::get_prior function in brms); thus, parse_dist() combined
with the stats described here can help you visualize the output of those functions.

Value

A ggplot2::Geom or ggplot2::Stat representing a dotplot or combined dotplot+interval geometry
which can be added to a ggplot() object.

Aesthetics

The dots+interval stats and geoms have a wide variety of aesthetics that control the appearance of
their three sub-geometries: the dots (aka the slab), the point, and the interval.

Positional aesthetics

• x: x position of the geometry

• y: y position of the geometry

Dots-specific (aka Slab-specific) aesthetics

• family: The font family used to draw the dots.

• order: The order in which data points are stacked within bins. Can be used to create the effect
of "stacked" dots by ordering dots according to a discrete variable. If omitted (NULL), the value
of the data points themselves are used to determine stacking order. Only applies when layout
is "bin" or "hex", as the other layout methods fully determine both x and y positions.

• side: Which side to place the slab on. "topright", "top", and "right" are synonyms
which cause the slab to be drawn on the top or the right depending on if orientation
is "horizontal" or "vertical". "bottomleft", "bottom", and "left" are synonyms
which cause the slab to be drawn on the bottom or the left depending on if orientation
is "horizontal" or "vertical". "topleft" causes the slab to be drawn on the top or the
left, and "bottomright" causes the slab to be drawn on the bottom or the right. "both" draws
the slab mirrored on both sides (as in a violin plot).

• scale: What proportion of the region allocated to this geom to use to draw the slab. If scale
= 1, slabs that use the maximum range will just touch each other. Default is 0.9 to leave some
space between adjacent slabs. For a comprehensive discussion and examples of slab scaling
and normalization, see the thickness scale article.

https://pkg.mitchelloharawild.com/distributional/
https://mjskay.github.io/ggdist/articles/thickness.html

geom_dotsinterval 57

• justification: Justification of the interval relative to the slab, where 0 indicates bottom/left
justification and 1 indicates top/right justification (depending on orientation). If justification
is NULL (the default), then it is set automatically based on the value of side: when side is
"top"/"right" justification is set to 0, when side is "bottom"/"left" justification
is set to 1, and when side is "both" justification is set to 0.5.

• datatype: When using composite geoms directly without a stat (e.g. geom_slabinterval()),
datatype is used to indicate which part of the geom a row in the data targets: rows with
datatype = "slab" target the slab portion of the geometry and rows with datatype = "interval"
target the interval portion of the geometry. This is set automatically when using ggdist stats.

Interval-specific aesthetics

• xmin: Left end of the interval sub-geometry (if orientation = "horizontal").

• xmax: Right end of the interval sub-geometry (if orientation = "horizontal").

• ymin: Lower end of the interval sub-geometry (if orientation = "vertical").

• ymax: Upper end of the interval sub-geometry (if orientation = "vertical").

Point-specific aesthetics

• shape: Shape type used to draw the point sub-geometry.

Color aesthetics

• colour: (or color) The color of the interval and point sub-geometries. Use the slab_color,
interval_color, or point_color aesthetics (below) to set sub-geometry colors separately.

• fill: The fill color of the slab and point sub-geometries. Use the slab_fill or point_fill
aesthetics (below) to set sub-geometry colors separately.

• alpha: The opacity of the slab, interval, and point sub-geometries. Use the slab_alpha,
interval_alpha, or point_alpha aesthetics (below) to set sub-geometry colors separately.

• colour_ramp: (or color_ramp) A secondary scale that modifies the color scale to "ramp" to
another color. See scale_colour_ramp() for examples.

• fill_ramp: A secondary scale that modifies the fill scale to "ramp" to another color. See
scale_fill_ramp() for examples.

Line aesthetics

• linewidth: Width of the line used to draw the interval (except with geom_slab(): then
it is the width of the slab). With composite geometries including an interval and slab, use
slab_linewidth to set the line width of the slab (see below). For interval, raw linewidth
values are transformed according to the interval_size_domain and interval_size_range
parameters of the geom (see above).

• size: Determines the size of the point. If linewidth is not provided, size will also deter-
mines the width of the line used to draw the interval (this allows line width and point size to be
modified together by setting only size and not linewidth). Raw size values are transformed
according to the interval_size_domain, interval_size_range, and fatten_point pa-
rameters of the geom (see above). Use the point_size aesthetic (below) to set sub-geometry
size directly without applying the effects of interval_size_domain, interval_size_range,
and fatten_point.

58 geom_dotsinterval

• stroke: Width of the outline around the point sub-geometry.

• linetype: Type of line (e.g., "solid", "dashed", etc) used to draw the interval and the
outline of the slab (if it is visible). Use the slab_linetype or interval_linetype aesthetics
(below) to set sub-geometry line types separately.

Slab-specific color and line override aesthetics

• slab_fill: Override for fill: the fill color of the slab.

• slab_colour: (or slab_color) Override for colour/color: the outline color of the slab.

• slab_alpha: Override for alpha: the opacity of the slab.

• slab_linewidth: Override for linwidth: the width of the outline of the slab.

• slab_linetype: Override for linetype: the line type of the outline of the slab.

• slab_shape: Override for shape: the shape of the dots used to draw the dotplot slab.

Interval-specific color and line override aesthetics

• interval_colour: (or interval_color) Override for colour/color: the color of the inter-
val.

• interval_alpha: Override for alpha: the opacity of the interval.

• interval_linetype: Override for linetype: the line type of the interval.

Point-specific color and line override aesthetics

• point_fill: Override for fill: the fill color of the point.

• point_colour: (or point_color) Override for colour/color: the outline color of the point.

• point_alpha: Override for alpha: the opacity of the point.

• point_size: Override for size: the size of the point.

Deprecated aesthetics

• slab_size: Use slab_linewidth.

• interval_size: Use interval_linewidth.

Other aesthetics (these work as in standard geoms)

• width

• height

• group

See examples of some of these aesthetics in action in vignette("dotsinterval"). Learn more
about the sub-geom override aesthetics (like interval_color) in the scales documentation. Learn
more about basic ggplot aesthetics in vignette("ggplot2-specs").

Author(s)

Matthew Kay

geom_dotsinterval 59

References

Kay, M., Kola, T., Hullman, J. R., & Munson, S. A. (2016). When (ish) is My Bus? User-centered
Visualizations of Uncertainty in Everyday, Mobile Predictive Systems. Conference on Human Fac-
tors in Computing Systems - CHI ’16, 5092–5103. doi:10.1145/2858036.2858558.

Fernandes, M., Walls, L., Munson, S., Hullman, J., & Kay, M. (2018). Uncertainty Displays Using
Quantile Dotplots or CDFs Improve Transit Decision-Making. Conference on Human Factors in
Computing Systems - CHI ’18. doi:10.1145/3173574.3173718.

See Also

See the stat_slabinterval() family for other stats built on top of geom_slabinterval(). See
vignette("dotsinterval") for a variety of examples of use.

Other dotsinterval geoms: geom_blur_dots(), geom_dots(), geom_swarm(), geom_weave()

Examples

library(dplyr)
library(ggplot2)

theme_set(theme_ggdist())

set.seed(12345)
df = tibble(

g = rep(c("a", "b"), 200),
value = rnorm(400, c(0, 3), c(0.75, 1))

)

orientation is detected automatically based on
which axis is discrete

df %>%
ggplot(aes(x = value, y = g)) +
geom_dotsinterval()

df %>%
ggplot(aes(y = value, x = g)) +
geom_dotsinterval()

stat_dots can summarize quantiles, creating quantile dotplots

data(RankCorr_u_tau, package = "ggdist")

RankCorr_u_tau %>%
ggplot(aes(x = u_tau, y = factor(i))) +
stat_dots(quantiles = 100)

color and fill aesthetics can be mapped within the geom
dotsinterval adds an interval

https://doi.org/10.1145/2858036.2858558
https://doi.org/10.1145/3173574.3173718

60 geom_interval

RankCorr_u_tau %>%
ggplot(aes(x = u_tau, y = factor(i), fill = after_stat(x > 6))) +
stat_dotsinterval(quantiles = 100)

geom_interval Multiple-interval plot (shortcut geom)

Description

Shortcut version of geom_slabinterval() for creating multiple-interval plots.

Roughly equivalent to:

geom_slabinterval(
aes(
datatype = "interval",
side = "both"

),
interval_size_range = c(1, 6),
show_slab = FALSE,
show_point = FALSE

)

Usage

geom_interval(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
orientation = NA,
interval_size_range = c(1, 6),
interval_size_domain = c(1, 6),
arrow = NULL,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

geom_interval 61

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer, either as a ggproto
Geom subclass or as a string naming the stat stripped of the stat_ prefix (e.g.
"count" rather than "stat_count")

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function. Setting this equal to "dodge" (position_dodge()) or "dodgejust"
(position_dodgejust()) can be useful if you have overlapping geometries.

... Other arguments passed to layer(). These are often aesthetics, used to set an
aesthetic to a fixed value, like colour = "red" or linewidth = 3 (see Aesthet-
ics, below). They may also be parameters to the paired geom/stat.

orientation Whether this geom is drawn horizontally or vertically. One of:

• NA (default): automatically detect the orientation based on how the aesthet-
ics are assigned. Automatic detection works most of the time.

• "horizontal" (or "y"): draw horizontally, using the y aesthetic to identify
different groups. For each group, uses the x, xmin, xmax, and thickness
aesthetics to draw points, intervals, and slabs.

• "vertical" (or "x"): draw vertically, using the x aesthetic to identify dif-
ferent groups. For each group, uses the y, ymin, ymax, and thickness
aesthetics to draw points, intervals, and slabs.

For compatibility with the base ggplot naming scheme for orientation, "x"
can be used as an alias for "vertical" and "y" as an alias for "horizontal"
(ggdist had an orientation parameter before base ggplot did, hence the dis-
crepancy).

interval_size_range

A length-2 numeric vector. This geom scales the raw size aesthetic values when
drawing interval and point sizes, as they tend to be too thick when using the
default settings of scale_size_continuous(), which give sizes with a range
of c(1, 6). The interval_size_domain value indicates the input domain of
raw size values (typically this should be equal to the value of the range argu-
ment of the scale_size_continuous() function), and interval_size_range
indicates the desired output range of the size values (the min and max of the
actual sizes used to draw intervals). Most of the time it is not recommended to
change the value of this argument, as it may result in strange scaling of legends;
this argument is a holdover from earlier versions that did not have size aesthetics
targeting the point and interval separately. If you want to adjust the size of the
interval or points separately, you can also use the linewidth or point_size
aesthetics; see sub-geometry-scales.

62 geom_interval

interval_size_domain

A length-2 numeric vector giving the minimum and maximum of the values of
the size and linewidth aesthetics that will be translated into actual sizes for
intervals drawn according to interval_size_range (see the documentation for
that argument.)

arrow grid::arrow() giving the arrow heads to use on the interval, or NULL for no
arrows.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Details

This geom wraps geom_slabinterval() with defaults designed to produce multiple-interval plots.
Default aesthetic mappings are applied if the .width column is present in the input data (e.g., as
generated by the point_interval() family of functions), making this geom often more conve-
nient than vanilla ggplot2 geometries when used with functions like median_qi(), mean_qi(),
mode_hdi(), etc.

Specifically, if .width is present in the input, geom_interval() acts as if its default aesthetics are
aes(colour = forcats::fct_rev(ordered(.width)))

Value

A ggplot2::Geom representing a multiple-interval geometry which can be added to a ggplot()
object.

Aesthetics

The slab+interval stats and geoms have a wide variety of aesthetics that control the appearance of
their three sub-geometries: the slab, the point, and the interval.

Positional aesthetics

• x: x position of the geometry

• y: y position of the geometry

Interval-specific aesthetics

• xmin: Left end of the interval sub-geometry (if orientation = "horizontal").

• xmax: Right end of the interval sub-geometry (if orientation = "horizontal").

• ymin: Lower end of the interval sub-geometry (if orientation = "vertical").

• ymax: Upper end of the interval sub-geometry (if orientation = "vertical").

geom_interval 63

Color aesthetics

• colour: (or color) The color of the interval and point sub-geometries. Use the slab_color,
interval_color, or point_color aesthetics (below) to set sub-geometry colors separately.

• fill: The fill color of the slab and point sub-geometries. Use the slab_fill or point_fill
aesthetics (below) to set sub-geometry colors separately.

• alpha: The opacity of the slab, interval, and point sub-geometries. Use the slab_alpha,
interval_alpha, or point_alpha aesthetics (below) to set sub-geometry colors separately.

• colour_ramp: (or color_ramp) A secondary scale that modifies the color scale to "ramp" to
another color. See scale_colour_ramp() for examples.

• fill_ramp: A secondary scale that modifies the fill scale to "ramp" to another color. See
scale_fill_ramp() for examples.

Line aesthetics

• linewidth: Width of the line used to draw the interval (except with geom_slab(): then
it is the width of the slab). With composite geometries including an interval and slab, use
slab_linewidth to set the line width of the slab (see below). For interval, raw linewidth
values are transformed according to the interval_size_domain and interval_size_range
parameters of the geom (see above).

• size: Determines the size of the point. If linewidth is not provided, size will also deter-
mines the width of the line used to draw the interval (this allows line width and point size to be
modified together by setting only size and not linewidth). Raw size values are transformed
according to the interval_size_domain, interval_size_range, and fatten_point pa-
rameters of the geom (see above). Use the point_size aesthetic (below) to set sub-geometry
size directly without applying the effects of interval_size_domain, interval_size_range,
and fatten_point.

• stroke: Width of the outline around the point sub-geometry.

• linetype: Type of line (e.g., "solid", "dashed", etc) used to draw the interval and the
outline of the slab (if it is visible). Use the slab_linetype or interval_linetype aesthetics
(below) to set sub-geometry line types separately.

Interval-specific color and line override aesthetics

• interval_colour: (or interval_color) Override for colour/color: the color of the inter-
val.

• interval_alpha: Override for alpha: the opacity of the interval.

• interval_linetype: Override for linetype: the line type of the interval.

Deprecated aesthetics

• interval_size: Use interval_linewidth.

Other aesthetics (these work as in standard geoms)

• width

• height

64 geom_lineribbon

• group

See examples of some of these aesthetics in action in vignette("slabinterval"). Learn more
about the sub-geom override aesthetics (like interval_color) in the scales documentation. Learn
more about basic ggplot aesthetics in vignette("ggplot2-specs").

See Also

See stat_interval() for the stat version, intended for use on sample data or analytical distribu-
tions. See geom_slabinterval() for the geometry this shortcut is based on.

Other slabinterval geoms: geom_pointinterval(), geom_slab(), geom_spike()

Examples

library(dplyr)
library(ggplot2)

theme_set(theme_ggdist())

data(RankCorr_u_tau, package = "ggdist")

orientation is detected automatically based on
use of xmin/xmax or ymin/ymax

RankCorr_u_tau %>%
group_by(i) %>%
median_qi(.width = c(.5, .8, .95, .99)) %>%
ggplot(aes(y = i, x = u_tau, xmin = .lower, xmax = .upper)) +
geom_interval() +
scale_color_brewer()

RankCorr_u_tau %>%
group_by(i) %>%
median_qi(.width = c(.5, .8, .95, .99)) %>%
ggplot(aes(x = i, y = u_tau, ymin = .lower, ymax = .upper)) +
geom_interval() +
scale_color_brewer()

geom_lineribbon Line + multiple-ribbon plots (ggplot geom)

Description

A combination of geom_line() and geom_ribbon() with default aesthetics designed for use with
output from point_interval().

geom_lineribbon 65

Usage

geom_lineribbon(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
step = FALSE,
orientation = NA,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer, either as a ggproto
Geom subclass or as a string naming the stat stripped of the stat_ prefix (e.g.
"count" rather than "stat_count")

position Position adjustment, either as a string naming the adjustment (e.g. "jitter" to
use position_jitter), or the result of a call to a position adjustment function.
Use the latter if you need to change the settings of the adjustment.

... Other arguments passed to layer(). These are often aesthetics, used to set an
aesthetic to a fixed value, like colour = "red" or linewidth = 3 (see Aesthet-
ics, below). They may also be parameters to the paired geom/stat.

step Should the line/ribbon be drawn as a step function? One of:

• FALSE (default): do not draw as a step function.
• "mid" (or TRUE): draw steps midway between adjacent x values.
• "hv": draw horizontal-then-vertical steps.
• "vh": draw as vertical-then-horizontal steps.

TRUE is an alias for "mid" because for a step function with ribbons, "mid" is
probably what you want (for the other two step approaches the ribbons at either
the very first or very last x value will not be visible).

66 geom_lineribbon

orientation Whether this geom is drawn horizontally or vertically. One of:

• NA (default): automatically detect the orientation based on how the aesthet-
ics are assigned. Automatic detection works most of the time.

• "horizontal" (or "y"): draw horizontally, using the y aesthetic to identify
different groups. For each group, uses the x, xmin, xmax, and thickness
aesthetics to draw points, intervals, and slabs.

• "vertical" (or "x"): draw vertically, using the x aesthetic to identify dif-
ferent groups. For each group, uses the y, ymin, ymax, and thickness
aesthetics to draw points, intervals, and slabs.

For compatibility with the base ggplot naming scheme for orientation, "x"
can be used as an alias for "vertical" and "y" as an alias for "horizontal"
(ggdist had an orientation parameter before base ggplot did, hence the dis-
crepancy).

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Details

geom_lineribbon() is a combination of a geom_line() and geom_ribbon() designed for use with
output from point_interval(). This geom sets some default aesthetics equal to the .width col-
umn generated by the point_interval() family of functions, making them often more convenient
than a vanilla geom_ribbon() + geom_line().

Specifically, geom_lineribbon() acts as if its default aesthetics are aes(fill = forcats::fct_rev(ordered(.width))).

Value

A ggplot2::Geom representing a combined line + multiple-ribbon geometry which can be added to
a ggplot() object.

Aesthetics

The line+ribbon stats and geoms have a wide variety of aesthetics that control the appearance of
their two sub-geometries: the line and the ribbon.

Positional aesthetics

• x: x position of the geometry

• y: y position of the geometry

Ribbon-specific aesthetics

• xmin: Left edge of the ribbon sub-geometry (if orientation = "horizontal").

geom_lineribbon 67

• xmax: Right edge of the ribbon sub-geometry (if orientation = "horizontal").

• ymin: Lower edge of the ribbon sub-geometry (if orientation = "vertical").

• ymax: Upper edge of the ribbon sub-geometry (if orientation = "vertical").

• order: The order in which ribbons are drawn. Ribbons with the smallest mean value of
order are drawn first (i.e., will be drawn below ribbons with larger mean values of order).
If order is not supplied to geom_lineribbon(), -abs(xmax - xmin) or -abs(ymax - ymax)
(depending on orientation) is used, having the effect of drawing the widest (on average)
ribbons on the bottom. stat_lineribbon() uses order = after_stat(level) by default,
causing the ribbons generated from the largest .width to be drawn on the bottom.

Color aesthetics

• colour: (or color) The color of the line sub-geometry.

• fill: The fill color of the ribbon sub-geometry.

• alpha: The opacity of the line and ribbon sub-geometries.

• fill_ramp: A secondary scale that modifies the fill scale to "ramp" to another color. See
scale_fill_ramp() for examples.

Line aesthetics

• linewidth: Width of line. In ggplot2 < 3.4, was called size.

• linetype: Type of line (e.g., "solid", "dashed", etc)

Other aesthetics (these work as in standard geoms)

• group

See examples of some of these aesthetics in action in vignette("lineribbon"). Learn more about
the sub-geom override aesthetics (like interval_color) in the scales documentation. Learn more
about basic ggplot aesthetics in vignette("ggplot2-specs").

Author(s)

Matthew Kay

See Also

See stat_lineribbon() for a version that does summarizing of samples into points and intervals
within ggplot. See geom_pointinterval() for a similar geom intended for point summaries and
intervals. See geom_ribbon() and geom_line() for the geoms this is based on.

Examples

library(dplyr)
library(ggplot2)

theme_set(theme_ggdist())

68 geom_pointinterval

set.seed(12345)
tibble(

x = rep(1:10, 100),
y = rnorm(1000, x)

) %>%
group_by(x) %>%
median_qi(.width = c(.5, .8, .95)) %>%
ggplot(aes(x = x, y = y, ymin = .lower, ymax = .upper)) +
automatically uses aes(fill = forcats::fct_rev(ordered(.width)))
geom_lineribbon() +
scale_fill_brewer()

geom_pointinterval Point + multiple-interval plot (shortcut geom)

Description

Shortcut version of geom_slabinterval() for creating point + multiple-interval plots.

Roughly equivalent to:

geom_slabinterval(
aes(
datatype = "interval",
side = "both"

),
show_slab = FALSE,
show.legend = c(size = FALSE)

)

Usage

geom_pointinterval(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
orientation = NA,
interval_size_domain = c(1, 6),
interval_size_range = c(0.6, 1.4),
fatten_point = 1.8,
arrow = NULL,
na.rm = FALSE,
show.legend = c(size = FALSE),
inherit.aes = TRUE

)

geom_pointinterval 69

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer, either as a ggproto
Geom subclass or as a string naming the stat stripped of the stat_ prefix (e.g.
"count" rather than "stat_count")

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function. Setting this equal to "dodge" (position_dodge()) or "dodgejust"
(position_dodgejust()) can be useful if you have overlapping geometries.

... Other arguments passed to layer(). These are often aesthetics, used to set an
aesthetic to a fixed value, like colour = "red" or linewidth = 3 (see Aesthet-
ics, below). They may also be parameters to the paired geom/stat.

orientation Whether this geom is drawn horizontally or vertically. One of:

• NA (default): automatically detect the orientation based on how the aesthet-
ics are assigned. Automatic detection works most of the time.

• "horizontal" (or "y"): draw horizontally, using the y aesthetic to identify
different groups. For each group, uses the x, xmin, xmax, and thickness
aesthetics to draw points, intervals, and slabs.

• "vertical" (or "x"): draw vertically, using the x aesthetic to identify dif-
ferent groups. For each group, uses the y, ymin, ymax, and thickness
aesthetics to draw points, intervals, and slabs.

For compatibility with the base ggplot naming scheme for orientation, "x"
can be used as an alias for "vertical" and "y" as an alias for "horizontal"
(ggdist had an orientation parameter before base ggplot did, hence the dis-
crepancy).

interval_size_domain

A length-2 numeric vector giving the minimum and maximum of the values of
the size and linewidth aesthetics that will be translated into actual sizes for
intervals drawn according to interval_size_range (see the documentation for
that argument.)

interval_size_range

A length-2 numeric vector. This geom scales the raw size aesthetic values when
drawing interval and point sizes, as they tend to be too thick when using the
default settings of scale_size_continuous(), which give sizes with a range
of c(1, 6). The interval_size_domain value indicates the input domain of

70 geom_pointinterval

raw size values (typically this should be equal to the value of the range argu-
ment of the scale_size_continuous() function), and interval_size_range
indicates the desired output range of the size values (the min and max of the
actual sizes used to draw intervals). Most of the time it is not recommended to
change the value of this argument, as it may result in strange scaling of legends;
this argument is a holdover from earlier versions that did not have size aesthetics
targeting the point and interval separately. If you want to adjust the size of the
interval or points separately, you can also use the linewidth or point_size
aesthetics; see sub-geometry-scales.

fatten_point A multiplicative factor used to adjust the size of the point relative to the size
of the thickest interval line. If you wish to specify point sizes directly, you can
also use the point_size aesthetic and scale_point_size_continuous() or
scale_point_size_discrete(); sizes specified with that aesthetic will not be
adjusted using fatten_point.

arrow grid::arrow() giving the arrow heads to use on the interval, or NULL for no
arrows.

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend Should this layer be included in the legends? Default is c(size = FALSE), unlike
most geoms, to match its common use cases. FALSE hides all legends, TRUE
shows all legends, and NA shows only those that are mapped (the default for
most geoms).

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Details

This geom wraps geom_slabinterval() with defaults designed to produce point + multiple-interval
plots. Default aesthetic mappings are applied if the .width column is present in the input data (e.g.,
as generated by the point_interval() family of functions), making this geom often more con-
venient than vanilla ggplot2 geometries when used with functions like median_qi(), mean_qi(),
mode_hdi(), etc.

Specifically, if .width is present in the input, geom_pointinterval() acts as if its default aesthet-
ics are aes(size = -.width)

Value

A ggplot2::Geom representing a point + multiple-interval geometry which can be added to a ggplot()
object.

Aesthetics

The slab+interval stats and geoms have a wide variety of aesthetics that control the appearance of
their three sub-geometries: the slab, the point, and the interval.

Positional aesthetics

geom_pointinterval 71

• x: x position of the geometry

• y: y position of the geometry

Interval-specific aesthetics

• xmin: Left end of the interval sub-geometry (if orientation = "horizontal").

• xmax: Right end of the interval sub-geometry (if orientation = "horizontal").

• ymin: Lower end of the interval sub-geometry (if orientation = "vertical").

• ymax: Upper end of the interval sub-geometry (if orientation = "vertical").

Point-specific aesthetics

• shape: Shape type used to draw the point sub-geometry.

Color aesthetics

• colour: (or color) The color of the interval and point sub-geometries. Use the slab_color,
interval_color, or point_color aesthetics (below) to set sub-geometry colors separately.

• fill: The fill color of the slab and point sub-geometries. Use the slab_fill or point_fill
aesthetics (below) to set sub-geometry colors separately.

• alpha: The opacity of the slab, interval, and point sub-geometries. Use the slab_alpha,
interval_alpha, or point_alpha aesthetics (below) to set sub-geometry colors separately.

• colour_ramp: (or color_ramp) A secondary scale that modifies the color scale to "ramp" to
another color. See scale_colour_ramp() for examples.

• fill_ramp: A secondary scale that modifies the fill scale to "ramp" to another color. See
scale_fill_ramp() for examples.

Line aesthetics

• linewidth: Width of the line used to draw the interval (except with geom_slab(): then
it is the width of the slab). With composite geometries including an interval and slab, use
slab_linewidth to set the line width of the slab (see below). For interval, raw linewidth
values are transformed according to the interval_size_domain and interval_size_range
parameters of the geom (see above).

• size: Determines the size of the point. If linewidth is not provided, size will also deter-
mines the width of the line used to draw the interval (this allows line width and point size to be
modified together by setting only size and not linewidth). Raw size values are transformed
according to the interval_size_domain, interval_size_range, and fatten_point pa-
rameters of the geom (see above). Use the point_size aesthetic (below) to set sub-geometry
size directly without applying the effects of interval_size_domain, interval_size_range,
and fatten_point.

• stroke: Width of the outline around the point sub-geometry.

• linetype: Type of line (e.g., "solid", "dashed", etc) used to draw the interval and the
outline of the slab (if it is visible). Use the slab_linetype or interval_linetype aesthetics
(below) to set sub-geometry line types separately.

Interval-specific color and line override aesthetics

72 geom_pointinterval

• interval_colour: (or interval_color) Override for colour/color: the color of the inter-
val.

• interval_alpha: Override for alpha: the opacity of the interval.

• interval_linetype: Override for linetype: the line type of the interval.

Point-specific color and line override aesthetics

• point_fill: Override for fill: the fill color of the point.

• point_colour: (or point_color) Override for colour/color: the outline color of the point.

• point_alpha: Override for alpha: the opacity of the point.

• point_size: Override for size: the size of the point.

Deprecated aesthetics

• interval_size: Use interval_linewidth.

Other aesthetics (these work as in standard geoms)

• width

• height

• group

See examples of some of these aesthetics in action in vignette("slabinterval"). Learn more
about the sub-geom override aesthetics (like interval_color) in the scales documentation. Learn
more about basic ggplot aesthetics in vignette("ggplot2-specs").

See Also

See stat_pointinterval() for the stat version, intended for use on sample data or analytical
distributions. See geom_slabinterval() for the geometry this shortcut is based on.

Other slabinterval geoms: geom_interval(), geom_slab(), geom_spike()

Examples

library(dplyr)
library(ggplot2)

data(RankCorr_u_tau, package = "ggdist")

orientation is detected automatically based on
use of xmin/xmax or ymin/ymax

RankCorr_u_tau %>%
group_by(i) %>%
median_qi(.width = c(.8, .95)) %>%
ggplot(aes(y = i, x = u_tau, xmin = .lower, xmax = .upper)) +
geom_pointinterval()

geom_slab 73

RankCorr_u_tau %>%
group_by(i) %>%
median_qi(.width = c(.8, .95)) %>%
ggplot(aes(x = i, y = u_tau, ymin = .lower, ymax = .upper)) +
geom_pointinterval()

geom_slab Slab (ridge) plot (shortcut geom)

Description

Shortcut version of geom_slabinterval() for creating slab (ridge) plots.

Roughly equivalent to:

geom_slabinterval(
show_point = FALSE,
show_interval = FALSE

)

Usage

geom_slab(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
orientation = NA,
normalize = "all",
fill_type = "segments",
subguide = "none",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().

74 geom_slab

A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer, either as a ggproto
Geom subclass or as a string naming the stat stripped of the stat_ prefix (e.g.
"count" rather than "stat_count")

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function. Setting this equal to "dodge" (position_dodge()) or "dodgejust"
(position_dodgejust()) can be useful if you have overlapping geometries.

... Other arguments passed to layer(). These are often aesthetics, used to set an
aesthetic to a fixed value, like colour = "red" or linewidth = 3 (see Aesthet-
ics, below). They may also be parameters to the paired geom/stat.

orientation Whether this geom is drawn horizontally or vertically. One of:

• NA (default): automatically detect the orientation based on how the aesthet-
ics are assigned. Automatic detection works most of the time.

• "horizontal" (or "y"): draw horizontally, using the y aesthetic to identify
different groups. For each group, uses the x, xmin, xmax, and thickness
aesthetics to draw points, intervals, and slabs.

• "vertical" (or "x"): draw vertically, using the x aesthetic to identify dif-
ferent groups. For each group, uses the y, ymin, ymax, and thickness
aesthetics to draw points, intervals, and slabs.

For compatibility with the base ggplot naming scheme for orientation, "x"
can be used as an alias for "vertical" and "y" as an alias for "horizontal"
(ggdist had an orientation parameter before base ggplot did, hence the dis-
crepancy).

normalize How to normalize heights of functions input to the thickness aesthetic. One
of:

• "all": normalize so that the maximum height across all data is 1.
• "panels": normalize within panels so that the maximum height in each

panel is 1.
• "xy": normalize within the x/y axis opposite the orientation of this geom

so that the maximum height at each value of the opposite axis is 1.
• "groups": normalize within values of the opposite axis and within each

group so that the maximum height in each group is 1.
• "none": values are taken as is with no normalization (this should probably

only be used with functions whose values are in [0,1], such as CDFs).

For a comprehensive discussion and examples of slab scaling and normalization,
see the thickness scale article.

fill_type What type of fill to use when the fill color or alpha varies within a slab. One of:

• "segments": breaks up the slab geometry into segments for each unique
combination of fill color and alpha value. This approach is supported by all

https://mjskay.github.io/ggdist/articles/thickness.html

geom_slab 75

graphics devices and works well for sharp cutoff values, but can give ugly
results if a large number of unique fill colors are being used (as in gradients,
like in stat_gradientinterval()).

• "gradient": a grid::linearGradient() is used to create a smooth gra-
dient fill. This works well for large numbers of unique fill colors, but re-
quires R >= 4.1 and is not yet supported on all graphics devices. As of
this writing, the png() graphics device with type = "cairo", the svg()
device, the pdf() device, and the ragg::agg_png() devices are known to
support this option. On R < 4.1, this option will fall back to fill_type =
"segments" with a message.

• "auto": attempts to use fill_type = "gradient" if support for it can be
auto-detected. On R >= 4.2, support for gradients can be auto-detected
on some graphics devices; if support is not detected, this option will fall
back to fill_type = "segments" (in case of a false negative, fill_type =
"gradient" can be set explicitly). On R < 4.2, support for gradients cannot
be auto-detected, so this will always fall back to fill_type = "segments",
in which case you can set fill_type = "gradient" explicitly if you are
using a graphics device that support gradients.

subguide Sub-guide used to annotate the thickness scale. One of:

• A function that takes a scale argument giving a ggplot2::Scale object and
an orientation argument giving the orientation of the geometry and then
returns a grid::grob that will draw the axis annotation, such as subguide_axis()
(to draw a traditional axis) or subguide_none() (to draw no annotation).
See subguide_axis() for a list of possibilities and examples.

• A string giving the name of such a function when prefixed with "subguide";
e.g. "axis" or "none".

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Value

A ggplot2::Geom representing a slab (ridge) geometry which can be added to a ggplot() object.

Aesthetics

The slab+interval stats and geoms have a wide variety of aesthetics that control the appearance of
their three sub-geometries: the slab, the point, and the interval.
Positional aesthetics

• x: x position of the geometry

• y: y position of the geometry

76 geom_slab

Slab-specific aesthetics

• thickness: The thickness of the slab at each x value (if orientation = "horizontal") or y
value (if orientation = "vertical") of the slab.

• side: Which side to place the slab on. "topright", "top", and "right" are synonyms
which cause the slab to be drawn on the top or the right depending on if orientation
is "horizontal" or "vertical". "bottomleft", "bottom", and "left" are synonyms
which cause the slab to be drawn on the bottom or the left depending on if orientation
is "horizontal" or "vertical". "topleft" causes the slab to be drawn on the top or the
left, and "bottomright" causes the slab to be drawn on the bottom or the right. "both" draws
the slab mirrored on both sides (as in a violin plot).

• scale: What proportion of the region allocated to this geom to use to draw the slab. If scale
= 1, slabs that use the maximum range will just touch each other. Default is 0.9 to leave some
space between adjacent slabs. For a comprehensive discussion and examples of slab scaling
and normalization, see the thickness scale article.

• justification: Justification of the interval relative to the slab, where 0 indicates bottom/left
justification and 1 indicates top/right justification (depending on orientation). If justification
is NULL (the default), then it is set automatically based on the value of side: when side is
"top"/"right" justification is set to 0, when side is "bottom"/"left" justification
is set to 1, and when side is "both" justification is set to 0.5.

Color aesthetics

• colour: (or color) The color of the interval and point sub-geometries. Use the slab_color,
interval_color, or point_color aesthetics (below) to set sub-geometry colors separately.

• fill: The fill color of the slab and point sub-geometries. Use the slab_fill or point_fill
aesthetics (below) to set sub-geometry colors separately.

• alpha: The opacity of the slab, interval, and point sub-geometries. Use the slab_alpha,
interval_alpha, or point_alpha aesthetics (below) to set sub-geometry colors separately.

• colour_ramp: (or color_ramp) A secondary scale that modifies the color scale to "ramp" to
another color. See scale_colour_ramp() for examples.

• fill_ramp: A secondary scale that modifies the fill scale to "ramp" to another color. See
scale_fill_ramp() for examples.

Line aesthetics

• linewidth: Width of the line used to draw the interval (except with geom_slab(): then
it is the width of the slab). With composite geometries including an interval and slab, use
slab_linewidth to set the line width of the slab (see below). For interval, raw linewidth
values are transformed according to the interval_size_domain and interval_size_range
parameters of the geom (see above).

• size: Determines the size of the point. If linewidth is not provided, size will also deter-
mines the width of the line used to draw the interval (this allows line width and point size to be
modified together by setting only size and not linewidth). Raw size values are transformed
according to the interval_size_domain, interval_size_range, and fatten_point pa-
rameters of the geom (see above). Use the point_size aesthetic (below) to set sub-geometry
size directly without applying the effects of interval_size_domain, interval_size_range,
and fatten_point.

https://mjskay.github.io/ggdist/articles/thickness.html

geom_slab 77

• stroke: Width of the outline around the point sub-geometry.

• linetype: Type of line (e.g., "solid", "dashed", etc) used to draw the interval and the
outline of the slab (if it is visible). Use the slab_linetype or interval_linetype aesthetics
(below) to set sub-geometry line types separately.

Slab-specific color and line override aesthetics

• slab_fill: Override for fill: the fill color of the slab.

• slab_colour: (or slab_color) Override for colour/color: the outline color of the slab.

• slab_alpha: Override for alpha: the opacity of the slab.

• slab_linewidth: Override for linwidth: the width of the outline of the slab.

• slab_linetype: Override for linetype: the line type of the outline of the slab.

Deprecated aesthetics

• slab_size: Use slab_linewidth.

Other aesthetics (these work as in standard geoms)

• width

• height

• group

See examples of some of these aesthetics in action in vignette("slabinterval"). Learn more
about the sub-geom override aesthetics (like interval_color) in the scales documentation. Learn
more about basic ggplot aesthetics in vignette("ggplot2-specs").

See Also

See stat_slab() for the stat version, intended for use on sample data or analytical distributions.
See geom_slabinterval() for the geometry this shortcut is based on.

Other slabinterval geoms: geom_interval(), geom_pointinterval(), geom_spike()

Examples

library(dplyr)
library(ggplot2)

theme_set(theme_ggdist())

we will manually demonstrate plotting a density with geom_slab(),
though generally speaking this is easier to do using stat_slab(), which
will determine sensible limits automatically and correctly adjust
densities when using scale transformations
df = expand.grid(

mean = 1:3,
input = seq(-2, 6, length.out = 100)

) %>%

78 geom_slabinterval

mutate(
group = letters[4 - mean],
density = dnorm(input, mean, 1)

)

orientation is detected automatically based on
use of x or y
df %>%

ggplot(aes(y = group, x = input, thickness = density)) +
geom_slab()

df %>%
ggplot(aes(x = group, y = input, thickness = density)) +
geom_slab()

RIDGE PLOTS
"ridge" plots can be created by increasing the slab height and
setting the slab color
df %>%

ggplot(aes(y = group, x = input, thickness = density)) +
geom_slab(height = 2, color = "black")

geom_slabinterval Slab + point + interval meta-geom

Description

This meta-geom supports drawing combinations of functions (as slabs, aka ridge plots or joy plots),
points, and intervals. It acts as a meta-geom for many other ggdist geoms that are wrappers around
this geom, including eye plots, half-eye plots, CCDF barplots, and point+multiple interval plots,
and supports both horizontal and vertical orientations, dodging (via the position argument), and
relative justification of slabs with their corresponding intervals.

Usage

geom_slabinterval(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
orientation = NA,
normalize = "all",
fill_type = "segments",
interval_size_domain = c(1, 6),
interval_size_range = c(0.6, 1.4),
fatten_point = 1.8,
arrow = NULL,

geom_slabinterval 79

show_slab = TRUE,
show_point = TRUE,
show_interval = TRUE,
subguide = "none",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer, either as a ggproto
Geom subclass or as a string naming the stat stripped of the stat_ prefix (e.g.
"count" rather than "stat_count")

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function. Setting this equal to "dodge" (position_dodge()) or "dodgejust"
(position_dodgejust()) can be useful if you have overlapping geometries.

... Other arguments passed to layer(). These are often aesthetics, used to set an
aesthetic to a fixed value, like colour = "red" or linewidth = 3 (see Aesthet-
ics, below). They may also be parameters to the paired geom/stat.

orientation Whether this geom is drawn horizontally or vertically. One of:

• NA (default): automatically detect the orientation based on how the aesthet-
ics are assigned. Automatic detection works most of the time.

• "horizontal" (or "y"): draw horizontally, using the y aesthetic to identify
different groups. For each group, uses the x, xmin, xmax, and thickness
aesthetics to draw points, intervals, and slabs.

• "vertical" (or "x"): draw vertically, using the x aesthetic to identify dif-
ferent groups. For each group, uses the y, ymin, ymax, and thickness
aesthetics to draw points, intervals, and slabs.

For compatibility with the base ggplot naming scheme for orientation, "x"
can be used as an alias for "vertical" and "y" as an alias for "horizontal"
(ggdist had an orientation parameter before base ggplot did, hence the dis-
crepancy).

80 geom_slabinterval

normalize How to normalize heights of functions input to the thickness aesthetic. One
of:

• "all": normalize so that the maximum height across all data is 1.
• "panels": normalize within panels so that the maximum height in each

panel is 1.
• "xy": normalize within the x/y axis opposite the orientation of this geom

so that the maximum height at each value of the opposite axis is 1.
• "groups": normalize within values of the opposite axis and within each

group so that the maximum height in each group is 1.
• "none": values are taken as is with no normalization (this should probably

only be used with functions whose values are in [0,1], such as CDFs).

For a comprehensive discussion and examples of slab scaling and normalization,
see the thickness scale article.

fill_type What type of fill to use when the fill color or alpha varies within a slab. One of:

• "segments": breaks up the slab geometry into segments for each unique
combination of fill color and alpha value. This approach is supported by all
graphics devices and works well for sharp cutoff values, but can give ugly
results if a large number of unique fill colors are being used (as in gradients,
like in stat_gradientinterval()).

• "gradient": a grid::linearGradient() is used to create a smooth gra-
dient fill. This works well for large numbers of unique fill colors, but re-
quires R >= 4.1 and is not yet supported on all graphics devices. As of
this writing, the png() graphics device with type = "cairo", the svg()
device, the pdf() device, and the ragg::agg_png() devices are known to
support this option. On R < 4.1, this option will fall back to fill_type =
"segments" with a message.

• "auto": attempts to use fill_type = "gradient" if support for it can be
auto-detected. On R >= 4.2, support for gradients can be auto-detected
on some graphics devices; if support is not detected, this option will fall
back to fill_type = "segments" (in case of a false negative, fill_type =
"gradient" can be set explicitly). On R < 4.2, support for gradients cannot
be auto-detected, so this will always fall back to fill_type = "segments",
in which case you can set fill_type = "gradient" explicitly if you are
using a graphics device that support gradients.

interval_size_domain

A length-2 numeric vector giving the minimum and maximum of the values of
the size and linewidth aesthetics that will be translated into actual sizes for
intervals drawn according to interval_size_range (see the documentation for
that argument.)

interval_size_range

A length-2 numeric vector. This geom scales the raw size aesthetic values when
drawing interval and point sizes, as they tend to be too thick when using the
default settings of scale_size_continuous(), which give sizes with a range
of c(1, 6). The interval_size_domain value indicates the input domain of
raw size values (typically this should be equal to the value of the range argu-
ment of the scale_size_continuous() function), and interval_size_range

https://mjskay.github.io/ggdist/articles/thickness.html

geom_slabinterval 81

indicates the desired output range of the size values (the min and max of the
actual sizes used to draw intervals). Most of the time it is not recommended to
change the value of this argument, as it may result in strange scaling of legends;
this argument is a holdover from earlier versions that did not have size aesthetics
targeting the point and interval separately. If you want to adjust the size of the
interval or points separately, you can also use the linewidth or point_size
aesthetics; see sub-geometry-scales.

fatten_point A multiplicative factor used to adjust the size of the point relative to the size
of the thickest interval line. If you wish to specify point sizes directly, you can
also use the point_size aesthetic and scale_point_size_continuous() or
scale_point_size_discrete(); sizes specified with that aesthetic will not be
adjusted using fatten_point.

arrow grid::arrow() giving the arrow heads to use on the interval, or NULL for no
arrows.

show_slab Should the slab portion of the geom be drawn?

show_point Should the point portion of the geom be drawn?

show_interval Should the interval portion of the geom be drawn?

subguide Sub-guide used to annotate the thickness scale. One of:

• A function that takes a scale argument giving a ggplot2::Scale object and
an orientation argument giving the orientation of the geometry and then
returns a grid::grob that will draw the axis annotation, such as subguide_axis()
(to draw a traditional axis) or subguide_none() (to draw no annotation).
See subguide_axis() for a list of possibilities and examples.

• A string giving the name of such a function when prefixed with "subguide";
e.g. "axis" or "none".

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Details

geom_slabinterval() is a flexible meta-geom that you can use directly or through a variety of
"shortcut" geoms that represent useful combinations of the various parameters of this geom. In
many cases you will want to use the shortcut geoms instead as they create more useful mnemonic
primitives, such as eye plots, half-eye plots, point+interval plots, or CCDF barplots.

The slab portion of the geom is much like a ridge or "joy" plot: it represents the value of a function
scaled to fit between values on the x or y axis (depending on the value of orientation). Values of
the functions are specified using the thickness aesthetic and are scaled to fit into scale times the
distance between points on the relevant axis. E.g., if orientation is "horizontal", scale is 0.9,
and y is a discrete variable, then the thickness aesthetic specifies the value of some function of x

82 geom_slabinterval

that is drawn for every y value and scaled to fit into 0.9 times the distance between points on the y
axis.

For the interval portion of the geom, x and y aesthetics specify the location of the point, and
ymin/ymax or xmin/xmax (depending on the value of orientation) specify the endpoints of the in-
terval. A scaling factor for interval line width and point size is applied through the interval_size_domain,
interval_size_range, and fatten_point parameters. These scaling factors are designed to give
multiple uncertainty intervals reasonable scaling at the default settings for scale_size_continuous().

As a combination geom, this geom expects a datatype aesthetic specifying which part of the geom
a given row in the input data corresponds to: "slab" or "interval". However, specifying this
aesthetic manually is typically only necessary if you use this geom directly; the numerous wrapper
geoms will usually set this aesthetic for you as needed, and their use is recommended unless you
have a very custom use case.

Wrapper geoms include:

• geom_pointinterval()

• geom_interval()

• geom_slab()

In addition, the stat_slabinterval() family of stats uses geoms from the geom_slabinterval()
family, and is often easier to use than using these geoms directly. Typically, the geom_* versions
are meant for use with already-summarized data (such as intervals) and the stat_* versions are
summarize the data themselves (usually draws from a distribution) to produce the geom.

Value

A ggplot2::Geom representing a slab or combined slab+interval geometry which can be added to a
ggplot() object.

Aesthetics

The slab+interval stats and geoms have a wide variety of aesthetics that control the appearance of
their three sub-geometries: the slab, the point, and the interval.
Positional aesthetics

• x: x position of the geometry

• y: y position of the geometry

Slab-specific aesthetics

• thickness: The thickness of the slab at each x value (if orientation = "horizontal") or y
value (if orientation = "vertical") of the slab.

• side: Which side to place the slab on. "topright", "top", and "right" are synonyms
which cause the slab to be drawn on the top or the right depending on if orientation
is "horizontal" or "vertical". "bottomleft", "bottom", and "left" are synonyms
which cause the slab to be drawn on the bottom or the left depending on if orientation
is "horizontal" or "vertical". "topleft" causes the slab to be drawn on the top or the
left, and "bottomright" causes the slab to be drawn on the bottom or the right. "both" draws
the slab mirrored on both sides (as in a violin plot).

geom_slabinterval 83

• scale: What proportion of the region allocated to this geom to use to draw the slab. If scale
= 1, slabs that use the maximum range will just touch each other. Default is 0.9 to leave some
space between adjacent slabs. For a comprehensive discussion and examples of slab scaling
and normalization, see the thickness scale article.

• justification: Justification of the interval relative to the slab, where 0 indicates bottom/left
justification and 1 indicates top/right justification (depending on orientation). If justification
is NULL (the default), then it is set automatically based on the value of side: when side is
"top"/"right" justification is set to 0, when side is "bottom"/"left" justification
is set to 1, and when side is "both" justification is set to 0.5.

• datatype: When using composite geoms directly without a stat (e.g. geom_slabinterval()),
datatype is used to indicate which part of the geom a row in the data targets: rows with
datatype = "slab" target the slab portion of the geometry and rows with datatype = "interval"
target the interval portion of the geometry. This is set automatically when using ggdist stats.

Interval-specific aesthetics

• xmin: Left end of the interval sub-geometry (if orientation = "horizontal").

• xmax: Right end of the interval sub-geometry (if orientation = "horizontal").

• ymin: Lower end of the interval sub-geometry (if orientation = "vertical").

• ymax: Upper end of the interval sub-geometry (if orientation = "vertical").

Point-specific aesthetics

• shape: Shape type used to draw the point sub-geometry.

Color aesthetics

• colour: (or color) The color of the interval and point sub-geometries. Use the slab_color,
interval_color, or point_color aesthetics (below) to set sub-geometry colors separately.

• fill: The fill color of the slab and point sub-geometries. Use the slab_fill or point_fill
aesthetics (below) to set sub-geometry colors separately.

• alpha: The opacity of the slab, interval, and point sub-geometries. Use the slab_alpha,
interval_alpha, or point_alpha aesthetics (below) to set sub-geometry colors separately.

• colour_ramp: (or color_ramp) A secondary scale that modifies the color scale to "ramp" to
another color. See scale_colour_ramp() for examples.

• fill_ramp: A secondary scale that modifies the fill scale to "ramp" to another color. See
scale_fill_ramp() for examples.

Line aesthetics

• linewidth: Width of the line used to draw the interval (except with geom_slab(): then
it is the width of the slab). With composite geometries including an interval and slab, use
slab_linewidth to set the line width of the slab (see below). For interval, raw linewidth
values are transformed according to the interval_size_domain and interval_size_range
parameters of the geom (see above).

https://mjskay.github.io/ggdist/articles/thickness.html

84 geom_slabinterval

• size: Determines the size of the point. If linewidth is not provided, size will also deter-
mines the width of the line used to draw the interval (this allows line width and point size to be
modified together by setting only size and not linewidth). Raw size values are transformed
according to the interval_size_domain, interval_size_range, and fatten_point pa-
rameters of the geom (see above). Use the point_size aesthetic (below) to set sub-geometry
size directly without applying the effects of interval_size_domain, interval_size_range,
and fatten_point.

• stroke: Width of the outline around the point sub-geometry.

• linetype: Type of line (e.g., "solid", "dashed", etc) used to draw the interval and the
outline of the slab (if it is visible). Use the slab_linetype or interval_linetype aesthetics
(below) to set sub-geometry line types separately.

Slab-specific color and line override aesthetics

• slab_fill: Override for fill: the fill color of the slab.

• slab_colour: (or slab_color) Override for colour/color: the outline color of the slab.

• slab_alpha: Override for alpha: the opacity of the slab.

• slab_linewidth: Override for linwidth: the width of the outline of the slab.

• slab_linetype: Override for linetype: the line type of the outline of the slab.

Interval-specific color and line override aesthetics

• interval_colour: (or interval_color) Override for colour/color: the color of the inter-
val.

• interval_alpha: Override for alpha: the opacity of the interval.

• interval_linetype: Override for linetype: the line type of the interval.

Point-specific color and line override aesthetics

• point_fill: Override for fill: the fill color of the point.

• point_colour: (or point_color) Override for colour/color: the outline color of the point.

• point_alpha: Override for alpha: the opacity of the point.

• point_size: Override for size: the size of the point.

Deprecated aesthetics

• slab_size: Use slab_linewidth.

• interval_size: Use interval_linewidth.

Other aesthetics (these work as in standard geoms)

• width

• height

• group

See examples of some of these aesthetics in action in vignette("slabinterval"). Learn more
about the sub-geom override aesthetics (like interval_color) in the scales documentation. Learn
more about basic ggplot aesthetics in vignette("ggplot2-specs").

geom_spike 85

Author(s)

Matthew Kay

See Also

See geom_lineribbon() for a combination geom designed for fit curves plus probability bands.
See geom_dotsinterval() for a combination geom designed for plotting dotplots with intervals.
See stat_slabinterval() for families of stats built on top of this geom for common use cases
(like stat_halfeye()). See vignette("slabinterval") for a variety of examples of use.

Examples

geom_slabinterval() is typically not that useful on its own.
See vignette("slabinterval") for a variety of examples of the use of its
shortcut geoms and stats, which are more useful than using
geom_slabinterval() directly.

geom_spike Spike plot (ggplot2 geom)

Description

Geometry for drawing "spikes" (optionally with points on them) on top of geom_slabinterval()
geometries: this geometry understands the scaling and positioning of the thickness aesthetic from
geom_slabinterval(), which allows you to position spikes and points along a slab.

Usage

geom_spike(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
orientation = NA,
normalize = "all",
arrow = NULL,
subguide = "none",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

86 geom_spike

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer, either as a ggproto
Geom subclass or as a string naming the stat stripped of the stat_ prefix (e.g.
"count" rather than "stat_count")

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function. Setting this equal to "dodge" (position_dodge()) or "dodgejust"
(position_dodgejust()) can be useful if you have overlapping geometries.

... Other arguments passed to layer(). These are often aesthetics, used to set an
aesthetic to a fixed value, like colour = "red" or linewidth = 3 (see Aesthet-
ics, below). They may also be parameters to the paired geom/stat.

orientation Whether this geom is drawn horizontally or vertically. One of:

• NA (default): automatically detect the orientation based on how the aesthet-
ics are assigned. Automatic detection works most of the time.

• "horizontal" (or "y"): draw horizontally, using the y aesthetic to identify
different groups. For each group, uses the x, xmin, xmax, and thickness
aesthetics to draw points, intervals, and slabs.

• "vertical" (or "x"): draw vertically, using the x aesthetic to identify dif-
ferent groups. For each group, uses the y, ymin, ymax, and thickness
aesthetics to draw points, intervals, and slabs.

For compatibility with the base ggplot naming scheme for orientation, "x"
can be used as an alias for "vertical" and "y" as an alias for "horizontal"
(ggdist had an orientation parameter before base ggplot did, hence the dis-
crepancy).

normalize How to normalize heights of functions input to the thickness aesthetic. One
of:

• "all": normalize so that the maximum height across all data is 1.
• "panels": normalize within panels so that the maximum height in each

panel is 1.
• "xy": normalize within the x/y axis opposite the orientation of this geom

so that the maximum height at each value of the opposite axis is 1.
• "groups": normalize within values of the opposite axis and within each

group so that the maximum height in each group is 1.

geom_spike 87

• "none": values are taken as is with no normalization (this should probably
only be used with functions whose values are in [0,1], such as CDFs).

For a comprehensive discussion and examples of slab scaling and normalization,
see the thickness scale article.

arrow grid::arrow() giving the arrow heads to use on the spike, or NULL for no ar-
rows.

subguide Sub-guide used to annotate the thickness scale. One of:

• A function that takes a scale argument giving a ggplot2::Scale object and
an orientation argument giving the orientation of the geometry and then
returns a grid::grob that will draw the axis annotation, such as subguide_axis()
(to draw a traditional axis) or subguide_none() (to draw no annotation).
See subguide_axis() for a list of possibilities and examples.

• A string giving the name of such a function when prefixed with "subguide";
e.g. "axis" or "none".

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Details

This geometry consists of a "spike" (vertical/horizontal line segment) and a "point" (at the end of
the line segment). It uses the thickness aesthetic to determine where the endpoint of the line is,
which allows it to be used with geom_slabinterval() geometries for labeling specific values of
the thickness function.

Value

A ggplot2::Geom representing a spike geometry which can be added to a ggplot() object. rd_slabinterval_aesthetics(geom_name),

Aesthetics

The spike geom has a wide variety of aesthetics that control the appearance of its two sub-geometries:
the spike and the point.
Positional aesthetics

• x: x position of the geometry

• y: y position of the geometry

Spike-specific (aka Slab-specific) aesthetics

• thickness: The thickness of the slab at each x value (if orientation = "horizontal") or y
value (if orientation = "vertical") of the slab.

https://mjskay.github.io/ggdist/articles/thickness.html

88 geom_spike

• side: Which side to place the slab on. "topright", "top", and "right" are synonyms
which cause the slab to be drawn on the top or the right depending on if orientation
is "horizontal" or "vertical". "bottomleft", "bottom", and "left" are synonyms
which cause the slab to be drawn on the bottom or the left depending on if orientation
is "horizontal" or "vertical". "topleft" causes the slab to be drawn on the top or the
left, and "bottomright" causes the slab to be drawn on the bottom or the right. "both" draws
the slab mirrored on both sides (as in a violin plot).

• scale: What proportion of the region allocated to this geom to use to draw the slab. If scale
= 1, slabs that use the maximum range will just touch each other. Default is 0.9 to leave some
space between adjacent slabs. For a comprehensive discussion and examples of slab scaling
and normalization, see the thickness scale article.

Color aesthetics

• colour: (or color) The color of the spike and point sub-geometries.

• fill: The fill color of the point sub-geometry.

• alpha: The opacity of the spike and point sub-geometries.

• colour_ramp: (or color_ramp) A secondary scale that modifies the color scale to "ramp" to
another color. See scale_colour_ramp() for examples.

• fill_ramp: A secondary scale that modifies the fill scale to "ramp" to another color. See
scale_fill_ramp() for examples.

Line aesthetics

• linewidth: Width of the line used to draw the spike sub-geometry.

• size: Size of the point sub-geometry.

• stroke: Width of the outline around the point sub-geometry.

• linetype: Type of line (e.g., "solid", "dashed", etc) used to draw the spike.

Other aesthetics (these work as in standard geoms)

• width

• height

• group

See examples of some of these aesthetics in action in vignette("slabinterval"). Learn more
about the sub-geom override aesthetics (like interval_color) in the scales documentation. Learn
more about basic ggplot aesthetics in vignette("ggplot2-specs").

See Also

See stat_spike() for the stat version, intended for use on sample data or analytical distributions.

Other slabinterval geoms: geom_interval(), geom_pointinterval(), geom_slab()

https://mjskay.github.io/ggdist/articles/thickness.html

geom_swarm 89

Examples

library(ggplot2)
library(distributional)
library(dplyr)

geom_spike is easiest to use with distributional or
posterior::rvar objects
df = tibble(

d = dist_normal(1:2, 1:2), g = c("a", "b")
)

annotate the density at the mean of a distribution
df %>% mutate(

mean = mean(d),
density(d, list(density_at_mean = mean))

) %>%
ggplot(aes(y = g)) +
stat_slab(aes(xdist = d)) +
geom_spike(aes(x = mean, thickness = density_at_mean)) +
need shared thickness scale so that stat_slab and geom_spike line up
scale_thickness_shared()

annotate the endpoints of intervals of a distribution
here we'll use an arrow instead of a point by setting size = 0
arrow_spec = arrow(angle = 45, type = "closed", length = unit(4, "pt"))
df %>% mutate(

median_qi(d, .width = 0.9),
density(d, list(density_lower = .lower, density_upper = .upper))

) %>%
ggplot(aes(y = g)) +
stat_halfeye(aes(xdist = d), .width = 0.9, color = "gray35") +
geom_spike(
aes(x = .lower, thickness = density_lower),
size = 0, arrow = arrow_spec, color = "blue", linewidth = 0.75

) +
geom_spike(

aes(x = .upper, thickness = density_upper),
size = 0, arrow = arrow_spec, color = "red", linewidth = 0.75

) +
scale_thickness_shared()

geom_swarm Beeswarm plot (shortcut geom)

Description

Shortcut version of geom_dotsinterval() for creating beeswarm plots. Geoms based on geom_dotsinterval()
create dotplots that automatically ensure the plot fits within the available space.

Roughly equivalent to:

90 geom_swarm

geom_dots(
aes(side = "both"),
overflow = "compress",
binwidth = unit(1.5, "mm"),
layout = "swarm"

)

Usage

geom_swarm(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
overflow = "compress",
binwidth = unit(1.5, "mm"),
layout = "swarm",
dotsize = 1.07,
stackratio = 1,
overlaps = "nudge",
smooth = "none",
verbose = FALSE,
orientation = NA,
subguide = "none",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer, either as a ggproto
Geom subclass or as a string naming the stat stripped of the stat_ prefix (e.g.
"count" rather than "stat_count")

geom_swarm 91

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function. Setting this equal to "dodge" (position_dodge()) or "dodgejust"
(position_dodgejust()) can be useful if you have overlapping geometries.

... Other arguments passed to layer(). These are often aesthetics, used to set an
aesthetic to a fixed value, like colour = "red" or linewidth = 3 (see Aesthet-
ics, below). They may also be parameters to the paired geom/stat.

overflow How to handle overflow of dots beyond the extent of the geom when a minimum
binwidth (or an exact binwidth) is supplied. One of:

• "keep": Keep the overflow, drawing dots outside the geom bounds.
• "warn": Keep the overflow, but produce a warning suggesting solutions,

such as setting binwidth = NA or overflow = "compress".
• "compress": Compress the layout. Reduces the binwidth to the size

necessary to keep the dots within bounds, then adjusts stackratio and
dotsize so that the apparent dot size is the user-specified minimum binwidth
times the user-specified dotsize.

If you find the default layout has dots that are too small, and you are okay with
dots overlapping, consider setting overflow = "compress" and supplying an
exact or minimum dot size using binwidth.

binwidth The bin width to use for laying out the dots. One of:
• NA (the default): Dynamically select the bin width based on the size of the

plot when drawn. This will pick a binwidth such that the tallest stack of
dots is at most scale in height (ideally exactly scale in height, though this
is not guaranteed).

• A length-1 (scalar) numeric or unit object giving the exact bin width.
• A length-2 (vector) numeric or unit object giving the minimum and maxi-

mum desired bin width. The bin width will be dynamically selected within
these bounds.

If the value is numeric, it is assumed to be in units of data. The bin width
(or its bounds) can also be specified using unit(), which may be useful if it
is desired that the dots be a certain point size or a certain percentage of the
width/height of the viewport. For example, unit(0.1, "npc") would make
dots that are exactly 10% of the viewport size along whichever dimension the
dotplot is drawn; unit(c(0, 0.1), "npc") would make dots that are at most
10% of the viewport size (while still ensuring the tallest stack is less than or
equal to scale).

layout The layout method used for the dots:
• "bin" (default): places dots on the off-axis at the midpoint of their bins

as in the classic Wilkinson dotplot. This maintains the alignment of rows
and columns in the dotplot. This layout is slightly different from the classic
Wilkinson algorithm in that: (1) it nudges bins slightly to avoid overlapping
bins and (2) if the input data are symmetrical it will return a symmetrical
layout.

• "weave": uses the same basic binning approach of "bin", but places dots in
the off-axis at their actual positions (unless overlaps = "nudge", in which
case overlaps may be nudged out of the way). This maintains the alignment
of rows but does not align dots within columns.

92 geom_swarm

• "hex": uses the same basic binning approach of "bin", but alternates plac-
ing dots + binwidth/4 or - binwidth/4 in the off-axis from the bin center.
This allows hexagonal packing by setting a stackratio less than 1 (some-
thing like 0.9 tends to work).

• "swarm": uses the "compactswarm" layout from beeswarm::beeswarm().
Does not maintain alignment of rows or columns, but can be more compact
and neat looking, especially for sample data (as opposed to quantile dotplots
of theoretical distributions, which may look better with "bin", "weave", or
"hex").

• "bar": for discrete distributions, lays out duplicate values in rectangular
bars.

dotsize The width of the dots relative to the binwidth. The default, 1.07, makes dots
be just a bit wider than the bin width, which is a manually-tuned parameter
that tends to work well with the default circular shape, preventing gaps between
bins from appearing to be too large visually (as might arise from dots being
precisely the binwidth). If it is desired to have dots be precisely the binwidth,
set dotsize = 1.

stackratio The distance between the center of the dots in the same stack relative to the dot
height. The default, 1, makes dots in the same stack just touch each other.

overlaps How to handle overlapping dots or bins in the "bin", "weave", and "hex" lay-
outs (dots never overlap in the "swarm" or "bar" layouts). For the purposes of
this argument, dots are only considered to be overlapping if they would be over-
lapping when dotsize = 1 and stackratio = 1; i.e. if you set those arguments
to other values, overlaps may still occur. One of:

• "keep": leave overlapping dots as they are. Dots may overlap (usually only
slightly) in the "bin", "weave", and "hex" layouts.

• "nudge": nudge overlapping dots out of the way. Overlaps are avoided
using a constrained optimization which minimizes the squared distance of
dots to their desired positions, subject to the constraint that adjacent dots
do not overlap.

smooth Smoother to apply to dot positions. One of:

• A function that takes a numeric vector of dot positions and returns a smoothed
version of that vector, such as smooth_bounded(), smooth_unbounded(),
smooth_discrete(), or smooth_bar()‘.

• A string indicating what smoother to use, as the suffix to a function name
starting with smooth_; e.g. "none" (the default) applies smooth_none(),
which simply returns the given vector without applying smoothing.

Smoothing is most effective when the smoother is matched to the support of the
distribution; e.g. using smooth_bounded(bounds = ...).

verbose If TRUE, print out the bin width of the dotplot. Can be useful if you want to start
from an automatically-selected bin width and then adjust it manually. Bin width
is printed both as data units and as normalized parent coordinates or "npc"s (see
unit()). Note that if you just want to scale the selected bin width to fit within a
desired area, it is probably easier to use scale than to copy and scale binwidth
manually, and if you just want to provide constraints on the bin width, you can
pass a length-2 vector to binwidth.

geom_swarm 93

orientation Whether this geom is drawn horizontally or vertically. One of:

• NA (default): automatically detect the orientation based on how the aesthet-
ics are assigned. Automatic detection works most of the time.

• "horizontal" (or "y"): draw horizontally, using the y aesthetic to identify
different groups. For each group, uses the x, xmin, xmax, and thickness
aesthetics to draw points, intervals, and slabs.

• "vertical" (or "x"): draw vertically, using the x aesthetic to identify dif-
ferent groups. For each group, uses the y, ymin, ymax, and thickness
aesthetics to draw points, intervals, and slabs.

For compatibility with the base ggplot naming scheme for orientation, "x"
can be used as an alias for "vertical" and "y" as an alias for "horizontal"
(ggdist had an orientation parameter before base ggplot did, hence the dis-
crepancy).

subguide Sub-guide used to annotate the thickness scale. One of:

• A function that takes a scale argument giving a ggplot2::Scale object and
an orientation argument giving the orientation of the geometry and then
returns a grid::grob that will draw the axis annotation, such as subguide_axis()
(to draw a traditional axis) or subguide_none() (to draw no annotation).
See subguide_axis() for a list of possibilities and examples.

• A string giving the name of such a function when prefixed with "subguide";
e.g. "axis" or "none".

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Details

The dots family of stats and geoms are similar to geom_dotplot() but with a number of differences:

• Dots geoms act like slabs in geom_slabinterval() and can be given x positions (or y posi-
tions when in a horizontal orientation).

• Given the available space to lay out dots, the dots geoms will automatically determine how
many bins to use to fit the available space.

• Dots geoms use a dynamic layout algorithm that lays out dots from the center out if the input
data are symmetrical, guaranteeing that symmetrical data results in a symmetrical plot. The
layout algorithm also prevents dots from overlapping each other.

• The shape of the dots in these geoms can be changed using the slab_shape aesthetic (when
using the dotsinterval family) or the shape or slab_shape aesthetic (when using the dots
family)

Stats and geoms in this family include:

94 geom_swarm

• geom_dots(): dotplots on raw data. Ensures the dotplot fits within available space by reduc-
ing the size of the dots automatically (may result in very small dots).

• geom_swarm() and geom_weave(): dotplots on raw data with defaults intended to create
"beeswarm" plots. Used side = "both" by default, and sets the default dot size to the same
size as geom_point() (binwidth = unit(1.5, "mm")), allowing dots to overlap instead of
getting very small.

• stat_dots(): dotplots on raw data, distributional objects, and posterior::rvar()s

• geom_dotsinterval(): dotplot + interval plots on raw data with already-calculated intervals
(rarely useful directly).

• stat_dotsinterval(): dotplot + interval plots on raw data, distributional objects, and
posterior::rvar()s (will calculate intervals for you).

• geom_blur_dots(): blurry dotplots that allow the standard deviation of a blur applied to each
dot to be specified using the sd aesthetic.

• stat_mcse_dots(): blurry dotplots of quantiles using the Monte Carlo Standard Error of
each quantile.

stat_dots() and stat_dotsinterval(), when used with the quantiles argument, are partic-
ularly useful for constructing quantile dotplots, which can be an effective way to communicate
uncertainty using a frequency framing that may be easier for laypeople to understand (Kay et al.
2016, Fernandes et al. 2018).

Value

A ggplot2::Geom representing a beeswarm geometry which can be added to a ggplot() object.

Aesthetics

The dots+interval stats and geoms have a wide variety of aesthetics that control the appearance of
their three sub-geometries: the dots (aka the slab), the point, and the interval.
Positional aesthetics

• x: x position of the geometry

• y: y position of the geometry

Dots-specific (aka Slab-specific) aesthetics

• family: The font family used to draw the dots.

• order: The order in which data points are stacked within bins. Can be used to create the effect
of "stacked" dots by ordering dots according to a discrete variable. If omitted (NULL), the value
of the data points themselves are used to determine stacking order. Only applies when layout
is "bin" or "hex", as the other layout methods fully determine both x and y positions.

• side: Which side to place the slab on. "topright", "top", and "right" are synonyms
which cause the slab to be drawn on the top or the right depending on if orientation
is "horizontal" or "vertical". "bottomleft", "bottom", and "left" are synonyms
which cause the slab to be drawn on the bottom or the left depending on if orientation
is "horizontal" or "vertical". "topleft" causes the slab to be drawn on the top or the
left, and "bottomright" causes the slab to be drawn on the bottom or the right. "both" draws
the slab mirrored on both sides (as in a violin plot).

geom_swarm 95

• scale: What proportion of the region allocated to this geom to use to draw the slab. If scale
= 1, slabs that use the maximum range will just touch each other. Default is 0.9 to leave some
space between adjacent slabs. For a comprehensive discussion and examples of slab scaling
and normalization, see the thickness scale article.

• justification: Justification of the interval relative to the slab, where 0 indicates bottom/left
justification and 1 indicates top/right justification (depending on orientation). If justification
is NULL (the default), then it is set automatically based on the value of side: when side is
"top"/"right" justification is set to 0, when side is "bottom"/"left" justification
is set to 1, and when side is "both" justification is set to 0.5.

• datatype: When using composite geoms directly without a stat (e.g. geom_slabinterval()),
datatype is used to indicate which part of the geom a row in the data targets: rows with
datatype = "slab" target the slab portion of the geometry and rows with datatype = "interval"
target the interval portion of the geometry. This is set automatically when using ggdist stats.

Interval-specific aesthetics

• xmin: Left end of the interval sub-geometry (if orientation = "horizontal").

• xmax: Right end of the interval sub-geometry (if orientation = "horizontal").

• ymin: Lower end of the interval sub-geometry (if orientation = "vertical").

• ymax: Upper end of the interval sub-geometry (if orientation = "vertical").

Point-specific aesthetics

• shape: Shape type used to draw the point sub-geometry.

Color aesthetics

• colour: (or color) The color of the interval and point sub-geometries. Use the slab_color,
interval_color, or point_color aesthetics (below) to set sub-geometry colors separately.

• fill: The fill color of the slab and point sub-geometries. Use the slab_fill or point_fill
aesthetics (below) to set sub-geometry colors separately.

• alpha: The opacity of the slab, interval, and point sub-geometries. Use the slab_alpha,
interval_alpha, or point_alpha aesthetics (below) to set sub-geometry colors separately.

• colour_ramp: (or color_ramp) A secondary scale that modifies the color scale to "ramp" to
another color. See scale_colour_ramp() for examples.

• fill_ramp: A secondary scale that modifies the fill scale to "ramp" to another color. See
scale_fill_ramp() for examples.

Line aesthetics

• linewidth: Width of the line used to draw the interval (except with geom_slab(): then
it is the width of the slab). With composite geometries including an interval and slab, use
slab_linewidth to set the line width of the slab (see below). For interval, raw linewidth
values are transformed according to the interval_size_domain and interval_size_range
parameters of the geom (see above).

https://mjskay.github.io/ggdist/articles/thickness.html

96 geom_swarm

• size: Determines the size of the point. If linewidth is not provided, size will also deter-
mines the width of the line used to draw the interval (this allows line width and point size to be
modified together by setting only size and not linewidth). Raw size values are transformed
according to the interval_size_domain, interval_size_range, and fatten_point pa-
rameters of the geom (see above). Use the point_size aesthetic (below) to set sub-geometry
size directly without applying the effects of interval_size_domain, interval_size_range,
and fatten_point.

• stroke: Width of the outline around the point sub-geometry.
• linetype: Type of line (e.g., "solid", "dashed", etc) used to draw the interval and the

outline of the slab (if it is visible). Use the slab_linetype or interval_linetype aesthetics
(below) to set sub-geometry line types separately.

Slab-specific color and line override aesthetics

• slab_fill: Override for fill: the fill color of the slab.
• slab_colour: (or slab_color) Override for colour/color: the outline color of the slab.
• slab_alpha: Override for alpha: the opacity of the slab.
• slab_linewidth: Override for linwidth: the width of the outline of the slab.
• slab_linetype: Override for linetype: the line type of the outline of the slab.
• slab_shape: Override for shape: the shape of the dots used to draw the dotplot slab.

Interval-specific color and line override aesthetics

• interval_colour: (or interval_color) Override for colour/color: the color of the inter-
val.

• interval_alpha: Override for alpha: the opacity of the interval.
• interval_linetype: Override for linetype: the line type of the interval.

Point-specific color and line override aesthetics

• point_fill: Override for fill: the fill color of the point.
• point_colour: (or point_color) Override for colour/color: the outline color of the point.
• point_alpha: Override for alpha: the opacity of the point.
• point_size: Override for size: the size of the point.

Deprecated aesthetics

• slab_size: Use slab_linewidth.
• interval_size: Use interval_linewidth.

Other aesthetics (these work as in standard geoms)

• width

• height

• group

See examples of some of these aesthetics in action in vignette("dotsinterval"). Learn more
about the sub-geom override aesthetics (like interval_color) in the scales documentation. Learn
more about basic ggplot aesthetics in vignette("ggplot2-specs").

geom_weave 97

References

Kay, M., Kola, T., Hullman, J. R., & Munson, S. A. (2016). When (ish) is My Bus? User-centered
Visualizations of Uncertainty in Everyday, Mobile Predictive Systems. Conference on Human Fac-
tors in Computing Systems - CHI ’16, 5092–5103. doi:10.1145/2858036.2858558.

Fernandes, M., Walls, L., Munson, S., Hullman, J., & Kay, M. (2018). Uncertainty Displays Using
Quantile Dotplots or CDFs Improve Transit Decision-Making. Conference on Human Factors in
Computing Systems - CHI ’18. doi:10.1145/3173574.3173718.

See Also

See geom_dotsinterval() for the geometry this shortcut is based on.

See vignette("dotsinterval") for a variety of examples of use.

Other dotsinterval geoms: geom_blur_dots(), geom_dots(), geom_dotsinterval(), geom_weave()

Examples

library(dplyr)
library(ggplot2)

theme_set(theme_ggdist())

set.seed(12345)
df = tibble(

g = rep(c("a", "b"), 200),
value = rnorm(400, c(0, 3), c(0.75, 1))

)

orientation is detected automatically based on
which axis is discrete

df %>%
ggplot(aes(x = value, y = g)) +
geom_swarm()

df %>%
ggplot(aes(y = value, x = g)) +
geom_swarm()

geom_weave Dot-weave plot (shortcut geom)

Description

Shortcut version of geom_dotsinterval() for creating dot-weave plots. Geoms based on geom_dotsinterval()
create dotplots that automatically ensure the plot fits within the available space.

Roughly equivalent to:

https://doi.org/10.1145/2858036.2858558
https://doi.org/10.1145/3173574.3173718

98 geom_weave

geom_dots(
aes(side = "both"),
layout = "weave",
overflow = "compress",
binwidth = unit(1.5, "mm")

)

Usage

geom_weave(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
layout = "weave",
overflow = "compress",
binwidth = unit(1.5, "mm"),
dotsize = 1.07,
stackratio = 1,
overlaps = "nudge",
smooth = "none",
verbose = FALSE,
orientation = NA,
subguide = "none",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat The statistical transformation to use on the data for this layer, either as a ggproto
Geom subclass or as a string naming the stat stripped of the stat_ prefix (e.g.
"count" rather than "stat_count")

geom_weave 99

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function. Setting this equal to "dodge" (position_dodge()) or "dodgejust"
(position_dodgejust()) can be useful if you have overlapping geometries.

... Other arguments passed to layer(). These are often aesthetics, used to set an
aesthetic to a fixed value, like colour = "red" or linewidth = 3 (see Aesthet-
ics, below). They may also be parameters to the paired geom/stat.

layout The layout method used for the dots:

• "bin" (default): places dots on the off-axis at the midpoint of their bins
as in the classic Wilkinson dotplot. This maintains the alignment of rows
and columns in the dotplot. This layout is slightly different from the classic
Wilkinson algorithm in that: (1) it nudges bins slightly to avoid overlapping
bins and (2) if the input data are symmetrical it will return a symmetrical
layout.

• "weave": uses the same basic binning approach of "bin", but places dots in
the off-axis at their actual positions (unless overlaps = "nudge", in which
case overlaps may be nudged out of the way). This maintains the alignment
of rows but does not align dots within columns.

• "hex": uses the same basic binning approach of "bin", but alternates plac-
ing dots + binwidth/4 or - binwidth/4 in the off-axis from the bin center.
This allows hexagonal packing by setting a stackratio less than 1 (some-
thing like 0.9 tends to work).

• "swarm": uses the "compactswarm" layout from beeswarm::beeswarm().
Does not maintain alignment of rows or columns, but can be more compact
and neat looking, especially for sample data (as opposed to quantile dotplots
of theoretical distributions, which may look better with "bin", "weave", or
"hex").

• "bar": for discrete distributions, lays out duplicate values in rectangular
bars.

overflow How to handle overflow of dots beyond the extent of the geom when a minimum
binwidth (or an exact binwidth) is supplied. One of:

• "keep": Keep the overflow, drawing dots outside the geom bounds.
• "warn": Keep the overflow, but produce a warning suggesting solutions,

such as setting binwidth = NA or overflow = "compress".
• "compress": Compress the layout. Reduces the binwidth to the size

necessary to keep the dots within bounds, then adjusts stackratio and
dotsize so that the apparent dot size is the user-specified minimum binwidth
times the user-specified dotsize.

If you find the default layout has dots that are too small, and you are okay with
dots overlapping, consider setting overflow = "compress" and supplying an
exact or minimum dot size using binwidth.

binwidth The bin width to use for laying out the dots. One of:

• NA (the default): Dynamically select the bin width based on the size of the
plot when drawn. This will pick a binwidth such that the tallest stack of
dots is at most scale in height (ideally exactly scale in height, though this
is not guaranteed).

100 geom_weave

• A length-1 (scalar) numeric or unit object giving the exact bin width.
• A length-2 (vector) numeric or unit object giving the minimum and maxi-

mum desired bin width. The bin width will be dynamically selected within
these bounds.

If the value is numeric, it is assumed to be in units of data. The bin width
(or its bounds) can also be specified using unit(), which may be useful if it
is desired that the dots be a certain point size or a certain percentage of the
width/height of the viewport. For example, unit(0.1, "npc") would make
dots that are exactly 10% of the viewport size along whichever dimension the
dotplot is drawn; unit(c(0, 0.1), "npc") would make dots that are at most
10% of the viewport size (while still ensuring the tallest stack is less than or
equal to scale).

dotsize The width of the dots relative to the binwidth. The default, 1.07, makes dots
be just a bit wider than the bin width, which is a manually-tuned parameter
that tends to work well with the default circular shape, preventing gaps between
bins from appearing to be too large visually (as might arise from dots being
precisely the binwidth). If it is desired to have dots be precisely the binwidth,
set dotsize = 1.

stackratio The distance between the center of the dots in the same stack relative to the dot
height. The default, 1, makes dots in the same stack just touch each other.

overlaps How to handle overlapping dots or bins in the "bin", "weave", and "hex" lay-
outs (dots never overlap in the "swarm" or "bar" layouts). For the purposes of
this argument, dots are only considered to be overlapping if they would be over-
lapping when dotsize = 1 and stackratio = 1; i.e. if you set those arguments
to other values, overlaps may still occur. One of:

• "keep": leave overlapping dots as they are. Dots may overlap (usually only
slightly) in the "bin", "weave", and "hex" layouts.

• "nudge": nudge overlapping dots out of the way. Overlaps are avoided
using a constrained optimization which minimizes the squared distance of
dots to their desired positions, subject to the constraint that adjacent dots
do not overlap.

smooth Smoother to apply to dot positions. One of:

• A function that takes a numeric vector of dot positions and returns a smoothed
version of that vector, such as smooth_bounded(), smooth_unbounded(),
smooth_discrete(), or smooth_bar()‘.

• A string indicating what smoother to use, as the suffix to a function name
starting with smooth_; e.g. "none" (the default) applies smooth_none(),
which simply returns the given vector without applying smoothing.

Smoothing is most effective when the smoother is matched to the support of the
distribution; e.g. using smooth_bounded(bounds = ...).

verbose If TRUE, print out the bin width of the dotplot. Can be useful if you want to start
from an automatically-selected bin width and then adjust it manually. Bin width
is printed both as data units and as normalized parent coordinates or "npc"s (see
unit()). Note that if you just want to scale the selected bin width to fit within a
desired area, it is probably easier to use scale than to copy and scale binwidth

geom_weave 101

manually, and if you just want to provide constraints on the bin width, you can
pass a length-2 vector to binwidth.

orientation Whether this geom is drawn horizontally or vertically. One of:

• NA (default): automatically detect the orientation based on how the aesthet-
ics are assigned. Automatic detection works most of the time.

• "horizontal" (or "y"): draw horizontally, using the y aesthetic to identify
different groups. For each group, uses the x, xmin, xmax, and thickness
aesthetics to draw points, intervals, and slabs.

• "vertical" (or "x"): draw vertically, using the x aesthetic to identify dif-
ferent groups. For each group, uses the y, ymin, ymax, and thickness
aesthetics to draw points, intervals, and slabs.

For compatibility with the base ggplot naming scheme for orientation, "x"
can be used as an alias for "vertical" and "y" as an alias for "horizontal"
(ggdist had an orientation parameter before base ggplot did, hence the dis-
crepancy).

subguide Sub-guide used to annotate the thickness scale. One of:

• A function that takes a scale argument giving a ggplot2::Scale object and
an orientation argument giving the orientation of the geometry and then
returns a grid::grob that will draw the axis annotation, such as subguide_axis()
(to draw a traditional axis) or subguide_none() (to draw no annotation).
See subguide_axis() for a list of possibilities and examples.

• A string giving the name of such a function when prefixed with "subguide";
e.g. "axis" or "none".

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Details

The dots family of stats and geoms are similar to geom_dotplot() but with a number of differences:

• Dots geoms act like slabs in geom_slabinterval() and can be given x positions (or y posi-
tions when in a horizontal orientation).

• Given the available space to lay out dots, the dots geoms will automatically determine how
many bins to use to fit the available space.

• Dots geoms use a dynamic layout algorithm that lays out dots from the center out if the input
data are symmetrical, guaranteeing that symmetrical data results in a symmetrical plot. The
layout algorithm also prevents dots from overlapping each other.

• The shape of the dots in these geoms can be changed using the slab_shape aesthetic (when
using the dotsinterval family) or the shape or slab_shape aesthetic (when using the dots
family)

102 geom_weave

Stats and geoms in this family include:

• geom_dots(): dotplots on raw data. Ensures the dotplot fits within available space by reduc-
ing the size of the dots automatically (may result in very small dots).

• geom_swarm() and geom_weave(): dotplots on raw data with defaults intended to create
"beeswarm" plots. Used side = "both" by default, and sets the default dot size to the same
size as geom_point() (binwidth = unit(1.5, "mm")), allowing dots to overlap instead of
getting very small.

• stat_dots(): dotplots on raw data, distributional objects, and posterior::rvar()s

• geom_dotsinterval(): dotplot + interval plots on raw data with already-calculated intervals
(rarely useful directly).

• stat_dotsinterval(): dotplot + interval plots on raw data, distributional objects, and
posterior::rvar()s (will calculate intervals for you).

• geom_blur_dots(): blurry dotplots that allow the standard deviation of a blur applied to each
dot to be specified using the sd aesthetic.

• stat_mcse_dots(): blurry dotplots of quantiles using the Monte Carlo Standard Error of
each quantile.

stat_dots() and stat_dotsinterval(), when used with the quantiles argument, are partic-
ularly useful for constructing quantile dotplots, which can be an effective way to communicate
uncertainty using a frequency framing that may be easier for laypeople to understand (Kay et al.
2016, Fernandes et al. 2018).

Value

A ggplot2::Geom representing a dot-weave geometry which can be added to a ggplot() object.

Aesthetics

The dots+interval stats and geoms have a wide variety of aesthetics that control the appearance of
their three sub-geometries: the dots (aka the slab), the point, and the interval.
Positional aesthetics

• x: x position of the geometry

• y: y position of the geometry

Dots-specific (aka Slab-specific) aesthetics

• family: The font family used to draw the dots.

• order: The order in which data points are stacked within bins. Can be used to create the effect
of "stacked" dots by ordering dots according to a discrete variable. If omitted (NULL), the value
of the data points themselves are used to determine stacking order. Only applies when layout
is "bin" or "hex", as the other layout methods fully determine both x and y positions.

• side: Which side to place the slab on. "topright", "top", and "right" are synonyms
which cause the slab to be drawn on the top or the right depending on if orientation
is "horizontal" or "vertical". "bottomleft", "bottom", and "left" are synonyms
which cause the slab to be drawn on the bottom or the left depending on if orientation

geom_weave 103

is "horizontal" or "vertical". "topleft" causes the slab to be drawn on the top or the
left, and "bottomright" causes the slab to be drawn on the bottom or the right. "both" draws
the slab mirrored on both sides (as in a violin plot).

• scale: What proportion of the region allocated to this geom to use to draw the slab. If scale
= 1, slabs that use the maximum range will just touch each other. Default is 0.9 to leave some
space between adjacent slabs. For a comprehensive discussion and examples of slab scaling
and normalization, see the thickness scale article.

• justification: Justification of the interval relative to the slab, where 0 indicates bottom/left
justification and 1 indicates top/right justification (depending on orientation). If justification
is NULL (the default), then it is set automatically based on the value of side: when side is
"top"/"right" justification is set to 0, when side is "bottom"/"left" justification
is set to 1, and when side is "both" justification is set to 0.5.

• datatype: When using composite geoms directly without a stat (e.g. geom_slabinterval()),
datatype is used to indicate which part of the geom a row in the data targets: rows with
datatype = "slab" target the slab portion of the geometry and rows with datatype = "interval"
target the interval portion of the geometry. This is set automatically when using ggdist stats.

Interval-specific aesthetics

• xmin: Left end of the interval sub-geometry (if orientation = "horizontal").

• xmax: Right end of the interval sub-geometry (if orientation = "horizontal").

• ymin: Lower end of the interval sub-geometry (if orientation = "vertical").

• ymax: Upper end of the interval sub-geometry (if orientation = "vertical").

Point-specific aesthetics

• shape: Shape type used to draw the point sub-geometry.

Color aesthetics

• colour: (or color) The color of the interval and point sub-geometries. Use the slab_color,
interval_color, or point_color aesthetics (below) to set sub-geometry colors separately.

• fill: The fill color of the slab and point sub-geometries. Use the slab_fill or point_fill
aesthetics (below) to set sub-geometry colors separately.

• alpha: The opacity of the slab, interval, and point sub-geometries. Use the slab_alpha,
interval_alpha, or point_alpha aesthetics (below) to set sub-geometry colors separately.

• colour_ramp: (or color_ramp) A secondary scale that modifies the color scale to "ramp" to
another color. See scale_colour_ramp() for examples.

• fill_ramp: A secondary scale that modifies the fill scale to "ramp" to another color. See
scale_fill_ramp() for examples.

Line aesthetics

• linewidth: Width of the line used to draw the interval (except with geom_slab(): then
it is the width of the slab). With composite geometries including an interval and slab, use
slab_linewidth to set the line width of the slab (see below). For interval, raw linewidth
values are transformed according to the interval_size_domain and interval_size_range
parameters of the geom (see above).

https://mjskay.github.io/ggdist/articles/thickness.html

104 geom_weave

• size: Determines the size of the point. If linewidth is not provided, size will also deter-
mines the width of the line used to draw the interval (this allows line width and point size to be
modified together by setting only size and not linewidth). Raw size values are transformed
according to the interval_size_domain, interval_size_range, and fatten_point pa-
rameters of the geom (see above). Use the point_size aesthetic (below) to set sub-geometry
size directly without applying the effects of interval_size_domain, interval_size_range,
and fatten_point.

• stroke: Width of the outline around the point sub-geometry.
• linetype: Type of line (e.g., "solid", "dashed", etc) used to draw the interval and the

outline of the slab (if it is visible). Use the slab_linetype or interval_linetype aesthetics
(below) to set sub-geometry line types separately.

Slab-specific color and line override aesthetics

• slab_fill: Override for fill: the fill color of the slab.
• slab_colour: (or slab_color) Override for colour/color: the outline color of the slab.
• slab_alpha: Override for alpha: the opacity of the slab.
• slab_linewidth: Override for linwidth: the width of the outline of the slab.
• slab_linetype: Override for linetype: the line type of the outline of the slab.
• slab_shape: Override for shape: the shape of the dots used to draw the dotplot slab.

Interval-specific color and line override aesthetics

• interval_colour: (or interval_color) Override for colour/color: the color of the inter-
val.

• interval_alpha: Override for alpha: the opacity of the interval.
• interval_linetype: Override for linetype: the line type of the interval.

Point-specific color and line override aesthetics

• point_fill: Override for fill: the fill color of the point.
• point_colour: (or point_color) Override for colour/color: the outline color of the point.
• point_alpha: Override for alpha: the opacity of the point.
• point_size: Override for size: the size of the point.

Deprecated aesthetics

• slab_size: Use slab_linewidth.
• interval_size: Use interval_linewidth.

Other aesthetics (these work as in standard geoms)

• width

• height

• group

See examples of some of these aesthetics in action in vignette("dotsinterval"). Learn more
about the sub-geom override aesthetics (like interval_color) in the scales documentation. Learn
more about basic ggplot aesthetics in vignette("ggplot2-specs").

ggdist-deprecated 105

References

Kay, M., Kola, T., Hullman, J. R., & Munson, S. A. (2016). When (ish) is My Bus? User-centered
Visualizations of Uncertainty in Everyday, Mobile Predictive Systems. Conference on Human Fac-
tors in Computing Systems - CHI ’16, 5092–5103. doi:10.1145/2858036.2858558.

Fernandes, M., Walls, L., Munson, S., Hullman, J., & Kay, M. (2018). Uncertainty Displays Using
Quantile Dotplots or CDFs Improve Transit Decision-Making. Conference on Human Factors in
Computing Systems - CHI ’18. doi:10.1145/3173574.3173718.

See Also

See geom_dotsinterval() for the geometry this shortcut is based on.

See vignette("dotsinterval") for a variety of examples of use.

Other dotsinterval geoms: geom_blur_dots(), geom_dots(), geom_dotsinterval(), geom_swarm()

Examples

library(dplyr)
library(ggplot2)

theme_set(theme_ggdist())

set.seed(12345)
df = tibble(

g = rep(c("a", "b"), 200),
value = rnorm(400, c(0, 3), c(0.75, 1))

)

orientation is detected automatically based on
which axis is discrete

df %>%
ggplot(aes(x = value, y = g)) +
geom_weave()

df %>%
ggplot(aes(y = value, x = g)) +
geom_weave()

ggdist-deprecated Deprecated functions and arguments in ggdist

Description

Deprecated functions and arguments and their alternatives are listed below.

https://doi.org/10.1145/2858036.2858558
https://doi.org/10.1145/3173574.3173718

106 ggdist-deprecated

Deprecated stats and geoms

The stat_sample_... and stat_dist_... families of stats were merged in ggdist 3.1. This
means:

• stat_dist_... is deprecated. For any code using stat_dist_XXX(), you should now be
able to use stat_XXX() instead without additional modifications in almost all cases.

• stat_sample_slabinterval() is deprecated. You should be able to use stat_slabinterval()
instead without additional modifications in almost all cases.

The old stat_dist_... names are currently kept as aliases, but may be removed in the future.

Deprecated arguments

Parameters for stat_slabinterval() and family deprecated as of ggdist 3.1 are:

• The .prob argument, which is a long-deprecated alias for .width, was removed in ggdist 3.1.

• The limits_function argument: this was a parameter for determining the function to com-
pute limits of the slab in stat_slabinterval() and its derived stats. This function is really
an internal function only needed by subclasses of the base class, yet added a lot of noise to the
documentation, so it was replaced with AbstractStatSlabInterval$compute_limits().

• The limits_args argument: extra stat parameters are now passed through to the ... argu-
ments to AbstractStatSlabInterval$compute_limits(); use these instead.

• The slab_function argument: this was a parameter for determining the function to compute
slabs in stat_slabinterval() and its derived stats. This function is really an internal func-
tion only needed by subclasses of the base class, yet added a lot of noise to the documentation,
so it was replaced with AbstractStatSlabInterval$compute_slab().

• The slab_args argument: extra stat parameters are now passed through to the ... arguments
to AbstractStatSlabInterval$compute_slab(); use these instead.

• The interval_function and fun.data arguments: these were parameters for determining
the function to compute intervals in stat_slabinterval() and its derived stats. This func-
tion is really an internal function only needed by subclasses of the base class, yet added a lot of
noise to the documentation, so it was replaced with AbstractStatSlabInterval$compute_interval().

• The interval_args and fun.args arguments: to pass extra arguments to a point_interval
replace the value of the point_interval argument with a simple wrapper; e.g. stat_halfeye(point_interval = \(...) point_interval(..., extra_arg = XXX))

Parameters for geom_slabinterval() and family deprecated as of ggdist 3.1 are:

• The size_domain and size_range arguments, which are long-deprecated aliases for interval_size_domain
and interval_size_range, were removed in ggdist 3.1.

Author(s)

Matthew Kay

guide_rampbar 107

guide_rampbar Continuous guide for colour ramp scales (ggplot2 guide)

Description

A colour ramp bar guide that shows continuous colour ramp scales mapped onto values as a smooth
gradient. Designed for use with scale_fill_ramp_continuous() and scale_colour_ramp_continuous().
Based on guide_colourbar().

Usage

guide_rampbar(
...,
to = "gray65",
available_aes = c("fill_ramp", "colour_ramp")

)

Arguments

... Arguments passed on to ggplot2::guide_colourbar

title A character string or expression indicating a title of guide. If NULL, the
title is not shown. By default (waiver()), the name of the scale object or
the name specified in labs() is used for the title.

theme A theme object to style the guide individually or differently from the
plot’s theme settings. The theme argument in the guide overrides, and is
combined with, the plot’s theme.

nbin A numeric specifying the number of bins for drawing the colourbar. A
smoother colourbar results from a larger value.

display A string indicating a method to display the colourbar. Can be one of
the following:

• "raster" to display as a bitmap image.
• "rectangles" to display as a series of rectangles.
• "gradient" to display as a linear gradient.

Note that not all devices are able to render rasters and gradients.
raster [Deprecated] A logical. If TRUE then the colourbar is rendered as a

raster object. If FALSE then the colourbar is rendered as a set of rectangles.
Note that not all graphics devices are capable of rendering raster image.

alpha A numeric between 0 and 1 setting the colour transparency of the bar.
Use NA to preserve the alpha encoded in the colour itself (default).

draw.ulim A logical specifying if the upper limit tick marks should be visible.
draw.llim A logical specifying if the lower limit tick marks should be visible.
position A character string indicating where the legend should be placed rel-

ative to the plot panels.
direction A character string indicating the direction of the guide. One of

"horizontal" or "vertical."

108 guide_rampbar

reverse logical. If TRUE the colourbar is reversed. By default, the highest value
is on the top and the lowest value is on the bottom

order positive integer less than 99 that specifies the order of this guide among
multiple guides. This controls the order in which multiple guides are dis-
played, not the contents of the guide itself. If 0 (default), the order is deter-
mined by a secret algorithm.

to The color to ramp to in the guide. Corresponds to 1 on the scale.

available_aes A vector of character strings listing the aesthetics for which a guide_rampbar()
can be drawn.

Details

This guide creates smooth gradient color bars for use with scale_fill_ramp_continuous() and
scale_colour_ramp_continuous(). The color to ramp from is determined by the from argu-
ment of the scale_* function, and the color to ramp to is determined by the to argument to
guide_rampbar().

Guides can be specified in each scale_* function or in guides(). guide = "rampbar" in scale_*
is syntactic sugar for guide = guide_rampbar(); e.g. scale_colour_ramp_continuous(guide =
"rampbar"). For how to specify the guide for each scale in more detail, see guides().

Value

A guide object.

Author(s)

Matthew Kay

See Also

Other colour ramp functions: partial_colour_ramp(), ramp_colours(), scale_colour_ramp

Examples

library(dplyr)
library(ggplot2)
library(distributional)

The default guide for ramp scales is guide_legend(), which creates a
discrete style scale:
tibble(d = dist_uniform(0, 1)) %>%

ggplot(aes(y = 0, xdist = d)) +
stat_slab(aes(fill_ramp = after_stat(x)), fill = "blue") +
scale_fill_ramp_continuous(from = "red")

We can use guide_rampbar() to instead create a continuous guide, but
it does not know what color to ramp to (defaults to "gray65"):
tibble(d = dist_uniform(0, 1)) %>%

ggplot(aes(y = 0, xdist = d)) +

lkjcorr_marginal 109

stat_slab(aes(fill_ramp = after_stat(x)), fill = "blue") +
scale_fill_ramp_continuous(from = "red", guide = guide_rampbar())

We can tell the guide what color to ramp to using the `to` argument:
tibble(d = dist_uniform(0, 1)) %>%

ggplot(aes(y = 0, xdist = d)) +
stat_slab(aes(fill_ramp = after_stat(x)), fill = "blue") +
scale_fill_ramp_continuous(from = "red", guide = guide_rampbar(to = "blue"))

lkjcorr_marginal Marginal distribution of a single correlation from an LKJ distribution

Description

Marginal distribution for the correlation in a single cell from a correlation matrix distributed ac-
cording to an LKJ distribution.

Usage

dlkjcorr_marginal(x, K, eta, log = FALSE)

plkjcorr_marginal(q, K, eta, lower.tail = TRUE, log.p = FALSE)

qlkjcorr_marginal(p, K, eta, lower.tail = TRUE, log.p = FALSE)

rlkjcorr_marginal(n, K, eta)

Arguments

x, q vector of quantiles.

K Dimension of the correlation matrix. Must be greater than or equal to 2.

eta Parameter controlling the shape of the distribution

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x] otherwise, P [X > x].

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the number
required.

Details

The LKJ distribution is a distribution over correlation matrices with a single parameter, η. For a
given η and a K ×K correlation matrix R:

R ∼ LKJ(η)

110 lkjcorr_marginal

Each off-diagonal entry of R, rij : i 6= j, has the following marginal distribution (Lewandowski,
Kurowicka, and Joe 2009):

rij + 1

2
∼ Beta

(
η − 1 +

K

2
, η − 1 +

K

2

)
In other words, rij is marginally distributed according to the above Beta distribution scaled into
(−1, 1).

Value

• dlkjcorr_marginal gives the density

• plkjcorr_marginal gives the cumulative distribution function (CDF)

• qlkjcorr_marginal gives the quantile function (inverse CDF)

• rlkjcorr_marginal generates random draws.

The length of the result is determined by n for rlkjcorr_marginal, and is the maximum of the
lengths of the numerical arguments for the other functions.

The numerical arguments other than n are recycled to the length of the result. Only the first elements
of the logical arguments are used.

References

Lewandowski, D., Kurowicka, D., & Joe, H. (2009). Generating random correlation matrices
based on vines and extended onion method. Journal of Multivariate Analysis, 100(9), 1989–2001.
doi:10.1016/j.jmva.2009.04.008.

See Also

parse_dist() and marginalize_lkjcorr() for parsing specs that use the LKJ correlation distri-
bution and the stat_slabinterval() family of stats for visualizing them.

Examples

library(dplyr)
library(ggplot2)

theme_set(theme_ggdist())

expand.grid(
eta = 1:6,
K = 2:6

) %>%
ggplot(aes(y = ordered(eta), dist = "lkjcorr_marginal", arg1 = K, arg2 = eta)) +
stat_slab() +
facet_grid(~ paste0(K, "x", K)) +
scale_y_discrete(limits = rev) +
labs(
title = paste0(

https://doi.org/10.1016/j.jmva.2009.04.008

marginalize_lkjcorr 111

"Marginal correlation for LKJ(eta) prior on different matrix sizes:\n",
"dlkjcorr_marginal(K, eta)"

),
subtitle = "Correlation matrix size (KxK)",
y = "eta",
x = "Marginal correlation"

) +
theme(axis.title = element_text(hjust = 0))

marginalize_lkjcorr Turn spec for LKJ distribution into spec for marginal LKJ distribution

Description

Turns specs for an LKJ correlation matrix distribution as returned by parse_dist() into specs for
the marginal distribution of a single cell in an LKJ-distributed correlation matrix (i.e., lkjcorr_marginal()).
Useful for visualizing prior correlations from LKJ distributions.

Usage

marginalize_lkjcorr(
data,
K,
predicate = NULL,
dist = ".dist",
args = ".args",
dist_obj = ".dist_obj"

)

Arguments

data A data frame containing a column with distribution names (".dist" by default)
and a list column of distribution arguments (".args" by default), such as output
by parse_dist().

K Dimension of the correlation matrix. Must be greater than or equal to 2.

predicate a bare expression for selecting the rows of data to modify. This is useful if data
contains more than one row with an LKJ prior in it and you only want to modify
some of the distributions; if this is the case, give row a predicate expression that
evaluates to TRUE on the rows you want to modify. If NULL (the default), all
lkjcorr distributions in data are modified.

dist The name of the column containing distribution names. See parse_dist().

args The name of the column containing distribution arguments. See parse_dist().

dist_obj The name of the column to contain a distributional object representing the dis-
tribution. See parse_dist().

112 marginalize_lkjcorr

Details

The LKJ(eta) prior on a correlation matrix induces a marginal prior on each correlation in the matrix
that depends on both the value of eta and K, the dimension of the K ×K correlation matrix. Thus
to visualize the marginal prior on the correlations, it is necessary to specify the value of K, which
depends on what your model specification looks like.

Given a data frame representing parsed distribution specifications (such as returned by parse_dist()),
this function updates any rows with .dist == "lkjcorr" so that the first argument to the distribu-
tion (stored in .args) is equal to the specified dimension of the correlation matrix (K), changes
the distribution name in .dist to "lkjcorr_marginal", and assigns a distributional object repre-
senting this distribution to .dist_obj. This allows the distribution to be easily visualized using the
stat_slabinterval() family of ggplot2 stats.

Value

A data frame of the same size and column names as the input, with the dist, and args, and
dist_obj columns modified on rows where dist == "lkjcorr" such that they represent a marginal
LKJ correlation distribution with name lkjcorr_marginal and args having K equal to the input
value of K.

See Also

parse_dist(), lkjcorr_marginal()

Examples

library(dplyr)
library(ggplot2)

Say we have an LKJ(3) prior on a 2x2 correlation matrix. We can visualize
its marginal distribution as follows...
data.frame(prior = "lkjcorr(3)") %>%

parse_dist(prior) %>%
marginalize_lkjcorr(K = 2) %>%
ggplot(aes(y = prior, xdist = .dist_obj)) +
stat_halfeye() +
xlim(-1, 1) +
xlab("Marginal correlation for LKJ(3) prior on 2x2 correlation matrix")

Say our prior list has multiple LKJ priors on correlation matrices
of different sizes, we can supply a predicate expression to select
only those rows we want to modify
data.frame(coef = c("a", "b"), prior = "lkjcorr(3)") %>%

parse_dist(prior) %>%
marginalize_lkjcorr(K = 2, coef == "a") %>%
marginalize_lkjcorr(K = 4, coef == "b")

parse_dist 113

parse_dist Parse distribution specifications into columns of a data frame

Description

Parses simple string distribution specifications, like "normal(0, 1)", into two columns of a data
frame, suitable for use with the dist and args aesthetics of stat_slabinterval() and its shortcut
stats (like stat_halfeye()). This format is output by brms::get_prior, making it particularly
useful for visualizing priors from brms models.

Usage

parse_dist(
object,
...,
dist = ".dist",
args = ".args",
dist_obj = ".dist_obj",
package = NULL,
to_r_names = TRUE

)

Default S3 method:
parse_dist(object, ...)

S3 method for class 'data.frame'
parse_dist(
object,
dist_col,
...,
dist = ".dist",
args = ".args",
dist_obj = ".dist_obj",
package = NULL,
lb = "lb",
ub = "ub",
to_r_names = TRUE

)

S3 method for class 'character'
parse_dist(
object,
...,
dist = ".dist",
args = ".args",
dist_obj = ".dist_obj",
package = NULL,

114 parse_dist

to_r_names = TRUE
)

S3 method for class 'factor'
parse_dist(
object,
...,
dist = ".dist",
args = ".args",
dist_obj = ".dist_obj",
package = NULL,
to_r_names = TRUE

)

S3 method for class 'brmsprior'
parse_dist(
object,
dist_col = prior,
...,
dist = ".dist",
args = ".args",
dist_obj = ".dist_obj",
package = NULL,
to_r_names = TRUE

)

r_dist_name(dist_name)

Arguments

object A character vector containing distribution specifications or a data frame with a
column containing distribution specifications.

... Arguments passed to other implementations of parse_dist.

dist The name of the output column to contain the distribution name

args The name of the output column to contain the arguments to the distribution

dist_obj The name of the output column to contain a distributional object representing
the distribution

package The package or environment to search for distribution functions in. Passed to
distributional::dist_wrap(). One of:

• NULL: use the calling environment
• a string: use the environment for the package with the given name
• an environment: use the given environment

to_r_names If TRUE (the default), certain common aliases for distribution names are auto-
matically translated into names that R can recognize (i.e., names which have
functions starting with r, p, q, and d representing random number generators,

parse_dist 115

distribution functions, etc. for that distribution), using the r_dist_name func-
tion. For example, "normal" is translated into "norm" and "lognormal" is
translated into "lnorm".

dist_col A bare (unquoted) column or column expression that resolves to a character
vector of distribution specifications.

lb The name of an input column (for data.frame and brms::prior objects) that
contains the lower bound of the distribution, which if present will produce a
truncated distribution using dist_truncated(). Ignored if lb is NULL or if
object[[lb]] is NA for the corresponding input row.

ub The name of an input column (for data.frame and brms::prior objects) that
contains the upper bound of the distribution, which if present will produce a
truncated distribution using dist_truncated(). Ignored if ub is NULL or if
object[[ub]] is NA for the corresponding input row.

dist_name For r_dist_name, a character vector of distribution names to be translated into
distribution names R recognizes. Unrecognized names are left as-is.

Details

parse_dist() can be applied to character vectors or to a data frame + bare column name of the col-
umn to parse, and returns a data frame with ".dist" and ".args" columns added. parse_dist()
uses r_dist_name() to translate distribution names into names recognized by R.

r_dist_name() takes a character vector of names and translates common names into R distribution
names. Names are first made into valid R names using make.names(), then translated (ignoring
character case, ".", and "_"). Thus, "lognormal", "LogNormal", "log_normal", "log-Normal",
and any number of other variants all get translated into "lnorm".

Value

• parse_dist returns a data frame containing at least two columns named after the dist and
args parameters. If the input is a data frame, the output is a data frame of the same length
with those two columns added. If the input is a character vector or factor, the output is a
two-column data frame with the same number of rows as the length of the input.

• r_dist_name returns a character vector the same length as the input containing translations
of the input names into distribution names R can recognize.

See Also

See stat_slabinterval() and its shortcut stats, which can easily make use of the output of this
function using the dist and args aesthetics.

Examples

library(dplyr)

parse dist can operate on strings directly...
parse_dist(c("normal(0,1)", "student_t(3,0,1)"))

116 partial_colour_ramp

... or on columns of a data frame, where it adds the
parsed specs back on as columns
data.frame(prior = c("normal(0,1)", "student_t(3,0,1)")) %>%

parse_dist(prior)

parse_dist is particularly useful with the output of brms::prior(),
which follows the same format as above

partial_colour_ramp Partial colour ramp (datatype)

Description

A representation of a partial ramp between two colours: the origin colour (from) and the distance
from the origin colour to the target colour (amount, a value between 0 and 1). The target colour of
the ramp can be filled in later using ramp_colours(), producing a colour.

Usage

partial_colour_ramp(amount = double(), from = "white")

Arguments

amount Numeric vector between 0 and 1 giving amounts to ramp the colour. 0 corre-
sponds to the colour from.

from Character vector giving colours to ramp from.

Details

This datatype is used by scale_colour_ramp to create ramped colours in ggdist geoms. It is a
vctrs::rcrd datatype with two fields: "amount", the amount to ramp, and "from", the colour to ramp
from.

Colour ramps can be applied (i.e. translated into colours) using ramp_colours(), which can
be used with partial_colour_ramp() to implement geoms that make use of colour_ramp or
fill_ramp scales.

Value

A vctrs::rcrd of class "ggdist_partial_colour_ramp" with fields "amount" and "from".

Author(s)

Matthew Kay

See Also

Other colour ramp functions: guide_rampbar(), ramp_colours(), scale_colour_ramp

point_interval 117

Examples

pcr = partial_colour_ramp(c(0, 0.25, 0.75, 1), "red")
pcr

ramp_colours("blue", pcr)

point_interval Point and interval summaries for tidy data frames of draws from dis-
tributions

Description

Translates draws from distributions in a (possibly grouped) data frame into point and interval sum-
maries (or set of point and interval summaries, if there are multiple groups in a grouped data frame).

Usage

point_interval(
.data,
...,
.width = 0.95,
.point = median,
.interval = qi,
.simple_names = TRUE,
na.rm = FALSE,
.exclude = c(".chain", ".iteration", ".draw", ".row"),
.prob

)

Default S3 method:
point_interval(
.data,
...,
.width = 0.95,
.point = median,
.interval = qi,
.simple_names = TRUE,
na.rm = FALSE,
.exclude = c(".chain", ".iteration", ".draw", ".row"),
.prob

)

S3 method for class 'numeric'
point_interval(
.data,
...,
.width = 0.95,

118 point_interval

.point = median,

.interval = qi,

.simple_names = FALSE,
na.rm = FALSE,
.exclude = c(".chain", ".iteration", ".draw", ".row"),
.prob

)

S3 method for class 'rvar'
point_interval(
.data,
...,
.width = 0.95,
.point = median,
.interval = qi,
.simple_names = TRUE,
na.rm = FALSE

)

S3 method for class 'distribution'
point_interval(
.data,
...,
.width = 0.95,
.point = median,
.interval = qi,
.simple_names = TRUE,
na.rm = FALSE

)

qi(x, .width = 0.95, .prob, na.rm = FALSE)

ll(x, .width = 0.95, na.rm = FALSE)

ul(x, .width = 0.95, na.rm = FALSE)

hdi(
x,
.width = 0.95,
na.rm = FALSE,
...,
density = density_bounded(trim = TRUE),
n = 4096,
.prob

)

Mode(x, na.rm = FALSE, ...)

point_interval 119

Default S3 method:
Mode(
x,
na.rm = FALSE,
...,
density = density_bounded(trim = TRUE),
n = 2001,
weights = NULL

)

S3 method for class 'rvar'
Mode(x, na.rm = FALSE, ...)

S3 method for class 'distribution'
Mode(x, na.rm = FALSE, ...)

hdci(x, .width = 0.95, na.rm = FALSE)

mean_qi(.data, ..., .width = 0.95)

median_qi(.data, ..., .width = 0.95)

mode_qi(.data, ..., .width = 0.95)

mean_ll(.data, ..., .width = 0.95)

median_ll(.data, ..., .width = 0.95)

mode_ll(.data, ..., .width = 0.95)

mean_ul(.data, ..., .width = 0.95)

median_ul(.data, ..., .width = 0.95)

mode_ul(.data, ..., .width = 0.95)

mean_hdi(.data, ..., .width = 0.95)

median_hdi(.data, ..., .width = 0.95)

mode_hdi(.data, ..., .width = 0.95)

mean_hdci(.data, ..., .width = 0.95)

median_hdci(.data, ..., .width = 0.95)

mode_hdci(.data, ..., .width = 0.95)

120 point_interval

Arguments

.data Data frame (or grouped data frame as returned by dplyr::group_by()) that
contains draws to summarize.

... Bare column names or expressions that, when evaluated in the context of .data,
represent draws to summarize. If this is empty, then by default all columns that
are not group columns and which are not in .exclude (by default ".chain",
".iteration", ".draw", and ".row") will be summarized. These columns
can be numeric, distributional objects, posterior::rvars, or list columns of
numeric values to summarise.

.width vector of probabilities to use that determine the widths of the resulting intervals.
If multiple probabilities are provided, multiple rows per group are generated,
each with a different probability interval (and value of the corresponding .width
column).

.point Point summary function, which takes a vector and returns a single value, e.g.
mean(), median(), or Mode().

.interval Interval function, which takes a vector and a probability (.width) and returns a
two-element vector representing the lower and upper bound of an interval; e.g.
qi(), hdi()

.simple_names When TRUE and only a single column / vector is to be summarized, use the name
.lower for the lower end of the interval and .upper for the upper end. If .data
is a vector and this is TRUE, this will also set the column name of the point
summary to .value. When FALSE and .data is a data frame, names the lower
and upper intervals for each column x x.lower and x.upper. When FALSE
and .data is a vector, uses the naming scheme y, ymin and ymax (for use with
ggplot).

na.rm logical value indicating whether NA values should be stripped before the com-
putation proceeds. If FALSE (the default), any vectors to be summarized that
contain NA will result in point and interval summaries equal to NA.

.exclude A character vector of names of columns to be excluded from summarization
if no column names are specified to be summarized. Default ignores several
meta-data column names used in ggdist and tidybayes.

.prob Deprecated. Use .width instead.

x vector to summarize (for interval functions: qi and hdi)

density For hdi() and Mode(), the kernel density estimator to use, either as a function
(e.g. density_bounded, density_unbounded) or as a string giving the suffix to
a function that starts with density_ (e.g. "bounded" or "unbounded"). The de-
fault, "bounded", uses the bounded density estimator of density_bounded(),
which itself estimates the bounds of the distribution, and tends to work well on
both bounded and unbounded data.

n For hdi() and Mode(), the number of points to use to estimate highest-density
intervals or modes.

weights For Mode(), an optional vector, which (if not NULL) is of the same length as x
and provides weights for each element of x.

point_interval 121

Details

If .data is a data frame, then ... is a list of bare names of columns (or expressions derived from
columns) of .data, on which the point and interval summaries are derived. Column expressions
are processed using the tidy evaluation framework (see rlang::eval_tidy()).

For a column named x, the resulting data frame will have a column named x containing its point
summary. If there is a single column to be summarized and .simple_names is TRUE, the output will
also contain columns .lower (the lower end of the interval), .upper (the upper end of the interval).
Otherwise, for every summarized column x, the output will contain x.lower (the lower end of the
interval) and x.upper (the upper end of the interval). Finally, the output will have a .width column
containing the’ probability for the interval on each output row.

If .data includes groups (see e.g. dplyr::group_by()), the points and intervals are calculated
within the groups.

If .data is a vector, ... is ignored and the result is a data frame with one row per value of .width
and three columns: y (the point summary), ymin (the lower end of the interval), ymax (the upper
end of the interval), and .width, the probability corresponding to the interval. This behavior al-
lows point_interval and its derived functions (like median_qi, mean_qi, mode_hdi, etc) to be
easily used to plot intervals in ggplot stats using methods like stat_eye(), stat_halfeye(), or
stat_summary().

median_qi, mode_hdi, etc are short forms for point_interval(..., .point = median, .interval
= qi), etc.

qi yields the quantile interval (also known as the percentile interval or equi-tailed interval) as a 1x2
matrix.

hdi yields the highest-density interval(s) (also known as the highest posterior density interval).
Note: If the distribution is multimodal, hdi may return multiple intervals for each probability level
(these will be spread over rows). You may wish to use hdci (below) instead if you want a single
highest-density interval, with the caveat that when the distribution is multimodal hdci is not a
highest-density interval.

hdci yields the highest-density continuous interval, also known as the shortest probability interval.
Note: If the distribution is multimodal, this may not actually be the highest-density interval (there
may be a higher-density discontinuous interval, which can be found using hdi).

ll and ul yield lower limits and upper limits, respectively (where the opposite limit is set to either
Inf or -Inf).

Value

A data frame containing point summaries and intervals, with at least one column corresponding
to the point summary, one to the lower end of the interval, one to the upper end of the interval,
the width of the interval (.width), the type of point summary (.point), and the type of interval
(.interval).

Author(s)

Matthew Kay

122 position_dodgejust

Examples

library(dplyr)
library(ggplot2)

set.seed(123)

rnorm(1000) %>%
median_qi()

data.frame(x = rnorm(1000)) %>%
median_qi(x, .width = c(.50, .80, .95))

data.frame(
x = rnorm(1000),
y = rnorm(1000, mean = 2, sd = 2)

) %>%
median_qi(x, y)

data.frame(
x = rnorm(1000),
group = "a"

) %>%
rbind(data.frame(

x = rnorm(1000, mean = 2, sd = 2),
group = "b")

) %>%
group_by(group) %>%
median_qi(.width = c(.50, .80, .95))

multimodal_draws = data.frame(
x = c(rnorm(5000, 0, 1), rnorm(2500, 4, 1))

)

multimodal_draws %>%
mode_hdi(.width = c(.66, .95))

multimodal_draws %>%
ggplot(aes(x = x, y = 0)) +
stat_halfeye(point_interval = mode_hdi, .width = c(.66, .95))

position_dodgejust Dodge overlapping objects side-to-side, preserving justification

Description

A justification-preserving variant of ggplot2::position_dodge() which preserves the vertical
position of a geom while adjusting the horizontal position (or vice versa when in a horizontal orien-
tation). Unlike ggplot2::position_dodge(), position_dodgejust() attempts to preserve the

position_dodgejust 123

"justification" of x positions relative to the bounds containing them (xmin/xmax) (or y positions rel-
ative to ymin/ymax when in a horizontal orientation). This makes it useful for dodging annotations
to geoms and stats from the geom_slabinterval() family, which also preserve the justification of
their intervals relative to their slabs when dodging.

Usage

position_dodgejust(
width = NULL,
preserve = c("total", "single"),
justification = NULL

)

Arguments

width Dodging width, when different to the width of the individual elements. This
is useful when you want to align narrow geoms with wider geoms. See the
examples.

preserve Should dodging preserve the "total" width of all elements at a position, or the
width of a "single" element?

justification Justification of the point position (x/y) relative to its bounds (xmin/xmax or
ymin/ymax), where 0 indicates bottom/left justification and 1 indicates top/right
justification (depending on orientation). This is only used if xmin/xmax/ymin/ymax
are not supplied; in that case, justification will be used along with width to
determine the bounds of the object prior to dodging.

Examples

library(dplyr)
library(ggplot2)
library(distributional)

dist_df = tribble(
~group, ~subgroup, ~mean, ~sd,
1, "h", 5, 1,
2, "h", 7, 1.5,
3, "h", 8, 1,
3, "i", 9, 1,
3, "j", 7, 1

)

An example with normal "dodge" positioning
Notice how dodge points are placed in the center of their bounding boxes,
which can cause slabs to be positioned outside their bounds.
dist_df %>%

ggplot(aes(
x = factor(group), ydist = dist_normal(mean, sd),
fill = subgroup

)) +

124 position_dodgejust

stat_halfeye(
position = "dodge"

) +
geom_rect(

aes(xmin = group, xmax = group + 1, ymin = 2, ymax = 13, color = subgroup),
position = "dodge",
data = . %>% filter(group == 3),
alpha = 0.1

) +
geom_point(

aes(x = group, y = 7.5, color = subgroup),
position = position_dodge(width = 1),
data = . %>% filter(group == 3),
shape = 1,
size = 4,
stroke = 1.5

) +
scale_fill_brewer(palette = "Set2") +
scale_color_brewer(palette = "Dark2")

This same example with "dodgejust" positioning. For the points we
supply a justification parameter to position_dodgejust which mimics the
justification parameter of stat_halfeye, ensuring that they are
placed appropriately. On slabinterval family geoms, position_dodgejust()
will automatically detect the appropriate justification.
dist_df %>%

ggplot(aes(
x = factor(group), ydist = dist_normal(mean, sd),
fill = subgroup

)) +
stat_halfeye(

position = "dodgejust"
) +
geom_rect(

aes(xmin = group, xmax = group + 1, ymin = 2, ymax = 13, color = subgroup),
position = "dodgejust",
data = . %>% filter(group == 3),
alpha = 0.1

) +
geom_point(

aes(x = group, y = 7.5, color = subgroup),
position = position_dodgejust(width = 1, justification = 0),
data = . %>% filter(group == 3),
shape = 1,
size = 4,
stroke = 1.5

) +
scale_fill_brewer(palette = "Set2") +
scale_color_brewer(palette = "Dark2")

Pr_ 125

Pr_ Probability expressions in ggdist aesthetics

Description

Experimental probability-like expressions that can be used in place of some after_stat() ex-
pressions in aesthetic assignments in ggdist stats.

Usage

Pr_(x)

p_(x)

Arguments

x Bare (unevaluated) expressions. See Details.

Details

Pr_() and p_() are an experimental mini-language for specifying aesthetic values based on proba-
bilities and probability densities derived from distributions supplied to ggdist stats (e.g., in stat_slabinterval(),
stat_dotsinterval(), etc.). They generate expressions that use after_stat() and the com-
puted variables of the stat (such as cdf and pdf; see e.g. the Computed Variables section of
stat_slabinterval()) to compute the desired probabilities or densities.

For example, one way to map the density of a distribution onto the alpha aesthetic of a slab is to
use after_stat(pdf):

ggplot() +
stat_slab(aes(xdist = distributional::dist_normal(), alpha = after_stat(pdf)))

ggdist probability expressions offer an alternative, equivalent syntax:

ggplot() +
stat_slab(aes(xdist = distributional::dist_normal(), alpha = !!p_(x)))

Where p_(x) is the probability density function. The use of !! is necessary to splice the generated
expression into the aes() call; for more information, see quasiquotation.

Probability expressions

Probability expressions consist of a call to Pr_() or p_() containing a small number of valid com-
binations of operators and variable names.

Valid variables in probability expressions include:

• x, y, or value: values along the x or y axis. value is the orientation-neutral form.

126 Pr_

• xdist, ydist, or dist: distributions mapped along the x or y axis. dist is the orientation-
neutral form. X and Y can also be used as synonyms for xdist and ydist.

• interval: the smallest interval containing the current x/y value.

Pr_() generates expressions for probabilities, e.g. cumulative distribution functions (CDFs). Valid
operators inside Pr_() are:

• <, <=, >, >=: generates values of the cumulative distribution function (CDF) or complementary
CDF by comparing one of {x, y, value} to one of {xdist, ydist, dist, X, Y}. For example,
Pr_(xdist <= x) gives the CDF and Pr_(xdist > x) gives the CCDF.

• %in%: currently can only be used with interval on the right-hand side: gives the probability
of {x, y, value} (left-hand side) being in the smallest interval the stat generated that contains
the value; e.g. Pr_(x %in% interval).

p_() generates expressions for probability density functions or probability mass functions (depend-
ing on if the underlying distribution is continuous or discrete). It currently does not allow any
operators in the expression, and must be passed one of x, y, or value.

See Also

The Computed Variables section of stat_slabinterval() (especially cdf and pdf) and the after_stat()
function.

Examples

library(ggplot2)
library(distributional)

df = data.frame(
d = c(dist_normal(2.7, 1), dist_lognormal(1, 1/3)),
name = c("normal", "lognormal")

)

map density onto alpha of the fill
ggplot(df, aes(y = name, xdist = d)) +

stat_slabinterval(aes(alpha = !!p_(x)))

map CCDF onto thickness (like stat_ccdfinterval())
ggplot(df, aes(y = name, xdist = d)) +

stat_slabinterval(aes(thickness = !!Pr_(xdist > x)))

map containing interval onto fill
ggplot(df, aes(y = name, xdist = d)) +

stat_slabinterval(aes(fill = !!Pr_(x %in% interval)))

the color scale in the previous example is not great, so turn the
probability into an ordered factor and adjust the fill scale.
Though, see also the `level` computed variable in `stat_slabinterval()`,
which is probably easier to use to create this style of chart.
ggplot(df, aes(y = name, xdist = d)) +

stat_slabinterval(aes(fill = ordered(!!Pr_(x %in% interval)))) +
scale_fill_brewer(direction = -1)

ramp_colours 127

ramp_colours Apply partial colour ramps

Description

Given vectors of colours and partial_colour_ramps, ramps the colours according to the param-
eters of the partial colour ramps, returning a vector of the same length as the inputs giving the
transformed (ramped) colours.

Usage

ramp_colours(colour, ramp)

Arguments

colour character vector of colours.

ramp a partial_colour_ramp vector.

Details

Takes vectors of colours and partial_colour_ramps and produces colours by interpolating be-
tween each from colour and the target colour the specified amount (where amount and from are
the corresponding fields of the ramp).

For example, to add support for the fill_ramp aesthetic to a geometry, this line could be used
inside the draw_group() or draw_panel() method of a geom:

data$fill = ramp_colours(data$fill, data$fill_ramp)

Value

A character vector of colours.

Author(s)

Matthew Kay

See Also

Other colour ramp functions: guide_rampbar(), partial_colour_ramp(), scale_colour_ramp

Examples

pcr = partial_colour_ramp(c(0, 0.25, 0.75, 1), "red")
pcr

ramp_colours("blue", pcr)

128 scale_colour_ramp

scale_colour_ramp Secondary color scale that ramps from another color (ggplot2 scale)

Description

This scale creates a secondary scale that modifies the fill or color scale of geoms that support
it (geom_lineribbon() and geom_slabinterval()) to "ramp" from a secondary color (by default
white) to the primary fill color (determined by the standard color or fill aesthetics). It uses the
partial_colour_ramp() data type.

Usage

scale_colour_ramp_continuous(
from = "white",
...,
limits = function(l) c(min(0, l[[1]]), l[[2]]),
range = c(0, 1),
guide = "legend",
aesthetics = "colour_ramp"

)

scale_color_ramp_continuous(
from = "white",
...,
limits = function(l) c(min(0, l[[1]]), l[[2]]),
range = c(0, 1),
guide = "legend",
aesthetics = "colour_ramp"

)

scale_colour_ramp_discrete(
from = "white",
...,
range = c(0.2, 1),
aesthetics = "colour_ramp"

)

scale_color_ramp_discrete(
from = "white",
...,
range = c(0.2, 1),
aesthetics = "colour_ramp"

)

scale_fill_ramp_continuous(..., aesthetics = "fill_ramp")

scale_fill_ramp_discrete(..., aesthetics = "fill_ramp")

scale_colour_ramp 129

Arguments

from The color to ramp from. Corresponds to 0 on the scale.

... Arguments passed to underlying scale or guide functions. E.g. scale_colour_ramp_discrete()
passes arguments to discrete_scale(), scale_colour_ramp_continuous()
passes arguments to continuous_scale(). See those functions for more de-
tails.

limits One of:

• NULL to use the default scale range
• A numeric vector of length two providing limits of the scale. Use NA to

refer to the existing minimum or maximum
• A function that accepts the existing (automatic) limits and returns new

limits. Also accepts rlang lambda function notation. Note that setting
limits on positional scales will remove data outside of the limits. If the
purpose is to zoom, use the limit argument in the coordinate system (see
coord_cartesian()).

range a numeric vector of length 2 that specifies the minimum and maximum values
after the scale transformation. These values should be between 0 (the from
color) and 1 (the color determined by the fill aesthetic).

guide A function used to create a guide or its name. For scale_colour_ramp_continuous()
and scale_fill_ramp_continuous(), guide_rampbar() can be used to cre-
ate gradient color bars. See guides() for information on other guides.

aesthetics Names of aesthetics to set scales for.

Details

These scales transform data into partial_colour_ramps. Each partial_colour_ramp is a pair of
two values: a from colour and a numeric amount between 0 and 1 representing a distance between
from and the target color (where 0 indicates the from color and 1 the target color).

The target color is determined by the corresponding aesthetic: for example, the colour_ramp aes-
thetic creates ramps between from and whatever the value of the colour aesthetic is; the fill_ramp
aesthetic creates ramps between from and whatever the value of the fill aesthetic is. When the
colour_ramp aesthetic is set, ggdist geometries will modify their colour by applying the colour
ramp between from and colour (and similarly for fill_ramp and fill).

Colour ramps can be applied (i.e. translated into colours) using ramp_colours(), which can
be used with partial_colour_ramp() to implement geoms that make use of colour_ramp or
fill_ramp scales.

Value

A ggplot2::Scale representing a scale for the colour_ramp and/or fill_ramp aesthetics for ggdist
geoms. Can be added to a ggplot() object.

Author(s)

Matthew Kay

130 scale_side_mirrored

See Also

Other ggdist scales: scale_side_mirrored(), scale_thickness, sub-geometry-scales

Other colour ramp functions: guide_rampbar(), partial_colour_ramp(), ramp_colours()

Examples

library(dplyr)
library(ggplot2)
library(distributional)

tibble(d = dist_uniform(0, 1)) %>%
ggplot(aes(y = 0, xdist = d)) +
stat_slab(aes(fill_ramp = after_stat(x)))

tibble(d = dist_uniform(0, 1)) %>%
ggplot(aes(y = 0, xdist = d)) +
stat_slab(aes(fill_ramp = after_stat(x)), fill = "blue") +
scale_fill_ramp_continuous(from = "red")

you can invert the order of `range` to change the order of the blend
tibble(d = dist_normal(0, 1)) %>%

ggplot(aes(y = 0, xdist = d)) +
stat_slab(aes(fill_ramp = after_stat(cut_cdf_qi(cdf))), fill = "blue") +
scale_fill_ramp_discrete(from = "red", range = c(1, 0))

scale_side_mirrored Side scale for mirrored slabs (ggplot2 scale)

Description

This scale creates mirrored slabs for the side aesthetic of the geom_slabinterval() and geom_dotsinterval()
family of geoms and stats. It works on discrete variables of two or three levels.

Usage

scale_side_mirrored(start = "topright", ..., aesthetics = "side")

Arguments

start The side to start from. Can be any valid value of the side aesthetic except
"both".

... Arguments passed on to ggplot2::discrete_scale

scale_name [Deprecated] The name of the scale that should be used for error
messages associated with this scale.

scale_side_mirrored 131

palette A palette function that when called with a single integer argument (the
number of levels in the scale) returns the values that they should take (e.g.,
scales::pal_hue()).

name The name of the scale. Used as the axis or legend title. If waiver(), the
default, the name of the scale is taken from the first mapping used for that
aesthetic. If NULL, the legend title will be omitted.

breaks One of:
• NULL for no breaks
• waiver() for the default breaks (the scale limits)
• A character vector of breaks
• A function that takes the limits as input and returns breaks as output.

Also accepts rlang lambda function notation.
labels One of:

• NULL for no labels
• waiver() for the default labels computed by the transformation object
• A character vector giving labels (must be same length as breaks)
• An expression vector (must be the same length as breaks). See ?plot-

math for details.
• A function that takes the breaks as input and returns labels as output.

Also accepts rlang lambda function notation.
limits One of:

• NULL to use the default scale values
• A character vector that defines possible values of the scale and their

order
• A function that accepts the existing (automatic) values and returns new

ones. Also accepts rlang lambda function notation.
expand For position scales, a vector of range expansion constants used to add

some padding around the data to ensure that they are placed some distance
away from the axes. Use the convenience function expansion() to gen-
erate the values for the expand argument. The defaults are to expand the
scale by 5% on each side for continuous variables, and by 0.6 units on each
side for discrete variables.

na.translate Unlike continuous scales, discrete scales can easily show miss-
ing values, and do so by default. If you want to remove missing values from
a discrete scale, specify na.translate = FALSE.

na.value If na.translate = TRUE, what aesthetic value should the missing
values be displayed as? Does not apply to position scales where NA is al-
ways placed at the far right.

drop Should unused factor levels be omitted from the scale? The default, TRUE,
uses the levels that appear in the data; FALSE uses all the levels in the factor.

guide A function used to create a guide or its name. See guides() for more
information.

position For position scales, The position of the axis. left or right for y
axes, top or bottom for x axes.

call The call used to construct the scale for reporting messages.

132 scale_thickness

super The super class to use for the constructed scale

aesthetics Names of aesthetics to set scales for.

Value

A ggplot2::Scale representing a scale for the side aesthetic for ggdist geoms. Can be added to a
ggplot() object.

Author(s)

Matthew Kay

See Also

Other ggdist scales: scale_colour_ramp, scale_thickness, sub-geometry-scales

Examples

library(dplyr)
library(ggplot2)

set.seed(1234)
data.frame(

x = rnorm(400, c(1,4)),
g = c("a","b")

) %>%
ggplot(aes(x, fill = g, side = g)) +
geom_weave(linewidth = 0, scale = 0.5) +
scale_side_mirrored()

scale_thickness Slab thickness scale (ggplot2 scale)

Description

This ggplot2 scale linearly scales all thickness values of geoms that support the thickness aes-
thetic (such as geom_slabinterval()). It can be used to align the thickness scales across multi-
ple geoms (by default, thickness is normalized on a per-geom level instead of as a global scale).
For a comprehensive discussion and examples of slab scaling and normalization, see the thickness
scale article.

https://mjskay.github.io/ggdist/articles/thickness.html
https://mjskay.github.io/ggdist/articles/thickness.html

scale_thickness 133

Usage

scale_thickness_shared(
name = waiver(),
breaks = waiver(),
labels = waiver(),
limits = function(l) c(min(0, l[[1]]), l[[2]]),
renormalize = FALSE,
oob = scales::oob_keep,
guide = "none",
...

)

scale_thickness_identity(..., guide = "none")

thickness(x = double(), lower = NA_real_, upper = NA_real_)

Arguments

name The name of the scale. Used as the axis or legend title. If waiver(), the default,
the name of the scale is taken from the first mapping used for that aesthetic. If
NULL, the legend title will be omitted.

breaks One of:

• NULL for no breaks
• waiver() for the default breaks computed by the transformation object
• A numeric vector of positions
• A function that takes the limits as input and returns breaks as output (e.g.,

a function returned by scales::extended_breaks()). Also accepts rlang
lambda function notation.

labels One of:

• NULL for no labels
• waiver() for the default labels computed by the transformation object
• A character vector giving labels (must be same length as breaks)
• An expression vector (must be the same length as breaks). See ?plotmath

for details.
• A function that takes the breaks as input and returns labels as output. Also

accepts rlang lambda function notation.

limits One of:

• NULL to use the default scale range
• A numeric vector of length two providing limits of the scale. Use NA to

refer to the existing minimum or maximum
• A function that accepts the existing (automatic) limits and returns new

limits. Also accepts rlang lambda function notation. Note that setting
limits on positional scales will remove data outside of the limits. If the
purpose is to zoom, use the limit argument in the coordinate system (see
coord_cartesian()).

134 scale_thickness

renormalize When mapping values to the thickness scale, should those values be allowed to
be renormalized by geoms (e.g. via the normalize parameter to geom_slabinterval())?
The default is FALSE: if scale_thickness_shared() is in use, the geom-specific
normalize parameter is ignored (this is achieved by flagging values as already
normalized by wrapping them in thickness()). Set this to TRUE to allow geoms
to also apply their own normalization. Note that if you set renormalize to TRUE,
subguides created via the subguide parameter to geom_slabinterval() will
display the scaled values output by this scale, not the original data values.

oob One of:

• Function that handles limits outside of the scale limits (out of bounds). Also
accepts rlang lambda function notation.

• The default (scales::censor()) replaces out of bounds values with NA.
• scales::squish() for squishing out of bounds values into range.
• scales::squish_infinite() for squishing infinite values into range.

guide A function used to create a guide or its name. See guides() for more informa-
tion.

... Arguments passed on to ggplot2::continuous_scale

aesthetics The names of the aesthetics that this scale works with.
scale_name [Deprecated] The name of the scale that should be used for error

messages associated with this scale.
palette A palette function that when called with a numeric vector with values

between 0 and 1 returns the corresponding output values (e.g., scales::pal_area()).
minor_breaks One of:

• NULL for no minor breaks
• waiver() for the default breaks (one minor break between each major

break)
• A numeric vector of positions
• A function that given the limits returns a vector of minor breaks. Also

accepts rlang lambda function notation. When the function has two
arguments, it will be given the limits and major breaks.

n.breaks An integer guiding the number of major breaks. The algorithm may
choose a slightly different number to ensure nice break labels. Will only
have an effect if breaks = waiver(). Use NULL to use the default number
of breaks given by the transformation.

rescaler A function used to scale the input values to the range [0, 1]. This is
always scales::rescale(), except for diverging and n colour gradients
(i.e., scale_colour_gradient2(), scale_colour_gradientn()). The
rescaler is ignored by position scales, which always use scales::rescale().
Also accepts rlang lambda function notation.

expand For position scales, a vector of range expansion constants used to add
some padding around the data to ensure that they are placed some distance
away from the axes. Use the convenience function expansion() to gen-
erate the values for the expand argument. The defaults are to expand the
scale by 5% on each side for continuous variables, and by 0.6 units on each
side for discrete variables.

scale_thickness 135

na.value Missing values will be replaced with this value.

transform For continuous scales, the name of a transformation object or the
object itself. Built-in transformations include "asn", "atanh", "boxcox",
"date", "exp", "hms", "identity", "log", "log10", "log1p", "log2", "logit",
"modulus", "probability", "probit", "pseudo_log", "reciprocal", "reverse",
"sqrt" and "time".
A transformation object bundles together a transform, its inverse, and meth-
ods for generating breaks and labels. Transformation objects are defined
in the scales package, and are called transform_<name>. If transforma-
tions require arguments, you can call them from the scales package, e.g.
scales::transform_boxcox(p = 2). You can create your own transfor-
mation with scales::new_transform().

trans [Deprecated] Deprecated in favour of transform.

position For position scales, The position of the axis. left or right for y
axes, top or bottom for x axes.

call The call used to construct the scale for reporting messages.

super The super class to use for the constructed scale

x An object (typically a numeric()) to be converted to a thickness() object.

lower The original lower bounds of thickness values before scaling.

upper The original upper bounds of thickness values before scaling.

Details

By default, normalization/scaling of slab thicknesses is controlled by geometries, not by a ggplot2
scale function. This allows various functionality not otherwise possible, such as (1) allowing differ-
ent geometries to have different thickness scales and (2) allowing the user to control at what level
of aggregation (panels, groups, the entire plot, etc) thickness scaling is done via the normalize
parameter to geom_slabinterval().

However, this default approach has one drawback: two different geoms will always have their
own scaling of thickness. scale_thickness_shared() offers an alternative approach: when
added to a chart, all geoms will use the same thickness scale, and geom-level normalization
(via their normalize parameters) is ignored. This is achieved by "marking" thickness values as
already normalized by wrapping them in the thickness() data type (this can be disabled by setting
renormalize = TRUE).

thickness() is used by scale_thickness_shared() to create numeric()-like objects marked as
being in units of slab "thickness". Unlike regular numeric()s, thickness() values mapped onto
the thickness aesthetic are not rescaled by scale_thickness_shared() or geom_slabinterval().
In most cases thickness() is not useful directly; though it can be used to mark values that should
not be rescaled—see the definitions of stat_ccdfinterval() and stat_gradientinterval() for
some usages.

Note: while a slightly more typical name for scale_thickness_shared() might be scale_thickness_continuous(),
the latter name would cause this scale to be applied to all thickness aesthetics by default ac-
cording to the rules ggplot2 uses to find default scales. Thus, to retain the usual behavior of
stat_slabinterval() (per-geom normalization of thickness), this scale is called scale_thickness_shared().

136 smooth_density

Value

A ggplot2::Scale representing a scale for the thickness aesthetic for ggdist geoms. Can be added
to a ggplot() object.

Author(s)

Matthew Kay

See Also

The thickness aesthetic of geom_slabinterval().

Other ggdist scales: scale_colour_ramp, scale_side_mirrored(), sub-geometry-scales

Examples

library(distributional)
library(ggplot2)
library(dplyr)

prior_post = data.frame(
prior = dist_normal(0, 1),
posterior = dist_normal(0.1, 0.5)

)

By default, separate geoms have their own thickness scales, which means
distributions plotted using two separate geoms will not have their slab
functions drawn on the same scale (thus here, the two distributions have
different areas under their density curves):
prior_post %>%

ggplot() +
stat_halfeye(aes(xdist = posterior)) +
stat_slab(aes(xdist = prior), fill = NA, color = "red")

For this kind of prior/posterior chart, it makes more sense to have the
densities on the same scale; thus, the areas under both would be the same.
We can do that using scale_thickness_shared():
prior_post %>%

ggplot() +
stat_halfeye(aes(xdist = posterior)) +
stat_slab(aes(xdist = prior), fill = NA, color = "#e41a1c") +
scale_thickness_shared()

smooth_density Smooth dot positions in a dotplot using a kernel density estimator
("density dotplots")

smooth_density 137

Description

Smooths x values using a density estimator, returning new x of the same length. Can be used with
a dotplot (e.g. geom_dots(smooth = ...)) to create "density dotplots".

Supports automatic partial function application.

Usage

smooth_bounded(
x,
density = "bounded",
bounds = c(NA, NA),
bounder = "cooke",
trim = FALSE,
...

)

smooth_unbounded(x, density = "unbounded", trim = FALSE, ...)

Arguments

x a numeric vector

density Density estimator to use for smoothing. One of:

• A function which takes a numeric vector and returns a list with elements
x (giving grid points for the density estimator) and y (the corresponding
densities). ggdist provides a family of functions following this format, in-
cluding density_unbounded() and density_bounded().

• A string giving the suffix of a function name that starts with "density_";
e.g. "bounded" for [density_bounded()].

bounds length-2 vector of min and max bounds. If a bound is NA, then that bound is
estimated from the data using the method specified by bounder.

bounder Method to use to find missing (NA) bounds. A function that takes a numeric
vector of values and returns a length-2 vector of the estimated lower and upper
bound of the distribution. Can also be a string giving the suffix of the name of
such a function that starts with "bounder_". Useful values include:

• "cdf": Use the CDF of the the minimum and maximum order statistics of
the sample to estimate the bounds. See bounder_cdf().

• "cooke": Use the method from Cooke (1979); i.e. method 2.3 from Loh
(1984). See bounder_cooke().

• "range": Use the range of x (i.e the min or max). See bounder_range().

trim Should the density estimate be trimmed to the bounds of the data?

... Arguments passed to the density estimator specified by density.

Details

Applies a kernel density estimator (KDE) to x, then uses weighted quantiles of the KDE to generate
a new set of x values with smoothed values. Plotted using a dotplot (e.g. geom_dots(smooth =

138 smooth_density

"bounded") or geom_dots(smooth = smooth_bounded(...)), these values create a variation on
a "density dotplot" (Zvinca 2018).

Such plots are recommended only in very large sample sizes where precise positions of individual
values are not particularly meaningful. In small samples, normal dotplots should generally be used.

Two variants are supplied by default:

• smooth_bounded(), which uses density_bounded(). Passes the bounds arguments to the
estimator.

• smooth_unbounded(), which uses density_unbounded().

It is generally recommended to pick the smooth based on the known bounds of your data, e.g. by us-
ing smooth_bounded() with the bounds parameter if there are finite bounds, or smooth_unbounded()
if both bounds are infinite.

Value

A numeric vector of length(x), where each entry is a smoothed version of the corresponding entry
in x.

If x is missing, returns a partial application of itself. See automatic-partial-functions.

References

Zvinca, Daniel. "In the pursuit of diversity in data visualization. Jittering data to access details."
https://www.linkedin.com/pulse/pursuit-diversity-data-visualization-jittering-access-daniel-zvinca/.

See Also

Other dotplot smooths: smooth_discrete(), smooth_none()

Examples

library(ggplot2)

set.seed(1234)
x = rnorm(1000)

basic dotplot is noisy
ggplot(data.frame(x), aes(x)) +

geom_dots()

density dotplot is smoother, but does move points (most noticeable
in areas of low density)
ggplot(data.frame(x), aes(x)) +

geom_dots(smooth = "unbounded")

you can adjust the kernel and bandwidth...
ggplot(data.frame(x), aes(x)) +

geom_dots(smooth = smooth_unbounded(kernel = "triangular", adjust = 0.5))

https://www.linkedin.com/pulse/pursuit-diversity-data-visualization-jittering-access-daniel-zvinca/

smooth_discrete 139

for bounded data, you should use the bounded smoother
x_beta = rbeta(1000, 0.5, 0.5)

ggplot(data.frame(x_beta), aes(x_beta)) +
geom_dots(smooth = smooth_bounded(bounds = c(0, 1)))

smooth_discrete Smooth dot positions in a dotplot of discrete values ("bar dotplots")

Description

Note: Better-looking bar dotplots are typically easier to achieve using layout = "bar" with the
geom_dotsinterval() family instead of smooth = "bar" or smooth = "discrete".

Smooths x values where x is presumed to be discrete, returning a new x of the same length. Both
smooth_discrete() and smooth_bar() use the resolution() of the data to apply smoothing
around unique values in the dataset; smooth_discrete() uses a kernel density estimator and
smooth_bar() places values in an evenly-spaced grid. Can be used with a dotplot (e.g. geom_dots(smooth
= ...)) to create "bar dotplots".

Supports automatic partial function application.

Usage

smooth_discrete(
x,
kernel = c("rectangular", "gaussian", "epanechnikov", "triangular", "biweight",

"cosine", "optcosine"),
width = 0.7,
...

)

smooth_bar(x, width = 0.7, ...)

Arguments

x a numeric vector

kernel string: the smoothing kernel to be used. This must partially match one of
"gaussian", "rectangular", "triangular", "epanechnikov", "biweight",
"cosine", or "optcosine". See stats::density().

width approximate width of the bars as a fraction of data resolution().

... additional parameters; smooth_discrete() passes these to smooth_unbounded()
and thereby to density_unbounded(); smooth_bar() ignores them.

140 smooth_discrete

Details

smooth_discrete() applies a kernel density estimator (default: rectangular) to x. It automatically
sets the bandwidth to be such that the kernel’s width (for each kernel type) is approximately width
times the resolution() of the data. This means it essentially creates smoothed bins around each
unique value. It calls down to smooth_unbounded().

smooth_bar() generates an evenly-spaced grid of values spanning +/- width/2 around each
unique value in x.

Value

A numeric vector of length(x), where each entry is a smoothed version of the corresponding entry
in x.

If x is missing, returns a partial application of itself. See automatic-partial-functions.

See Also

Other dotplot smooths: smooth_density, smooth_none()

Examples

library(ggplot2)

set.seed(1234)
x = rpois(1000, 2)

automatic binwidth in basic dotplot on large counts in discrete
distributions is very small
ggplot(data.frame(x), aes(x)) +

geom_dots()

NOTE: It is now recommended to use layout = "bar" instead of
smooth = "discrete" or smooth = "bar"; the latter are retained because
they can sometimes be useful in combination with other layouts for
more specialized (but finicky) applications.
ggplot(data.frame(x), aes(x)) +

geom_dots(layout = "bar")

smooth_discrete() constructs wider bins of dots
ggplot(data.frame(x), aes(x)) +

geom_dots(smooth = "discrete")

smooth_bar() is an alternative approach to rectangular layouts
ggplot(data.frame(x), aes(x)) +

geom_dots(smooth = "bar")

adjust the shape by changing the kernel or the width. epanechnikov
works well with side = "both"
ggplot(data.frame(x), aes(x)) +
geom_dots(smooth = smooth_discrete(kernel = "epanechnikov", width = 0.8), side = "both")

smooth_none 141

smooth_none Apply no smooth to a dotplot

Description

Default smooth for dotplots: no smooth. Simply returns the input values.

Supports automatic partial function application.

Usage

smooth_none(x, ...)

Arguments

x a numeric vector

... ignored

Details

This is the default value for the smooth argument of geom_dotsinterval().

Value

x

If x is missing, returns a partial application of itself. See automatic-partial-functions.

See Also

Other dotplot smooths: smooth_density, smooth_discrete()

142 stat_ccdfinterval

stat_ccdfinterval CCDF bar plot (shortcut stat)

Description

Shortcut version of stat_slabinterval() with geom_slabinterval() for creating CCDF bar
plots.

Roughly equivalent to:

stat_slabinterval(
aes(
thickness = after_stat(thickness(1 - cdf, 0, 1)),
justification = after_stat(0.5),
side = after_stat("topleft")

),
normalize = "none",
expand = TRUE

)

Usage

stat_ccdfinterval(
mapping = NULL,
data = NULL,
geom = "slabinterval",
position = "identity",
...,
normalize = "none",
expand = TRUE,
p_limits = c(NA, NA),
density = "bounded",
adjust = waiver(),
trim = TRUE,
breaks = waiver(),
align = "none",
outline_bars = FALSE,
point_interval = "median_qi",
slab_type = NULL,
limits = NULL,
n = 501,
.width = c(0.66, 0.95),
orientation = NA,
na.rm = FALSE,
show.legend = c(size = FALSE),
inherit.aes = TRUE

)

stat_ccdfinterval 143

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom Use to override the default connection between stat_ccdfinterval() and
geom_slabinterval()

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function. Setting this equal to "dodge" (position_dodge()) or "dodgejust"
(position_dodgejust()) can be useful if you have overlapping geometries.

... Other arguments passed to layer(). These are often aesthetics, used to set an
aesthetic to a fixed value, like colour = "red" or linewidth = 3 (see Aesthet-
ics, below). They may also be parameters to the paired geom/stat. When paired
with the default geom, geom_slabinterval(), these include:

fill_type What type of fill to use when the fill color or alpha varies within a
slab. One of:

• "segments": breaks up the slab geometry into segments for each unique
combination of fill color and alpha value. This approach is supported
by all graphics devices and works well for sharp cutoff values, but can
give ugly results if a large number of unique fill colors are being used
(as in gradients, like in stat_gradientinterval()).

• "gradient": a grid::linearGradient() is used to create a smooth
gradient fill. This works well for large numbers of unique fill colors,
but requires R >= 4.1 and is not yet supported on all graphics devices.
As of this writing, the png() graphics device with type = "cairo", the
svg() device, the pdf() device, and the ragg::agg_png() devices are
known to support this option. On R < 4.1, this option will fall back to
fill_type = "segments" with a message.

• "auto": attempts to use fill_type = "gradient" if support for it can
be auto-detected. On R >= 4.2, support for gradients can be auto-
detected on some graphics devices; if support is not detected, this op-
tion will fall back to fill_type = "segments" (in case of a false nega-
tive, fill_type = "gradient" can be set explicitly). On R < 4.2, sup-
port for gradients cannot be auto-detected, so this will always fall back
to fill_type = "segments", in which case you can set fill_type =
"gradient" explicitly if you are using a graphics device that support
gradients.

144 stat_ccdfinterval

interval_size_domain A length-2 numeric vector giving the minimum and
maximum of the values of the size and linewidth aesthetics that will be
translated into actual sizes for intervals drawn according to interval_size_range
(see the documentation for that argument.)

interval_size_range A length-2 numeric vector. This geom scales the raw
size aesthetic values when drawing interval and point sizes, as they tend to
be too thick when using the default settings of scale_size_continuous(),
which give sizes with a range of c(1, 6). The interval_size_domain
value indicates the input domain of raw size values (typically this should be
equal to the value of the range argument of the scale_size_continuous()
function), and interval_size_range indicates the desired output range of
the size values (the min and max of the actual sizes used to draw inter-
vals). Most of the time it is not recommended to change the value of this
argument, as it may result in strange scaling of legends; this argument is
a holdover from earlier versions that did not have size aesthetics targeting
the point and interval separately. If you want to adjust the size of the in-
terval or points separately, you can also use the linewidth or point_size
aesthetics; see sub-geometry-scales.

fatten_point A multiplicative factor used to adjust the size of the point rela-
tive to the size of the thickest interval line. If you wish to specify point sizes
directly, you can also use the point_size aesthetic and scale_point_size_continuous()
or scale_point_size_discrete(); sizes specified with that aesthetic will
not be adjusted using fatten_point.

arrow grid::arrow() giving the arrow heads to use on the interval, or NULL
for no arrows.

subguide Sub-guide used to annotate the thickness scale. One of:
• A function that takes a scale argument giving a ggplot2::Scale object

and an orientation argument giving the orientation of the geometry
and then returns a grid::grob that will draw the axis annotation, such as
subguide_axis() (to draw a traditional axis) or subguide_none() (to
draw no annotation). See subguide_axis() for a list of possibilities
and examples.

• A string giving the name of such a function when prefixed with "subguide";
e.g. "axis" or "none".

normalize How to normalize heights of functions input to the thickness aesthetic. One
of:

• "all": normalize so that the maximum height across all data is 1.
• "panels": normalize within panels so that the maximum height in each

panel is 1.
• "xy": normalize within the x/y axis opposite the orientation of this geom

so that the maximum height at each value of the opposite axis is 1.
• "groups": normalize within values of the opposite axis and within each

group so that the maximum height in each group is 1.
• "none": values are taken as is with no normalization (this should probably

only be used with functions whose values are in [0,1], such as CDFs).
For a comprehensive discussion and examples of slab scaling and normalization,
see the thickness scale article.

https://mjskay.github.io/ggdist/articles/thickness.html

stat_ccdfinterval 145

expand For sample data, should the slab be expanded to the limits of the scale? Default
FALSE. Can be length two to control expansion to the lower and upper limit
respectively.

p_limits Probability limits (as a vector of size 2) used to determine the lower and upper
limits of theoretical distributions (distributions from samples ignore this param-
eter and determine their limits based on the limits of the sample). E.g., if this
is c(.001, .999), then a slab is drawn for the distribution from the quantile
at p = .001 to the quantile at p = .999. If the lower (respectively upper) limit is
NA, then the lower (upper) limit will be the minimum (maximum) of the distribu-
tion’s support if it is finite, and 0.001 (0.999) if it is not finite. E.g., if p_limits
is c(NA, NA), on a gamma distribution the effective value of p_limits would be
c(0, .999) since the gamma distribution is defined on (0, Inf); whereas on
a normal distribution it would be equivalent to c(.001, .999) since the normal
distribution is defined on (-Inf, Inf).

density Density estimator for sample data. One of:

• A function which takes a numeric vector and returns a list with elements
x (giving grid points for the density estimator) and y (the corresponding
densities). ggdist provides a family of functions following this format, in-
cluding density_unbounded() and density_bounded(). This format is
also compatible with stats::density().

• A string giving the suffix of a function name that starts with "density_";
e.g. "bounded" for [density_bounded()], "unbounded" for [density_unbounded()],
or "histogram" for density_histogram(). Defaults to "bounded", i.e.
density_bounded(), which estimates the bounds from the data and then
uses a bounded density estimator based on the reflection method.

adjust Passed to density: the bandwidth for the density estimator for sample data is
adjusted by multiplying it by this value. See e.g. density_bounded() for more
information. Default (waiver()) defers to the default of the density estimator,
which is usually 1.

trim For sample data, should the density estimate be trimmed to the range of the data?
Passed on to the density estimator; see the density parameter. Default TRUE.

breaks Determines the breakpoints defining bins. Defaults to "Scott". Similar to (but
not exactly the same as) the breaks argument to graphics::hist(). One of:

• A scalar (length-1) numeric giving the number of bins
• A vector numeric giving the breakpoints between histogram bins
• A function taking x and weights and returning either the number of bins or

a vector of breakpoints
• A string giving the suffix of a function that starts with "breaks_". ggdist

provides weighted implementations of the "Sturges", "Scott", and "FD"
break-finding algorithms from graphics::hist(), as well as breaks_fixed()
for manually setting the bin width. See breaks.

For example, breaks = "Sturges" will use the breaks_Sturges() algorithm,
breaks = 9 will create 9 bins, and breaks = breaks_fixed(width = 1) will set
the bin width to 1.

align Determines how to align the breakpoints defining bins. Default ("none") per-
forms no alignment. One of:

146 stat_ccdfinterval

• A scalar (length-1) numeric giving an offset that is subtracted from the
breaks. The offset must be between 0 and the bin width.

• A function taking a sorted vector of breaks (bin edges) and returning an
offset to subtract from the breaks.

• A string giving the suffix of a function that starts with "align_" used to
determine the alignment, such as align_none(), align_boundary(), or
align_center().

For example, align = "none" will provide no alignment, align = align_center(at
= 0) will center a bin on 0, and align = align_boundary(at = 0) will align a
bin edge on 0.

outline_bars For sample data (if density is "histogram") and for discrete analytical dis-
tributions (whose slabs are drawn as histograms), determines if outlines in be-
tween the bars are drawn when the slab_color aesthetic is used. If FALSE (the
default), the outline is drawn only along the tops of the bars; if TRUE, outlines in
between bars are also drawn. See density_histogram().

point_interval A function from the point_interval() family (e.g., median_qi, mean_qi,
mode_hdi, etc), or a string giving the name of a function from that family (e.g.,
"median_qi", "mean_qi", "mode_hdi", etc; if a string, the caller’s environment
is searched for the function, followed by the ggdist environment). This function
determines the point summary (typically mean, median, or mode) and interval
type (quantile interval, qi; highest-density interval, hdi; or highest-density con-
tinuous interval, hdci). Output will be converted to the appropriate x- or y-based
aesthetics depending on the value of orientation. See the point_interval()
family of functions for more information.

slab_type (deprecated) The type of slab function to calculate: probability density (or mass)
function ("pdf"), cumulative distribution function ("cdf"), or complementary
CDF ("ccdf"). Instead of using slab_type to change f and then mapping f
onto an aesthetic, it is now recommended to simply map the corresponding com-
puted variable (e.g. pdf, cdf, or 1 - cdf) directly onto the desired aesthetic.

limits Manually-specified limits for the slab, as a vector of length two. These limits are
combined with those computed based on p_limits as well as the limits defined
by the scales of the plot to determine the limits used to draw the slab functions:
these limits specify the maximal limits; i.e., if specified, the limits will not be
wider than these (but may be narrower). Use NA to leave a limit alone; e.g.
limits = c(0, NA) will ensure that the lower limit does not go below 0, but let
the upper limit be determined by either p_limits or the scale settings.

n Number of points at which to evaluate the function that defines the slab.

.width The .width argument passed to point_interval: a vector of probabilities to
use that determine the widths of the resulting intervals. If multiple probabilities
are provided, multiple intervals per group are generated, each with a different
probability interval (and value of the corresponding .width and level gener-
ated variables).

orientation Whether this geom is drawn horizontally or vertically. One of:

• NA (default): automatically detect the orientation based on how the aesthet-
ics are assigned. Automatic detection works most of the time.

stat_ccdfinterval 147

• "horizontal" (or "y"): draw horizontally, using the y aesthetic to identify
different groups. For each group, uses the x, xmin, xmax, and thickness
aesthetics to draw points, intervals, and slabs.

• "vertical" (or "x"): draw vertically, using the x aesthetic to identify dif-
ferent groups. For each group, uses the y, ymin, ymax, and thickness
aesthetics to draw points, intervals, and slabs.

For compatibility with the base ggplot naming scheme for orientation, "x"
can be used as an alias for "vertical" and "y" as an alias for "horizontal"
(ggdist had an orientation parameter before base ggplot did, hence the dis-
crepancy).

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend Should this layer be included in the legends? Default is c(size = FALSE), unlike
most geoms, to match its common use cases. FALSE hides all legends, TRUE
shows all legends, and NA shows only those that are mapped (the default for
most geoms).

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Details

To visualize sample data, such as a data distribution, samples from a bootstrap distribution, or a
Bayesian posterior, you can supply samples to the x or y aesthetic.

To visualize analytical distributions, you can use the xdist or ydist aesthetic. For historical
reasons, you can also use dist to specify the distribution, though this is not recommended as it
does not work as well with orientation detection. These aesthetics can be used as follows:

• xdist, ydist, and dist can be any distribution object from the distributional package (dist_normal(),
dist_beta(), etc) or can be a posterior::rvar() object. Since these functions are vector-
ized, other columns can be passed directly to them in an aes() specification; e.g. aes(dist =
dist_normal(mu, sigma)) will work if mu and sigma are columns in the input data frame.

• dist can be a character vector giving the distribution name. Then the arg1, ... arg9 aes-
thetics (or args as a list column) specify distribution arguments. Distribution names should
correspond to R functions that have "p", "q", and "d" functions; e.g. "norm" is a valid dis-
tribution name because R defines the pnorm(), qnorm(), and dnorm() functions for Normal
distributions.
See the parse_dist() function for a useful way to generate dist and args values from
human-readable distribution specs (like "normal(0,1)"). Such specs are also produced by
other packages (like the brms::get_prior function in brms); thus, parse_dist() combined
with the stats described here can help you visualize the output of those functions.

Value

A ggplot2::Stat representing a CCDF bar geometry which can be added to a ggplot() object.

https://pkg.mitchelloharawild.com/distributional/

148 stat_ccdfinterval

Computed Variables

The following variables are computed by this stat and made available for use in aesthetic specifica-
tions (aes()) using the after_stat() function or the after_stat argument of stage():

• x or y: For slabs, the input values to the slab function. For intervals, the point summary from
the interval function. Whether it is x or y depends on orientation

• xmin or ymin: For intervals, the lower end of the interval from the interval function.

• xmax or ymax: For intervals, the upper end of the interval from the interval function.

• .width: For intervals, the interval width as a numeric value in [0, 1]. For slabs, the width
of the smallest interval containing that value of the slab.

• level: For intervals, the interval width as an ordered factor. For slabs, the level of the smallest
interval containing that value of the slab.

• pdf: For slabs, the probability density function (PDF). If options("ggdist.experimental.slab_data_in_intervals")
is TRUE: For intervals, the PDF at the point summary; intervals also have pdf_min and pdf_max
for the PDF at the lower and upper ends of the interval.

• cdf: For slabs, the cumulative distribution function. If options("ggdist.experimental.slab_data_in_intervals")
is TRUE: For intervals, the CDF at the point summary; intervals also have cdf_min and cdf_max
for the CDF at the lower and upper ends of the interval.

• n: For slabs, the number of data points summarized into that slab. If the slab was created from
an analytical distribution via the xdist, ydist, or dist aesthetic, n will be Inf.

• f: (deprecated) For slabs, the output values from the slab function (such as the PDF, CDF, or
CCDF), determined by slab_type. Instead of using slab_type to change f and then map-
ping f onto an aesthetic, it is now recommended to simply map the corresponding computed
variable (e.g. pdf, cdf, or 1 - cdf) directly onto the desired aesthetic.

Aesthetics

The slab+interval stats and geoms have a wide variety of aesthetics that control the appearance of
their three sub-geometries: the slab, the point, and the interval.
These stats support the following aesthetics:

• x: x position of the geometry (when orientation = "vertical"); or sample data to be summa-
rized (when orientation = "horizontal" with sample data).

• y: y position of the geometry (when orientation = "horizontal"); or sample data to be sum-
marized (when orientation = "vertical" with sample data).

• weight: When using samples (i.e. the x and y aesthetics, not xdist or ydist), optional
weights to be applied to each draw.

• xdist: When using analytical distributions, distribution to map on the x axis: a distributional
object (e.g. dist_normal()) or a posterior::rvar() object.

• ydist: When using analytical distributions, distribution to map on the y axis: a distributional
object (e.g. dist_normal()) or a posterior::rvar() object.

• dist: When using analytical distributions, a name of a distribution (e.g. "norm"), a distribu-
tional object (e.g. dist_normal()), or a posterior::rvar() object. See Details.

• args: Distribution arguments (args or arg1, ... arg9). See Details.

stat_ccdfinterval 149

In addition, in their default configuration (paired with geom_slabinterval()) the following aes-
thetics are supported by the underlying geom:

Slab-specific aesthetics

• thickness: The thickness of the slab at each x value (if orientation = "horizontal") or y
value (if orientation = "vertical") of the slab.

• side: Which side to place the slab on. "topright", "top", and "right" are synonyms
which cause the slab to be drawn on the top or the right depending on if orientation
is "horizontal" or "vertical". "bottomleft", "bottom", and "left" are synonyms
which cause the slab to be drawn on the bottom or the left depending on if orientation
is "horizontal" or "vertical". "topleft" causes the slab to be drawn on the top or the
left, and "bottomright" causes the slab to be drawn on the bottom or the right. "both" draws
the slab mirrored on both sides (as in a violin plot).

• scale: What proportion of the region allocated to this geom to use to draw the slab. If scale
= 1, slabs that use the maximum range will just touch each other. Default is 0.9 to leave some
space between adjacent slabs. For a comprehensive discussion and examples of slab scaling
and normalization, see the thickness scale article.

• justification: Justification of the interval relative to the slab, where 0 indicates bottom/left
justification and 1 indicates top/right justification (depending on orientation). If justification
is NULL (the default), then it is set automatically based on the value of side: when side is
"top"/"right" justification is set to 0, when side is "bottom"/"left" justification
is set to 1, and when side is "both" justification is set to 0.5.

• datatype: When using composite geoms directly without a stat (e.g. geom_slabinterval()),
datatype is used to indicate which part of the geom a row in the data targets: rows with
datatype = "slab" target the slab portion of the geometry and rows with datatype = "interval"
target the interval portion of the geometry. This is set automatically when using ggdist stats.

Interval-specific aesthetics

• xmin: Left end of the interval sub-geometry (if orientation = "horizontal").

• xmax: Right end of the interval sub-geometry (if orientation = "horizontal").

• ymin: Lower end of the interval sub-geometry (if orientation = "vertical").

• ymax: Upper end of the interval sub-geometry (if orientation = "vertical").

Point-specific aesthetics

• shape: Shape type used to draw the point sub-geometry.

Color aesthetics

• colour: (or color) The color of the interval and point sub-geometries. Use the slab_color,
interval_color, or point_color aesthetics (below) to set sub-geometry colors separately.

• fill: The fill color of the slab and point sub-geometries. Use the slab_fill or point_fill
aesthetics (below) to set sub-geometry colors separately.

• alpha: The opacity of the slab, interval, and point sub-geometries. Use the slab_alpha,
interval_alpha, or point_alpha aesthetics (below) to set sub-geometry colors separately.

https://mjskay.github.io/ggdist/articles/thickness.html

150 stat_ccdfinterval

• colour_ramp: (or color_ramp) A secondary scale that modifies the color scale to "ramp" to
another color. See scale_colour_ramp() for examples.

• fill_ramp: A secondary scale that modifies the fill scale to "ramp" to another color. See
scale_fill_ramp() for examples.

Line aesthetics

• linewidth: Width of the line used to draw the interval (except with geom_slab(): then
it is the width of the slab). With composite geometries including an interval and slab, use
slab_linewidth to set the line width of the slab (see below). For interval, raw linewidth
values are transformed according to the interval_size_domain and interval_size_range
parameters of the geom (see above).

• size: Determines the size of the point. If linewidth is not provided, size will also deter-
mines the width of the line used to draw the interval (this allows line width and point size to be
modified together by setting only size and not linewidth). Raw size values are transformed
according to the interval_size_domain, interval_size_range, and fatten_point pa-
rameters of the geom (see above). Use the point_size aesthetic (below) to set sub-geometry
size directly without applying the effects of interval_size_domain, interval_size_range,
and fatten_point.

• stroke: Width of the outline around the point sub-geometry.

• linetype: Type of line (e.g., "solid", "dashed", etc) used to draw the interval and the
outline of the slab (if it is visible). Use the slab_linetype or interval_linetype aesthetics
(below) to set sub-geometry line types separately.

Slab-specific color and line override aesthetics

• slab_fill: Override for fill: the fill color of the slab.

• slab_colour: (or slab_color) Override for colour/color: the outline color of the slab.

• slab_alpha: Override for alpha: the opacity of the slab.

• slab_linewidth: Override for linwidth: the width of the outline of the slab.

• slab_linetype: Override for linetype: the line type of the outline of the slab.

Interval-specific color and line override aesthetics

• interval_colour: (or interval_color) Override for colour/color: the color of the inter-
val.

• interval_alpha: Override for alpha: the opacity of the interval.

• interval_linetype: Override for linetype: the line type of the interval.

Point-specific color and line override aesthetics

• point_fill: Override for fill: the fill color of the point.

• point_colour: (or point_color) Override for colour/color: the outline color of the point.

• point_alpha: Override for alpha: the opacity of the point.

• point_size: Override for size: the size of the point.

stat_ccdfinterval 151

Deprecated aesthetics

• slab_size: Use slab_linewidth.

• interval_size: Use interval_linewidth.

Other aesthetics (these work as in standard geoms)

• width

• height

• group

See examples of some of these aesthetics in action in vignette("slabinterval"). Learn more
about the sub-geom override aesthetics (like interval_color) in the scales documentation. Learn
more about basic ggplot aesthetics in vignette("ggplot2-specs").

See Also

See geom_slabinterval() for the geom underlying this stat. See stat_slabinterval() for the
stat this shortcut is based on.

Other slabinterval stats: stat_cdfinterval(), stat_eye(), stat_gradientinterval(), stat_halfeye(),
stat_histinterval(), stat_interval(), stat_pointinterval(), stat_slab(), stat_spike()

Examples

library(dplyr)
library(ggplot2)
library(distributional)

theme_set(theme_ggdist())

ON SAMPLE DATA
set.seed(1234)
df = data.frame(

group = c("a", "b", "c"),
value = rnorm(1500, mean = c(5, 7, 9), sd = c(1, 1.5, 1))

)
df %>%

ggplot(aes(x = value, y = group)) +
stat_ccdfinterval() +
expand_limits(x = 0)

ON ANALYTICAL DISTRIBUTIONS
dist_df = data.frame(

group = c("a", "b", "c"),
mean = c(5, 7, 8),
sd = c(1, 1.5, 1)

)
Vectorized distribution types, like distributional::dist_normal()
and posterior::rvar(), can be used with the `xdist` / `ydist` aesthetics
dist_df %>%

ggplot(aes(y = group, xdist = dist_normal(mean, sd))) +

152 stat_cdfinterval

stat_ccdfinterval() +
expand_limits(x = 0)

stat_cdfinterval CDF bar plot (shortcut stat)

Description

Shortcut version of stat_slabinterval() with geom_slabinterval() for creating CDF bar plots.

Roughly equivalent to:

stat_slabinterval(
aes(
thickness = after_stat(thickness(cdf, 0, 1)),
justification = after_stat(0.5),
side = after_stat("topleft")

),
normalize = "none",
expand = TRUE

)

Usage

stat_cdfinterval(
mapping = NULL,
data = NULL,
geom = "slabinterval",
position = "identity",
...,
normalize = "none",
expand = TRUE,
p_limits = c(NA, NA),
density = "bounded",
adjust = waiver(),
trim = TRUE,
breaks = waiver(),
align = "none",
outline_bars = FALSE,
point_interval = "median_qi",
slab_type = NULL,
limits = NULL,
n = 501,
.width = c(0.66, 0.95),
orientation = NA,
na.rm = FALSE,
show.legend = c(size = FALSE),
inherit.aes = TRUE

)

stat_cdfinterval 153

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom Use to override the default connection between stat_cdfinterval() and geom_slabinterval()

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function. Setting this equal to "dodge" (position_dodge()) or "dodgejust"
(position_dodgejust()) can be useful if you have overlapping geometries.

... Other arguments passed to layer(). These are often aesthetics, used to set an
aesthetic to a fixed value, like colour = "red" or linewidth = 3 (see Aesthet-
ics, below). They may also be parameters to the paired geom/stat. When paired
with the default geom, geom_slabinterval(), these include:

fill_type What type of fill to use when the fill color or alpha varies within a
slab. One of:

• "segments": breaks up the slab geometry into segments for each unique
combination of fill color and alpha value. This approach is supported
by all graphics devices and works well for sharp cutoff values, but can
give ugly results if a large number of unique fill colors are being used
(as in gradients, like in stat_gradientinterval()).

• "gradient": a grid::linearGradient() is used to create a smooth
gradient fill. This works well for large numbers of unique fill colors,
but requires R >= 4.1 and is not yet supported on all graphics devices.
As of this writing, the png() graphics device with type = "cairo", the
svg() device, the pdf() device, and the ragg::agg_png() devices are
known to support this option. On R < 4.1, this option will fall back to
fill_type = "segments" with a message.

• "auto": attempts to use fill_type = "gradient" if support for it can
be auto-detected. On R >= 4.2, support for gradients can be auto-
detected on some graphics devices; if support is not detected, this op-
tion will fall back to fill_type = "segments" (in case of a false nega-
tive, fill_type = "gradient" can be set explicitly). On R < 4.2, sup-
port for gradients cannot be auto-detected, so this will always fall back
to fill_type = "segments", in which case you can set fill_type =
"gradient" explicitly if you are using a graphics device that support
gradients.

interval_size_domain A length-2 numeric vector giving the minimum and
maximum of the values of the size and linewidth aesthetics that will be

154 stat_cdfinterval

translated into actual sizes for intervals drawn according to interval_size_range
(see the documentation for that argument.)

interval_size_range A length-2 numeric vector. This geom scales the raw
size aesthetic values when drawing interval and point sizes, as they tend to
be too thick when using the default settings of scale_size_continuous(),
which give sizes with a range of c(1, 6). The interval_size_domain
value indicates the input domain of raw size values (typically this should be
equal to the value of the range argument of the scale_size_continuous()
function), and interval_size_range indicates the desired output range of
the size values (the min and max of the actual sizes used to draw inter-
vals). Most of the time it is not recommended to change the value of this
argument, as it may result in strange scaling of legends; this argument is
a holdover from earlier versions that did not have size aesthetics targeting
the point and interval separately. If you want to adjust the size of the in-
terval or points separately, you can also use the linewidth or point_size
aesthetics; see sub-geometry-scales.

fatten_point A multiplicative factor used to adjust the size of the point rela-
tive to the size of the thickest interval line. If you wish to specify point sizes
directly, you can also use the point_size aesthetic and scale_point_size_continuous()
or scale_point_size_discrete(); sizes specified with that aesthetic will
not be adjusted using fatten_point.

arrow grid::arrow() giving the arrow heads to use on the interval, or NULL
for no arrows.

subguide Sub-guide used to annotate the thickness scale. One of:
• A function that takes a scale argument giving a ggplot2::Scale object

and an orientation argument giving the orientation of the geometry
and then returns a grid::grob that will draw the axis annotation, such as
subguide_axis() (to draw a traditional axis) or subguide_none() (to
draw no annotation). See subguide_axis() for a list of possibilities
and examples.

• A string giving the name of such a function when prefixed with "subguide";
e.g. "axis" or "none".

normalize How to normalize heights of functions input to the thickness aesthetic. One
of:

• "all": normalize so that the maximum height across all data is 1.
• "panels": normalize within panels so that the maximum height in each

panel is 1.
• "xy": normalize within the x/y axis opposite the orientation of this geom

so that the maximum height at each value of the opposite axis is 1.
• "groups": normalize within values of the opposite axis and within each

group so that the maximum height in each group is 1.
• "none": values are taken as is with no normalization (this should probably

only be used with functions whose values are in [0,1], such as CDFs).

For a comprehensive discussion and examples of slab scaling and normalization,
see the thickness scale article.

https://mjskay.github.io/ggdist/articles/thickness.html

stat_cdfinterval 155

expand For sample data, should the slab be expanded to the limits of the scale? Default
FALSE. Can be length two to control expansion to the lower and upper limit
respectively.

p_limits Probability limits (as a vector of size 2) used to determine the lower and upper
limits of theoretical distributions (distributions from samples ignore this param-
eter and determine their limits based on the limits of the sample). E.g., if this
is c(.001, .999), then a slab is drawn for the distribution from the quantile
at p = .001 to the quantile at p = .999. If the lower (respectively upper) limit is
NA, then the lower (upper) limit will be the minimum (maximum) of the distribu-
tion’s support if it is finite, and 0.001 (0.999) if it is not finite. E.g., if p_limits
is c(NA, NA), on a gamma distribution the effective value of p_limits would be
c(0, .999) since the gamma distribution is defined on (0, Inf); whereas on
a normal distribution it would be equivalent to c(.001, .999) since the normal
distribution is defined on (-Inf, Inf).

density Density estimator for sample data. One of:

• A function which takes a numeric vector and returns a list with elements
x (giving grid points for the density estimator) and y (the corresponding
densities). ggdist provides a family of functions following this format, in-
cluding density_unbounded() and density_bounded(). This format is
also compatible with stats::density().

• A string giving the suffix of a function name that starts with "density_";
e.g. "bounded" for [density_bounded()], "unbounded" for [density_unbounded()],
or "histogram" for density_histogram(). Defaults to "bounded", i.e.
density_bounded(), which estimates the bounds from the data and then
uses a bounded density estimator based on the reflection method.

adjust Passed to density: the bandwidth for the density estimator for sample data is
adjusted by multiplying it by this value. See e.g. density_bounded() for more
information. Default (waiver()) defers to the default of the density estimator,
which is usually 1.

trim For sample data, should the density estimate be trimmed to the range of the data?
Passed on to the density estimator; see the density parameter. Default TRUE.

breaks Determines the breakpoints defining bins. Defaults to "Scott". Similar to (but
not exactly the same as) the breaks argument to graphics::hist(). One of:

• A scalar (length-1) numeric giving the number of bins
• A vector numeric giving the breakpoints between histogram bins
• A function taking x and weights and returning either the number of bins or

a vector of breakpoints
• A string giving the suffix of a function that starts with "breaks_". ggdist

provides weighted implementations of the "Sturges", "Scott", and "FD"
break-finding algorithms from graphics::hist(), as well as breaks_fixed()
for manually setting the bin width. See breaks.

For example, breaks = "Sturges" will use the breaks_Sturges() algorithm,
breaks = 9 will create 9 bins, and breaks = breaks_fixed(width = 1) will set
the bin width to 1.

align Determines how to align the breakpoints defining bins. Default ("none") per-
forms no alignment. One of:

156 stat_cdfinterval

• A scalar (length-1) numeric giving an offset that is subtracted from the
breaks. The offset must be between 0 and the bin width.

• A function taking a sorted vector of breaks (bin edges) and returning an
offset to subtract from the breaks.

• A string giving the suffix of a function that starts with "align_" used to
determine the alignment, such as align_none(), align_boundary(), or
align_center().

For example, align = "none" will provide no alignment, align = align_center(at
= 0) will center a bin on 0, and align = align_boundary(at = 0) will align a
bin edge on 0.

outline_bars For sample data (if density is "histogram") and for discrete analytical dis-
tributions (whose slabs are drawn as histograms), determines if outlines in be-
tween the bars are drawn when the slab_color aesthetic is used. If FALSE (the
default), the outline is drawn only along the tops of the bars; if TRUE, outlines in
between bars are also drawn. See density_histogram().

point_interval A function from the point_interval() family (e.g., median_qi, mean_qi,
mode_hdi, etc), or a string giving the name of a function from that family (e.g.,
"median_qi", "mean_qi", "mode_hdi", etc; if a string, the caller’s environment
is searched for the function, followed by the ggdist environment). This function
determines the point summary (typically mean, median, or mode) and interval
type (quantile interval, qi; highest-density interval, hdi; or highest-density con-
tinuous interval, hdci). Output will be converted to the appropriate x- or y-based
aesthetics depending on the value of orientation. See the point_interval()
family of functions for more information.

slab_type (deprecated) The type of slab function to calculate: probability density (or mass)
function ("pdf"), cumulative distribution function ("cdf"), or complementary
CDF ("ccdf"). Instead of using slab_type to change f and then mapping f
onto an aesthetic, it is now recommended to simply map the corresponding com-
puted variable (e.g. pdf, cdf, or 1 - cdf) directly onto the desired aesthetic.

limits Manually-specified limits for the slab, as a vector of length two. These limits are
combined with those computed based on p_limits as well as the limits defined
by the scales of the plot to determine the limits used to draw the slab functions:
these limits specify the maximal limits; i.e., if specified, the limits will not be
wider than these (but may be narrower). Use NA to leave a limit alone; e.g.
limits = c(0, NA) will ensure that the lower limit does not go below 0, but let
the upper limit be determined by either p_limits or the scale settings.

n Number of points at which to evaluate the function that defines the slab.

.width The .width argument passed to point_interval: a vector of probabilities to
use that determine the widths of the resulting intervals. If multiple probabilities
are provided, multiple intervals per group are generated, each with a different
probability interval (and value of the corresponding .width and level gener-
ated variables).

orientation Whether this geom is drawn horizontally or vertically. One of:

• NA (default): automatically detect the orientation based on how the aesthet-
ics are assigned. Automatic detection works most of the time.

stat_cdfinterval 157

• "horizontal" (or "y"): draw horizontally, using the y aesthetic to identify
different groups. For each group, uses the x, xmin, xmax, and thickness
aesthetics to draw points, intervals, and slabs.

• "vertical" (or "x"): draw vertically, using the x aesthetic to identify dif-
ferent groups. For each group, uses the y, ymin, ymax, and thickness
aesthetics to draw points, intervals, and slabs.

For compatibility with the base ggplot naming scheme for orientation, "x"
can be used as an alias for "vertical" and "y" as an alias for "horizontal"
(ggdist had an orientation parameter before base ggplot did, hence the dis-
crepancy).

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend Should this layer be included in the legends? Default is c(size = FALSE), unlike
most geoms, to match its common use cases. FALSE hides all legends, TRUE
shows all legends, and NA shows only those that are mapped (the default for
most geoms).

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Details

To visualize sample data, such as a data distribution, samples from a bootstrap distribution, or a
Bayesian posterior, you can supply samples to the x or y aesthetic.

To visualize analytical distributions, you can use the xdist or ydist aesthetic. For historical
reasons, you can also use dist to specify the distribution, though this is not recommended as it
does not work as well with orientation detection. These aesthetics can be used as follows:

• xdist, ydist, and dist can be any distribution object from the distributional package (dist_normal(),
dist_beta(), etc) or can be a posterior::rvar() object. Since these functions are vector-
ized, other columns can be passed directly to them in an aes() specification; e.g. aes(dist =
dist_normal(mu, sigma)) will work if mu and sigma are columns in the input data frame.

• dist can be a character vector giving the distribution name. Then the arg1, ... arg9 aes-
thetics (or args as a list column) specify distribution arguments. Distribution names should
correspond to R functions that have "p", "q", and "d" functions; e.g. "norm" is a valid dis-
tribution name because R defines the pnorm(), qnorm(), and dnorm() functions for Normal
distributions.
See the parse_dist() function for a useful way to generate dist and args values from
human-readable distribution specs (like "normal(0,1)"). Such specs are also produced by
other packages (like the brms::get_prior function in brms); thus, parse_dist() combined
with the stats described here can help you visualize the output of those functions.

Value

A ggplot2::Stat representing a CDF bar geometry which can be added to a ggplot() object.

https://pkg.mitchelloharawild.com/distributional/

158 stat_cdfinterval

Computed Variables

The following variables are computed by this stat and made available for use in aesthetic specifica-
tions (aes()) using the after_stat() function or the after_stat argument of stage():

• x or y: For slabs, the input values to the slab function. For intervals, the point summary from
the interval function. Whether it is x or y depends on orientation

• xmin or ymin: For intervals, the lower end of the interval from the interval function.

• xmax or ymax: For intervals, the upper end of the interval from the interval function.

• .width: For intervals, the interval width as a numeric value in [0, 1]. For slabs, the width
of the smallest interval containing that value of the slab.

• level: For intervals, the interval width as an ordered factor. For slabs, the level of the smallest
interval containing that value of the slab.

• pdf: For slabs, the probability density function (PDF). If options("ggdist.experimental.slab_data_in_intervals")
is TRUE: For intervals, the PDF at the point summary; intervals also have pdf_min and pdf_max
for the PDF at the lower and upper ends of the interval.

• cdf: For slabs, the cumulative distribution function. If options("ggdist.experimental.slab_data_in_intervals")
is TRUE: For intervals, the CDF at the point summary; intervals also have cdf_min and cdf_max
for the CDF at the lower and upper ends of the interval.

• n: For slabs, the number of data points summarized into that slab. If the slab was created from
an analytical distribution via the xdist, ydist, or dist aesthetic, n will be Inf.

• f: (deprecated) For slabs, the output values from the slab function (such as the PDF, CDF, or
CCDF), determined by slab_type. Instead of using slab_type to change f and then map-
ping f onto an aesthetic, it is now recommended to simply map the corresponding computed
variable (e.g. pdf, cdf, or 1 - cdf) directly onto the desired aesthetic.

Aesthetics

The slab+interval stats and geoms have a wide variety of aesthetics that control the appearance of
their three sub-geometries: the slab, the point, and the interval.
These stats support the following aesthetics:

• x: x position of the geometry (when orientation = "vertical"); or sample data to be summa-
rized (when orientation = "horizontal" with sample data).

• y: y position of the geometry (when orientation = "horizontal"); or sample data to be sum-
marized (when orientation = "vertical" with sample data).

• weight: When using samples (i.e. the x and y aesthetics, not xdist or ydist), optional
weights to be applied to each draw.

• xdist: When using analytical distributions, distribution to map on the x axis: a distributional
object (e.g. dist_normal()) or a posterior::rvar() object.

• ydist: When using analytical distributions, distribution to map on the y axis: a distributional
object (e.g. dist_normal()) or a posterior::rvar() object.

• dist: When using analytical distributions, a name of a distribution (e.g. "norm"), a distribu-
tional object (e.g. dist_normal()), or a posterior::rvar() object. See Details.

• args: Distribution arguments (args or arg1, ... arg9). See Details.

stat_cdfinterval 159

In addition, in their default configuration (paired with geom_slabinterval()) the following aes-
thetics are supported by the underlying geom:

Slab-specific aesthetics

• thickness: The thickness of the slab at each x value (if orientation = "horizontal") or y
value (if orientation = "vertical") of the slab.

• side: Which side to place the slab on. "topright", "top", and "right" are synonyms
which cause the slab to be drawn on the top or the right depending on if orientation
is "horizontal" or "vertical". "bottomleft", "bottom", and "left" are synonyms
which cause the slab to be drawn on the bottom or the left depending on if orientation
is "horizontal" or "vertical". "topleft" causes the slab to be drawn on the top or the
left, and "bottomright" causes the slab to be drawn on the bottom or the right. "both" draws
the slab mirrored on both sides (as in a violin plot).

• scale: What proportion of the region allocated to this geom to use to draw the slab. If scale
= 1, slabs that use the maximum range will just touch each other. Default is 0.9 to leave some
space between adjacent slabs. For a comprehensive discussion and examples of slab scaling
and normalization, see the thickness scale article.

• justification: Justification of the interval relative to the slab, where 0 indicates bottom/left
justification and 1 indicates top/right justification (depending on orientation). If justification
is NULL (the default), then it is set automatically based on the value of side: when side is
"top"/"right" justification is set to 0, when side is "bottom"/"left" justification
is set to 1, and when side is "both" justification is set to 0.5.

• datatype: When using composite geoms directly without a stat (e.g. geom_slabinterval()),
datatype is used to indicate which part of the geom a row in the data targets: rows with
datatype = "slab" target the slab portion of the geometry and rows with datatype = "interval"
target the interval portion of the geometry. This is set automatically when using ggdist stats.

Interval-specific aesthetics

• xmin: Left end of the interval sub-geometry (if orientation = "horizontal").

• xmax: Right end of the interval sub-geometry (if orientation = "horizontal").

• ymin: Lower end of the interval sub-geometry (if orientation = "vertical").

• ymax: Upper end of the interval sub-geometry (if orientation = "vertical").

Point-specific aesthetics

• shape: Shape type used to draw the point sub-geometry.

Color aesthetics

• colour: (or color) The color of the interval and point sub-geometries. Use the slab_color,
interval_color, or point_color aesthetics (below) to set sub-geometry colors separately.

• fill: The fill color of the slab and point sub-geometries. Use the slab_fill or point_fill
aesthetics (below) to set sub-geometry colors separately.

• alpha: The opacity of the slab, interval, and point sub-geometries. Use the slab_alpha,
interval_alpha, or point_alpha aesthetics (below) to set sub-geometry colors separately.

https://mjskay.github.io/ggdist/articles/thickness.html

160 stat_cdfinterval

• colour_ramp: (or color_ramp) A secondary scale that modifies the color scale to "ramp" to
another color. See scale_colour_ramp() for examples.

• fill_ramp: A secondary scale that modifies the fill scale to "ramp" to another color. See
scale_fill_ramp() for examples.

Line aesthetics

• linewidth: Width of the line used to draw the interval (except with geom_slab(): then
it is the width of the slab). With composite geometries including an interval and slab, use
slab_linewidth to set the line width of the slab (see below). For interval, raw linewidth
values are transformed according to the interval_size_domain and interval_size_range
parameters of the geom (see above).

• size: Determines the size of the point. If linewidth is not provided, size will also deter-
mines the width of the line used to draw the interval (this allows line width and point size to be
modified together by setting only size and not linewidth). Raw size values are transformed
according to the interval_size_domain, interval_size_range, and fatten_point pa-
rameters of the geom (see above). Use the point_size aesthetic (below) to set sub-geometry
size directly without applying the effects of interval_size_domain, interval_size_range,
and fatten_point.

• stroke: Width of the outline around the point sub-geometry.

• linetype: Type of line (e.g., "solid", "dashed", etc) used to draw the interval and the
outline of the slab (if it is visible). Use the slab_linetype or interval_linetype aesthetics
(below) to set sub-geometry line types separately.

Slab-specific color and line override aesthetics

• slab_fill: Override for fill: the fill color of the slab.

• slab_colour: (or slab_color) Override for colour/color: the outline color of the slab.

• slab_alpha: Override for alpha: the opacity of the slab.

• slab_linewidth: Override for linwidth: the width of the outline of the slab.

• slab_linetype: Override for linetype: the line type of the outline of the slab.

Interval-specific color and line override aesthetics

• interval_colour: (or interval_color) Override for colour/color: the color of the inter-
val.

• interval_alpha: Override for alpha: the opacity of the interval.

• interval_linetype: Override for linetype: the line type of the interval.

Point-specific color and line override aesthetics

• point_fill: Override for fill: the fill color of the point.

• point_colour: (or point_color) Override for colour/color: the outline color of the point.

• point_alpha: Override for alpha: the opacity of the point.

• point_size: Override for size: the size of the point.

stat_cdfinterval 161

Deprecated aesthetics

• slab_size: Use slab_linewidth.
• interval_size: Use interval_linewidth.

Other aesthetics (these work as in standard geoms)

• width

• height

• group

See examples of some of these aesthetics in action in vignette("slabinterval"). Learn more
about the sub-geom override aesthetics (like interval_color) in the scales documentation. Learn
more about basic ggplot aesthetics in vignette("ggplot2-specs").

See Also

See geom_slabinterval() for the geom underlying this stat. See stat_slabinterval() for the
stat this shortcut is based on.

Other slabinterval stats: stat_ccdfinterval(), stat_eye(), stat_gradientinterval(), stat_halfeye(),
stat_histinterval(), stat_interval(), stat_pointinterval(), stat_slab(), stat_spike()

Examples

library(dplyr)
library(ggplot2)
library(distributional)

theme_set(theme_ggdist())

ON SAMPLE DATA
set.seed(1234)
df = data.frame(

group = c("a", "b", "c"),
value = rnorm(1500, mean = c(5, 7, 9), sd = c(1, 1.5, 1))

)
df %>%

ggplot(aes(x = value, y = group)) +
stat_cdfinterval()

ON ANALYTICAL DISTRIBUTIONS
dist_df = data.frame(

group = c("a", "b", "c"),
mean = c(5, 7, 8),
sd = c(1, 1.5, 1)

)
Vectorized distribution types, like distributional::dist_normal()
and posterior::rvar(), can be used with the `xdist` / `ydist` aesthetics
dist_df %>%

ggplot(aes(y = group, xdist = dist_normal(mean, sd))) +
stat_cdfinterval()

162 stat_dots

stat_dots Dot plot (shortcut stat)

Description

A combination of stat_slabinterval() and geom_dotsinterval() with sensible defaults for
making dot plots. While geom_dotsinterval() is intended for use on data frames that have al-
ready been summarized using a point_interval() function, stat_dots() is intended for use
directly on data frames of draws or of analytical distributions, and will perform the summarization
using a point_interval() function. Geoms based on geom_dotsinterval() create dotplots that
automatically determine a bin width that ensures the plot fits within the available space. They can
also ensure dots do not overlap.

Roughly equivalent to:

stat_dotsinterval(
aes(size = NULL),
geom = "dots",
show_point = FALSE,
show_interval = FALSE,
show.legend = NA

)

Usage

stat_dots(
mapping = NULL,
data = NULL,
geom = "dots",
position = "identity",
...,
quantiles = NA,
orientation = NA,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().

stat_dots 163

A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom Use to override the default connection between stat_dots() and geom_dots()

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function. Setting this equal to "dodge" (position_dodge()) or "dodgejust"
(position_dodgejust()) can be useful if you have overlapping geometries.

... Other arguments passed to layer(). These are often aesthetics, used to set an
aesthetic to a fixed value, like colour = "red" or linewidth = 3 (see Aesthet-
ics, below). They may also be parameters to the paired geom/stat. When paired
with the default geom, geom_dots(), these include:
binwidth The bin width to use for laying out the dots. One of:

• NA (the default): Dynamically select the bin width based on the size of
the plot when drawn. This will pick a binwidth such that the tallest
stack of dots is at most scale in height (ideally exactly scale in height,
though this is not guaranteed).

• A length-1 (scalar) numeric or unit object giving the exact bin width.
• A length-2 (vector) numeric or unit object giving the minimum and

maximum desired bin width. The bin width will be dynamically se-
lected within these bounds.

If the value is numeric, it is assumed to be in units of data. The bin width
(or its bounds) can also be specified using unit(), which may be useful if it
is desired that the dots be a certain point size or a certain percentage of the
width/height of the viewport. For example, unit(0.1, "npc") would make
dots that are exactly 10% of the viewport size along whichever dimension
the dotplot is drawn; unit(c(0, 0.1), "npc") would make dots that are at
most 10% of the viewport size (while still ensuring the tallest stack is less
than or equal to scale).

dotsize The width of the dots relative to the binwidth. The default, 1.07,
makes dots be just a bit wider than the bin width, which is a manually-
tuned parameter that tends to work well with the default circular shape,
preventing gaps between bins from appearing to be too large visually (as
might arise from dots being precisely the binwidth). If it is desired to have
dots be precisely the binwidth, set dotsize = 1.

stackratio The distance between the center of the dots in the same stack rel-
ative to the dot height. The default, 1, makes dots in the same stack just
touch each other.

layout The layout method used for the dots:
• "bin" (default): places dots on the off-axis at the midpoint of their

bins as in the classic Wilkinson dotplot. This maintains the alignment
of rows and columns in the dotplot. This layout is slightly different
from the classic Wilkinson algorithm in that: (1) it nudges bins slightly
to avoid overlapping bins and (2) if the input data are symmetrical it
will return a symmetrical layout.

164 stat_dots

• "weave": uses the same basic binning approach of "bin", but places
dots in the off-axis at their actual positions (unless overlaps = "nudge",
in which case overlaps may be nudged out of the way). This maintains
the alignment of rows but does not align dots within columns.

• "hex": uses the same basic binning approach of "bin", but alternates
placing dots + binwidth/4 or - binwidth/4 in the off-axis from the
bin center. This allows hexagonal packing by setting a stackratio
less than 1 (something like 0.9 tends to work).

• "swarm": uses the "compactswarm" layout from beeswarm::beeswarm().
Does not maintain alignment of rows or columns, but can be more com-
pact and neat looking, especially for sample data (as opposed to quan-
tile dotplots of theoretical distributions, which may look better with
"bin", "weave", or "hex").

• "bar": for discrete distributions, lays out duplicate values in rectangu-
lar bars.

overlaps How to handle overlapping dots or bins in the "bin", "weave", and
"hex" layouts (dots never overlap in the "swarm" or "bar" layouts). For
the purposes of this argument, dots are only considered to be overlapping if
they would be overlapping when dotsize = 1 and stackratio = 1; i.e. if
you set those arguments to other values, overlaps may still occur. One of:

• "keep": leave overlapping dots as they are. Dots may overlap (usually
only slightly) in the "bin", "weave", and "hex" layouts.

• "nudge": nudge overlapping dots out of the way. Overlaps are avoided
using a constrained optimization which minimizes the squared distance
of dots to their desired positions, subject to the constraint that adjacent
dots do not overlap.

smooth Smoother to apply to dot positions. One of:
• A function that takes a numeric vector of dot positions and returns a

smoothed version of that vector, such as smooth_bounded(), smooth_unbounded(),
smooth_discrete(), or smooth_bar()‘.

• A string indicating what smoother to use, as the suffix to a function
name starting with smooth_; e.g. "none" (the default) applies smooth_none(),
which simply returns the given vector without applying smoothing.

Smoothing is most effective when the smoother is matched to the support
of the distribution; e.g. using smooth_bounded(bounds = ...).

overflow How to handle overflow of dots beyond the extent of the geom when
a minimum binwidth (or an exact binwidth) is supplied. One of:

• "keep": Keep the overflow, drawing dots outside the geom bounds.
• "warn": Keep the overflow, but produce a warning suggesting solu-

tions, such as setting binwidth = NA or overflow = "compress".
• "compress": Compress the layout. Reduces the binwidth to the size

necessary to keep the dots within bounds, then adjusts stackratio and
dotsize so that the apparent dot size is the user-specified minimum
binwidth times the user-specified dotsize.

If you find the default layout has dots that are too small, and you are okay
with dots overlapping, consider setting overflow = "compress" and sup-
plying an exact or minimum dot size using binwidth.

stat_dots 165

verbose If TRUE, print out the bin width of the dotplot. Can be useful if you
want to start from an automatically-selected bin width and then adjust it
manually. Bin width is printed both as data units and as normalized parent
coordinates or "npc"s (see unit()). Note that if you just want to scale
the selected bin width to fit within a desired area, it is probably easier to
use scale than to copy and scale binwidth manually, and if you just want
to provide constraints on the bin width, you can pass a length-2 vector to
binwidth.

subguide Sub-guide used to annotate the thickness scale. One of:
• A function that takes a scale argument giving a ggplot2::Scale object

and an orientation argument giving the orientation of the geometry
and then returns a grid::grob that will draw the axis annotation, such as
subguide_axis() (to draw a traditional axis) or subguide_none() (to
draw no annotation). See subguide_axis() for a list of possibilities
and examples.

• A string giving the name of such a function when prefixed with "subguide";
e.g. "axis" or "none".

quantiles Setting this to a value other than NA will produce a quantile dotplot: that is, a
dotplot of quantiles from the sample or distribution (for analytical distributions,
the default of NA is taken to mean 100 quantiles). The value of quantiles
determines the number of quantiles to plot. See Kay et al. (2016) and Fernandes
et al. (2018) for more information on quantile dotplots.

orientation Whether this geom is drawn horizontally or vertically. One of:
• NA (default): automatically detect the orientation based on how the aesthet-

ics are assigned. Automatic detection works most of the time.
• "horizontal" (or "y"): draw horizontally, using the y aesthetic to identify

different groups. For each group, uses the x, xmin, xmax, and thickness
aesthetics to draw points, intervals, and slabs.

• "vertical" (or "x"): draw vertically, using the x aesthetic to identify dif-
ferent groups. For each group, uses the y, ymin, ymax, and thickness
aesthetics to draw points, intervals, and slabs.

For compatibility with the base ggplot naming scheme for orientation, "x"
can be used as an alias for "vertical" and "y" as an alias for "horizontal"
(ggdist had an orientation parameter before base ggplot did, hence the dis-
crepancy).

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Details

The dots family of stats and geoms are similar to geom_dotplot() but with a number of differences:

166 stat_dots

• Dots geoms act like slabs in geom_slabinterval() and can be given x positions (or y posi-
tions when in a horizontal orientation).

• Given the available space to lay out dots, the dots geoms will automatically determine how
many bins to use to fit the available space.

• Dots geoms use a dynamic layout algorithm that lays out dots from the center out if the input
data are symmetrical, guaranteeing that symmetrical data results in a symmetrical plot. The
layout algorithm also prevents dots from overlapping each other.

• The shape of the dots in these geoms can be changed using the slab_shape aesthetic (when
using the dotsinterval family) or the shape or slab_shape aesthetic (when using the dots
family)

Stats and geoms in this family include:

• geom_dots(): dotplots on raw data. Ensures the dotplot fits within available space by reduc-
ing the size of the dots automatically (may result in very small dots).

• geom_swarm() and geom_weave(): dotplots on raw data with defaults intended to create
"beeswarm" plots. Used side = "both" by default, and sets the default dot size to the same
size as geom_point() (binwidth = unit(1.5, "mm")), allowing dots to overlap instead of
getting very small.

• stat_dots(): dotplots on raw data, distributional objects, and posterior::rvar()s

• geom_dotsinterval(): dotplot + interval plots on raw data with already-calculated intervals
(rarely useful directly).

• stat_dotsinterval(): dotplot + interval plots on raw data, distributional objects, and
posterior::rvar()s (will calculate intervals for you).

• geom_blur_dots(): blurry dotplots that allow the standard deviation of a blur applied to each
dot to be specified using the sd aesthetic.

• stat_mcse_dots(): blurry dotplots of quantiles using the Monte Carlo Standard Error of
each quantile.

stat_dots() and stat_dotsinterval(), when used with the quantiles argument, are partic-
ularly useful for constructing quantile dotplots, which can be an effective way to communicate
uncertainty using a frequency framing that may be easier for laypeople to understand (Kay et al.
2016, Fernandes et al. 2018).

To visualize sample data, such as a data distribution, samples from a bootstrap distribution, or a
Bayesian posterior, you can supply samples to the x or y aesthetic.

To visualize analytical distributions, you can use the xdist or ydist aesthetic. For historical
reasons, you can also use dist to specify the distribution, though this is not recommended as it
does not work as well with orientation detection. These aesthetics can be used as follows:

• xdist, ydist, and dist can be any distribution object from the distributional package (dist_normal(),
dist_beta(), etc) or can be a posterior::rvar() object. Since these functions are vector-
ized, other columns can be passed directly to them in an aes() specification; e.g. aes(dist =
dist_normal(mu, sigma)) will work if mu and sigma are columns in the input data frame.

• dist can be a character vector giving the distribution name. Then the arg1, ... arg9 aes-
thetics (or args as a list column) specify distribution arguments. Distribution names should

https://pkg.mitchelloharawild.com/distributional/

stat_dots 167

correspond to R functions that have "p", "q", and "d" functions; e.g. "norm" is a valid dis-
tribution name because R defines the pnorm(), qnorm(), and dnorm() functions for Normal
distributions.
See the parse_dist() function for a useful way to generate dist and args values from
human-readable distribution specs (like "normal(0,1)"). Such specs are also produced by
other packages (like the brms::get_prior function in brms); thus, parse_dist() combined
with the stats described here can help you visualize the output of those functions.

Value

A ggplot2::Stat representing a dot geometry which can be added to a ggplot() object.

Computed Variables

The following variables are computed by this stat and made available for use in aesthetic specifica-
tions (aes()) using the after_stat() function or the after_stat argument of stage():

• x or y: For slabs, the input values to the slab function. For intervals, the point summary from
the interval function. Whether it is x or y depends on orientation

• xmin or ymin: For intervals, the lower end of the interval from the interval function.

• xmax or ymax: For intervals, the upper end of the interval from the interval function.

• .width: For intervals, the interval width as a numeric value in [0, 1]. For slabs, the width
of the smallest interval containing that value of the slab.

• level: For intervals, the interval width as an ordered factor. For slabs, the level of the smallest
interval containing that value of the slab.

• pdf: For slabs, the probability density function (PDF). If options("ggdist.experimental.slab_data_in_intervals")
is TRUE: For intervals, the PDF at the point summary; intervals also have pdf_min and pdf_max
for the PDF at the lower and upper ends of the interval.

• cdf: For slabs, the cumulative distribution function. If options("ggdist.experimental.slab_data_in_intervals")
is TRUE: For intervals, the CDF at the point summary; intervals also have cdf_min and cdf_max
for the CDF at the lower and upper ends of the interval.

• n: For slabs, the number of data points summarized into that slab. If the slab was created from
an analytical distribution via the xdist, ydist, or dist aesthetic, n will be Inf.

• f: (deprecated) For slabs, the output values from the slab function (such as the PDF, CDF, or
CCDF), determined by slab_type. Instead of using slab_type to change f and then map-
ping f onto an aesthetic, it is now recommended to simply map the corresponding computed
variable (e.g. pdf, cdf, or 1 - cdf) directly onto the desired aesthetic.

Aesthetics

The dots+interval stats and geoms have a wide variety of aesthetics that control the appearance of
their three sub-geometries: the dots (aka the slab), the point, and the interval.

These stats support the following aesthetics:

• x: x position of the geometry (when orientation = "vertical"); or sample data to be summa-
rized (when orientation = "horizontal" with sample data).

168 stat_dots

• y: y position of the geometry (when orientation = "horizontal"); or sample data to be sum-
marized (when orientation = "vertical" with sample data).

• weight: When using samples (i.e. the x and y aesthetics, not xdist or ydist), optional
weights to be applied to each draw.

• xdist: When using analytical distributions, distribution to map on the x axis: a distributional
object (e.g. dist_normal()) or a posterior::rvar() object.

• ydist: When using analytical distributions, distribution to map on the y axis: a distributional
object (e.g. dist_normal()) or a posterior::rvar() object.

• dist: When using analytical distributions, a name of a distribution (e.g. "norm"), a distribu-
tional object (e.g. dist_normal()), or a posterior::rvar() object. See Details.

• args: Distribution arguments (args or arg1, ... arg9). See Details.

In addition, in their default configuration (paired with geom_dots()) the following aesthetics are
supported by the underlying geom:

Dots-specific (aka Slab-specific) aesthetics

• family: The font family used to draw the dots.

• order: The order in which data points are stacked within bins. Can be used to create the effect
of "stacked" dots by ordering dots according to a discrete variable. If omitted (NULL), the value
of the data points themselves are used to determine stacking order. Only applies when layout
is "bin" or "hex", as the other layout methods fully determine both x and y positions.

• side: Which side to place the slab on. "topright", "top", and "right" are synonyms
which cause the slab to be drawn on the top or the right depending on if orientation
is "horizontal" or "vertical". "bottomleft", "bottom", and "left" are synonyms
which cause the slab to be drawn on the bottom or the left depending on if orientation
is "horizontal" or "vertical". "topleft" causes the slab to be drawn on the top or the
left, and "bottomright" causes the slab to be drawn on the bottom or the right. "both" draws
the slab mirrored on both sides (as in a violin plot).

• scale: What proportion of the region allocated to this geom to use to draw the slab. If scale
= 1, slabs that use the maximum range will just touch each other. Default is 0.9 to leave some
space between adjacent slabs. For a comprehensive discussion and examples of slab scaling
and normalization, see the thickness scale article.

• justification: Justification of the interval relative to the slab, where 0 indicates bottom/left
justification and 1 indicates top/right justification (depending on orientation). If justification
is NULL (the default), then it is set automatically based on the value of side: when side is
"top"/"right" justification is set to 0, when side is "bottom"/"left" justification
is set to 1, and when side is "both" justification is set to 0.5.

• datatype: When using composite geoms directly without a stat (e.g. geom_slabinterval()),
datatype is used to indicate which part of the geom a row in the data targets: rows with
datatype = "slab" target the slab portion of the geometry and rows with datatype = "interval"
target the interval portion of the geometry. This is set automatically when using ggdist stats.

Interval-specific aesthetics

• xmin: Left end of the interval sub-geometry (if orientation = "horizontal").

• xmax: Right end of the interval sub-geometry (if orientation = "horizontal").

https://mjskay.github.io/ggdist/articles/thickness.html

stat_dots 169

• ymin: Lower end of the interval sub-geometry (if orientation = "vertical").

• ymax: Upper end of the interval sub-geometry (if orientation = "vertical").

Point-specific aesthetics

• shape: Shape type used to draw the point sub-geometry.

Color aesthetics

• colour: (or color) The color of the interval and point sub-geometries. Use the slab_color,
interval_color, or point_color aesthetics (below) to set sub-geometry colors separately.

• fill: The fill color of the slab and point sub-geometries. Use the slab_fill or point_fill
aesthetics (below) to set sub-geometry colors separately.

• alpha: The opacity of the slab, interval, and point sub-geometries. Use the slab_alpha,
interval_alpha, or point_alpha aesthetics (below) to set sub-geometry colors separately.

• colour_ramp: (or color_ramp) A secondary scale that modifies the color scale to "ramp" to
another color. See scale_colour_ramp() for examples.

• fill_ramp: A secondary scale that modifies the fill scale to "ramp" to another color. See
scale_fill_ramp() for examples.

Line aesthetics

• linewidth: Width of the line used to draw the interval (except with geom_slab(): then
it is the width of the slab). With composite geometries including an interval and slab, use
slab_linewidth to set the line width of the slab (see below). For interval, raw linewidth
values are transformed according to the interval_size_domain and interval_size_range
parameters of the geom (see above).

• size: Determines the size of the point. If linewidth is not provided, size will also deter-
mines the width of the line used to draw the interval (this allows line width and point size to be
modified together by setting only size and not linewidth). Raw size values are transformed
according to the interval_size_domain, interval_size_range, and fatten_point pa-
rameters of the geom (see above). Use the point_size aesthetic (below) to set sub-geometry
size directly without applying the effects of interval_size_domain, interval_size_range,
and fatten_point.

• stroke: Width of the outline around the point sub-geometry.

• linetype: Type of line (e.g., "solid", "dashed", etc) used to draw the interval and the
outline of the slab (if it is visible). Use the slab_linetype or interval_linetype aesthetics
(below) to set sub-geometry line types separately.

Slab-specific color and line override aesthetics

• slab_fill: Override for fill: the fill color of the slab.

• slab_colour: (or slab_color) Override for colour/color: the outline color of the slab.

• slab_alpha: Override for alpha: the opacity of the slab.

• slab_linewidth: Override for linwidth: the width of the outline of the slab.

• slab_linetype: Override for linetype: the line type of the outline of the slab.

170 stat_dots

• slab_shape: Override for shape: the shape of the dots used to draw the dotplot slab.

Interval-specific color and line override aesthetics

• interval_colour: (or interval_color) Override for colour/color: the color of the inter-
val.

• interval_alpha: Override for alpha: the opacity of the interval.

• interval_linetype: Override for linetype: the line type of the interval.

Point-specific color and line override aesthetics

• point_fill: Override for fill: the fill color of the point.

• point_colour: (or point_color) Override for colour/color: the outline color of the point.

• point_alpha: Override for alpha: the opacity of the point.

• point_size: Override for size: the size of the point.

Deprecated aesthetics

• slab_size: Use slab_linewidth.

• interval_size: Use interval_linewidth.

Other aesthetics (these work as in standard geoms)

• width

• height

• group

See examples of some of these aesthetics in action in vignette("dotsinterval"). Learn more
about the sub-geom override aesthetics (like interval_color) in the scales documentation. Learn
more about basic ggplot aesthetics in vignette("ggplot2-specs").

References

Kay, M., Kola, T., Hullman, J. R., & Munson, S. A. (2016). When (ish) is My Bus? User-centered
Visualizations of Uncertainty in Everyday, Mobile Predictive Systems. Conference on Human Fac-
tors in Computing Systems - CHI ’16, 5092–5103. doi:10.1145/2858036.2858558.

Fernandes, M., Walls, L., Munson, S., Hullman, J., & Kay, M. (2018). Uncertainty Displays Using
Quantile Dotplots or CDFs Improve Transit Decision-Making. Conference on Human Factors in
Computing Systems - CHI ’18. doi:10.1145/3173574.3173718.

See Also

See geom_dots() for the geom underlying this stat. See vignette("dotsinterval") for a variety
of examples of use.

Other dotsinterval stats: stat_dotsinterval(), stat_mcse_dots()

https://doi.org/10.1145/2858036.2858558
https://doi.org/10.1145/3173574.3173718

stat_dotsinterval 171

Examples

library(dplyr)
library(ggplot2)
library(distributional)

theme_set(theme_ggdist())

ON SAMPLE DATA
set.seed(12345)
tibble(

x = rep(1:10, 100),
y = rnorm(1000, x)

) %>%
ggplot(aes(x = x, y = y)) +
stat_dots()

ON ANALYTICAL DISTRIBUTIONS
Vectorized distribution types, like distributional::dist_normal()
and posterior::rvar(), can be used with the `xdist` / `ydist` aesthetics
tibble(

x = 1:10,
sd = seq(1, 3, length.out = 10)

) %>%
ggplot(aes(x = x, ydist = dist_normal(x, sd))) +
stat_dots(quantiles = 50)

stat_dotsinterval Dots + point + interval plot (shortcut stat)

Description

A combination of stat_slabinterval() and geom_dotsinterval() with sensible defaults for
making dots + point + interval plots. While geom_dotsinterval() is intended for use on data
frames that have already been summarized using a point_interval() function, stat_dotsinterval()
is intended for use directly on data frames of draws or of analytical distributions, and will perform
the summarization using a point_interval() function. Geoms based on geom_dotsinterval()
create dotplots that automatically determine a bin width that ensures the plot fits within the available
space. They can also ensure dots do not overlap.

Usage

stat_dotsinterval(
mapping = NULL,
data = NULL,
geom = "dotsinterval",
position = "identity",
...,
quantiles = NA,

172 stat_dotsinterval

point_interval = "median_qi",
.width = c(0.66, 0.95),
orientation = NA,
na.rm = FALSE,
show.legend = c(size = FALSE),
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom Use to override the default connection between stat_dotsinterval() and
geom_dotsinterval()

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function. Setting this equal to "dodge" (position_dodge()) or "dodgejust"
(position_dodgejust()) can be useful if you have overlapping geometries.

... Other arguments passed to layer(). These are often aesthetics, used to set an
aesthetic to a fixed value, like colour = "red" or linewidth = 3 (see Aesthet-
ics, below). They may also be parameters to the paired geom/stat. When paired
with the default geom, geom_dotsinterval(), these include:

binwidth The bin width to use for laying out the dots. One of:
• NA (the default): Dynamically select the bin width based on the size of

the plot when drawn. This will pick a binwidth such that the tallest
stack of dots is at most scale in height (ideally exactly scale in height,
though this is not guaranteed).

• A length-1 (scalar) numeric or unit object giving the exact bin width.
• A length-2 (vector) numeric or unit object giving the minimum and

maximum desired bin width. The bin width will be dynamically se-
lected within these bounds.

If the value is numeric, it is assumed to be in units of data. The bin width
(or its bounds) can also be specified using unit(), which may be useful if it
is desired that the dots be a certain point size or a certain percentage of the
width/height of the viewport. For example, unit(0.1, "npc") would make
dots that are exactly 10% of the viewport size along whichever dimension
the dotplot is drawn; unit(c(0, 0.1), "npc") would make dots that are at

stat_dotsinterval 173

most 10% of the viewport size (while still ensuring the tallest stack is less
than or equal to scale).

dotsize The width of the dots relative to the binwidth. The default, 1.07,
makes dots be just a bit wider than the bin width, which is a manually-
tuned parameter that tends to work well with the default circular shape,
preventing gaps between bins from appearing to be too large visually (as
might arise from dots being precisely the binwidth). If it is desired to have
dots be precisely the binwidth, set dotsize = 1.

stackratio The distance between the center of the dots in the same stack rel-
ative to the dot height. The default, 1, makes dots in the same stack just
touch each other.

layout The layout method used for the dots:
• "bin" (default): places dots on the off-axis at the midpoint of their

bins as in the classic Wilkinson dotplot. This maintains the alignment
of rows and columns in the dotplot. This layout is slightly different
from the classic Wilkinson algorithm in that: (1) it nudges bins slightly
to avoid overlapping bins and (2) if the input data are symmetrical it
will return a symmetrical layout.

• "weave": uses the same basic binning approach of "bin", but places
dots in the off-axis at their actual positions (unless overlaps = "nudge",
in which case overlaps may be nudged out of the way). This maintains
the alignment of rows but does not align dots within columns.

• "hex": uses the same basic binning approach of "bin", but alternates
placing dots + binwidth/4 or - binwidth/4 in the off-axis from the
bin center. This allows hexagonal packing by setting a stackratio
less than 1 (something like 0.9 tends to work).

• "swarm": uses the "compactswarm" layout from beeswarm::beeswarm().
Does not maintain alignment of rows or columns, but can be more com-
pact and neat looking, especially for sample data (as opposed to quan-
tile dotplots of theoretical distributions, which may look better with
"bin", "weave", or "hex").

• "bar": for discrete distributions, lays out duplicate values in rectangu-
lar bars.

overlaps How to handle overlapping dots or bins in the "bin", "weave", and
"hex" layouts (dots never overlap in the "swarm" or "bar" layouts). For
the purposes of this argument, dots are only considered to be overlapping if
they would be overlapping when dotsize = 1 and stackratio = 1; i.e. if
you set those arguments to other values, overlaps may still occur. One of:

• "keep": leave overlapping dots as they are. Dots may overlap (usually
only slightly) in the "bin", "weave", and "hex" layouts.

• "nudge": nudge overlapping dots out of the way. Overlaps are avoided
using a constrained optimization which minimizes the squared distance
of dots to their desired positions, subject to the constraint that adjacent
dots do not overlap.

smooth Smoother to apply to dot positions. One of:
• A function that takes a numeric vector of dot positions and returns a

smoothed version of that vector, such as smooth_bounded(), smooth_unbounded(),

174 stat_dotsinterval

smooth_discrete(), or smooth_bar()‘.
• A string indicating what smoother to use, as the suffix to a function

name starting with smooth_; e.g. "none" (the default) applies smooth_none(),
which simply returns the given vector without applying smoothing.

Smoothing is most effective when the smoother is matched to the support
of the distribution; e.g. using smooth_bounded(bounds = ...).

overflow How to handle overflow of dots beyond the extent of the geom when
a minimum binwidth (or an exact binwidth) is supplied. One of:

• "keep": Keep the overflow, drawing dots outside the geom bounds.
• "warn": Keep the overflow, but produce a warning suggesting solu-

tions, such as setting binwidth = NA or overflow = "compress".
• "compress": Compress the layout. Reduces the binwidth to the size

necessary to keep the dots within bounds, then adjusts stackratio and
dotsize so that the apparent dot size is the user-specified minimum
binwidth times the user-specified dotsize.

If you find the default layout has dots that are too small, and you are okay
with dots overlapping, consider setting overflow = "compress" and sup-
plying an exact or minimum dot size using binwidth.

verbose If TRUE, print out the bin width of the dotplot. Can be useful if you
want to start from an automatically-selected bin width and then adjust it
manually. Bin width is printed both as data units and as normalized parent
coordinates or "npc"s (see unit()). Note that if you just want to scale
the selected bin width to fit within a desired area, it is probably easier to
use scale than to copy and scale binwidth manually, and if you just want
to provide constraints on the bin width, you can pass a length-2 vector to
binwidth.

interval_size_domain A length-2 numeric vector giving the minimum and
maximum of the values of the size and linewidth aesthetics that will be
translated into actual sizes for intervals drawn according to interval_size_range
(see the documentation for that argument.)

interval_size_range A length-2 numeric vector. This geom scales the raw
size aesthetic values when drawing interval and point sizes, as they tend to
be too thick when using the default settings of scale_size_continuous(),
which give sizes with a range of c(1, 6). The interval_size_domain
value indicates the input domain of raw size values (typically this should be
equal to the value of the range argument of the scale_size_continuous()
function), and interval_size_range indicates the desired output range of
the size values (the min and max of the actual sizes used to draw inter-
vals). Most of the time it is not recommended to change the value of this
argument, as it may result in strange scaling of legends; this argument is
a holdover from earlier versions that did not have size aesthetics targeting
the point and interval separately. If you want to adjust the size of the in-
terval or points separately, you can also use the linewidth or point_size
aesthetics; see sub-geometry-scales.

fatten_point A multiplicative factor used to adjust the size of the point rela-
tive to the size of the thickest interval line. If you wish to specify point sizes
directly, you can also use the point_size aesthetic and scale_point_size_continuous()

stat_dotsinterval 175

or scale_point_size_discrete(); sizes specified with that aesthetic will
not be adjusted using fatten_point.

arrow grid::arrow() giving the arrow heads to use on the interval, or NULL
for no arrows.

subguide Sub-guide used to annotate the thickness scale. One of:
• A function that takes a scale argument giving a ggplot2::Scale object

and an orientation argument giving the orientation of the geometry
and then returns a grid::grob that will draw the axis annotation, such as
subguide_axis() (to draw a traditional axis) or subguide_none() (to
draw no annotation). See subguide_axis() for a list of possibilities
and examples.

• A string giving the name of such a function when prefixed with "subguide";
e.g. "axis" or "none".

quantiles Setting this to a value other than NA will produce a quantile dotplot: that is, a
dotplot of quantiles from the sample or distribution (for analytical distributions,
the default of NA is taken to mean 100 quantiles). The value of quantiles
determines the number of quantiles to plot. See Kay et al. (2016) and Fernandes
et al. (2018) for more information on quantile dotplots.

point_interval A function from the point_interval() family (e.g., median_qi, mean_qi,
mode_hdi, etc), or a string giving the name of a function from that family (e.g.,
"median_qi", "mean_qi", "mode_hdi", etc; if a string, the caller’s environment
is searched for the function, followed by the ggdist environment). This function
determines the point summary (typically mean, median, or mode) and interval
type (quantile interval, qi; highest-density interval, hdi; or highest-density con-
tinuous interval, hdci). Output will be converted to the appropriate x- or y-based
aesthetics depending on the value of orientation. See the point_interval()
family of functions for more information.

.width The .width argument passed to point_interval: a vector of probabilities to
use that determine the widths of the resulting intervals. If multiple probabilities
are provided, multiple intervals per group are generated, each with a different
probability interval (and value of the corresponding .width and level gener-
ated variables).

orientation Whether this geom is drawn horizontally or vertically. One of:

• NA (default): automatically detect the orientation based on how the aesthet-
ics are assigned. Automatic detection works most of the time.

• "horizontal" (or "y"): draw horizontally, using the y aesthetic to identify
different groups. For each group, uses the x, xmin, xmax, and thickness
aesthetics to draw points, intervals, and slabs.

• "vertical" (or "x"): draw vertically, using the x aesthetic to identify dif-
ferent groups. For each group, uses the y, ymin, ymax, and thickness
aesthetics to draw points, intervals, and slabs.

For compatibility with the base ggplot naming scheme for orientation, "x"
can be used as an alias for "vertical" and "y" as an alias for "horizontal"
(ggdist had an orientation parameter before base ggplot did, hence the dis-
crepancy).

176 stat_dotsinterval

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Details

The dots family of stats and geoms are similar to geom_dotplot() but with a number of differences:

• Dots geoms act like slabs in geom_slabinterval() and can be given x positions (or y posi-
tions when in a horizontal orientation).

• Given the available space to lay out dots, the dots geoms will automatically determine how
many bins to use to fit the available space.

• Dots geoms use a dynamic layout algorithm that lays out dots from the center out if the input
data are symmetrical, guaranteeing that symmetrical data results in a symmetrical plot. The
layout algorithm also prevents dots from overlapping each other.

• The shape of the dots in these geoms can be changed using the slab_shape aesthetic (when
using the dotsinterval family) or the shape or slab_shape aesthetic (when using the dots
family)

Stats and geoms in this family include:

• geom_dots(): dotplots on raw data. Ensures the dotplot fits within available space by reduc-
ing the size of the dots automatically (may result in very small dots).

• geom_swarm() and geom_weave(): dotplots on raw data with defaults intended to create
"beeswarm" plots. Used side = "both" by default, and sets the default dot size to the same
size as geom_point() (binwidth = unit(1.5, "mm")), allowing dots to overlap instead of
getting very small.

• stat_dots(): dotplots on raw data, distributional objects, and posterior::rvar()s

• geom_dotsinterval(): dotplot + interval plots on raw data with already-calculated intervals
(rarely useful directly).

• stat_dotsinterval(): dotplot + interval plots on raw data, distributional objects, and
posterior::rvar()s (will calculate intervals for you).

• geom_blur_dots(): blurry dotplots that allow the standard deviation of a blur applied to each
dot to be specified using the sd aesthetic.

• stat_mcse_dots(): blurry dotplots of quantiles using the Monte Carlo Standard Error of
each quantile.

stat_dots() and stat_dotsinterval(), when used with the quantiles argument, are partic-
ularly useful for constructing quantile dotplots, which can be an effective way to communicate
uncertainty using a frequency framing that may be easier for laypeople to understand (Kay et al.
2016, Fernandes et al. 2018).

stat_dotsinterval 177

To visualize sample data, such as a data distribution, samples from a bootstrap distribution, or a
Bayesian posterior, you can supply samples to the x or y aesthetic.

To visualize analytical distributions, you can use the xdist or ydist aesthetic. For historical
reasons, you can also use dist to specify the distribution, though this is not recommended as it
does not work as well with orientation detection. These aesthetics can be used as follows:

• xdist, ydist, and dist can be any distribution object from the distributional package (dist_normal(),
dist_beta(), etc) or can be a posterior::rvar() object. Since these functions are vector-
ized, other columns can be passed directly to them in an aes() specification; e.g. aes(dist =
dist_normal(mu, sigma)) will work if mu and sigma are columns in the input data frame.

• dist can be a character vector giving the distribution name. Then the arg1, ... arg9 aes-
thetics (or args as a list column) specify distribution arguments. Distribution names should
correspond to R functions that have "p", "q", and "d" functions; e.g. "norm" is a valid dis-
tribution name because R defines the pnorm(), qnorm(), and dnorm() functions for Normal
distributions.
See the parse_dist() function for a useful way to generate dist and args values from
human-readable distribution specs (like "normal(0,1)"). Such specs are also produced by
other packages (like the brms::get_prior function in brms); thus, parse_dist() combined
with the stats described here can help you visualize the output of those functions.

Value

A ggplot2::Stat representing a dots + point + interval geometry which can be added to a ggplot()
object.

Computed Variables

The following variables are computed by this stat and made available for use in aesthetic specifica-
tions (aes()) using the after_stat() function or the after_stat argument of stage():

• x or y: For slabs, the input values to the slab function. For intervals, the point summary from
the interval function. Whether it is x or y depends on orientation

• xmin or ymin: For intervals, the lower end of the interval from the interval function.

• xmax or ymax: For intervals, the upper end of the interval from the interval function.

• .width: For intervals, the interval width as a numeric value in [0, 1]. For slabs, the width
of the smallest interval containing that value of the slab.

• level: For intervals, the interval width as an ordered factor. For slabs, the level of the smallest
interval containing that value of the slab.

• pdf: For slabs, the probability density function (PDF). If options("ggdist.experimental.slab_data_in_intervals")
is TRUE: For intervals, the PDF at the point summary; intervals also have pdf_min and pdf_max
for the PDF at the lower and upper ends of the interval.

• cdf: For slabs, the cumulative distribution function. If options("ggdist.experimental.slab_data_in_intervals")
is TRUE: For intervals, the CDF at the point summary; intervals also have cdf_min and cdf_max
for the CDF at the lower and upper ends of the interval.

• n: For slabs, the number of data points summarized into that slab. If the slab was created from
an analytical distribution via the xdist, ydist, or dist aesthetic, n will be Inf.

https://pkg.mitchelloharawild.com/distributional/

178 stat_dotsinterval

• f: (deprecated) For slabs, the output values from the slab function (such as the PDF, CDF, or
CCDF), determined by slab_type. Instead of using slab_type to change f and then map-
ping f onto an aesthetic, it is now recommended to simply map the corresponding computed
variable (e.g. pdf, cdf, or 1 - cdf) directly onto the desired aesthetic.

Aesthetics

The dots+interval stats and geoms have a wide variety of aesthetics that control the appearance of
their three sub-geometries: the dots (aka the slab), the point, and the interval.

These stats support the following aesthetics:

• x: x position of the geometry (when orientation = "vertical"); or sample data to be summa-
rized (when orientation = "horizontal" with sample data).

• y: y position of the geometry (when orientation = "horizontal"); or sample data to be sum-
marized (when orientation = "vertical" with sample data).

• weight: When using samples (i.e. the x and y aesthetics, not xdist or ydist), optional
weights to be applied to each draw.

• xdist: When using analytical distributions, distribution to map on the x axis: a distributional
object (e.g. dist_normal()) or a posterior::rvar() object.

• ydist: When using analytical distributions, distribution to map on the y axis: a distributional
object (e.g. dist_normal()) or a posterior::rvar() object.

• dist: When using analytical distributions, a name of a distribution (e.g. "norm"), a distribu-
tional object (e.g. dist_normal()), or a posterior::rvar() object. See Details.

• args: Distribution arguments (args or arg1, ... arg9). See Details.

In addition, in their default configuration (paired with geom_dotsinterval()) the following aes-
thetics are supported by the underlying geom:

Dots-specific (aka Slab-specific) aesthetics

• family: The font family used to draw the dots.

• order: The order in which data points are stacked within bins. Can be used to create the effect
of "stacked" dots by ordering dots according to a discrete variable. If omitted (NULL), the value
of the data points themselves are used to determine stacking order. Only applies when layout
is "bin" or "hex", as the other layout methods fully determine both x and y positions.

• side: Which side to place the slab on. "topright", "top", and "right" are synonyms
which cause the slab to be drawn on the top or the right depending on if orientation
is "horizontal" or "vertical". "bottomleft", "bottom", and "left" are synonyms
which cause the slab to be drawn on the bottom or the left depending on if orientation
is "horizontal" or "vertical". "topleft" causes the slab to be drawn on the top or the
left, and "bottomright" causes the slab to be drawn on the bottom or the right. "both" draws
the slab mirrored on both sides (as in a violin plot).

• scale: What proportion of the region allocated to this geom to use to draw the slab. If scale
= 1, slabs that use the maximum range will just touch each other. Default is 0.9 to leave some
space between adjacent slabs. For a comprehensive discussion and examples of slab scaling
and normalization, see the thickness scale article.

https://mjskay.github.io/ggdist/articles/thickness.html

stat_dotsinterval 179

• justification: Justification of the interval relative to the slab, where 0 indicates bottom/left
justification and 1 indicates top/right justification (depending on orientation). If justification
is NULL (the default), then it is set automatically based on the value of side: when side is
"top"/"right" justification is set to 0, when side is "bottom"/"left" justification
is set to 1, and when side is "both" justification is set to 0.5.

• datatype: When using composite geoms directly without a stat (e.g. geom_slabinterval()),
datatype is used to indicate which part of the geom a row in the data targets: rows with
datatype = "slab" target the slab portion of the geometry and rows with datatype = "interval"
target the interval portion of the geometry. This is set automatically when using ggdist stats.

Interval-specific aesthetics

• xmin: Left end of the interval sub-geometry (if orientation = "horizontal").

• xmax: Right end of the interval sub-geometry (if orientation = "horizontal").

• ymin: Lower end of the interval sub-geometry (if orientation = "vertical").

• ymax: Upper end of the interval sub-geometry (if orientation = "vertical").

Point-specific aesthetics

• shape: Shape type used to draw the point sub-geometry.

Color aesthetics

• colour: (or color) The color of the interval and point sub-geometries. Use the slab_color,
interval_color, or point_color aesthetics (below) to set sub-geometry colors separately.

• fill: The fill color of the slab and point sub-geometries. Use the slab_fill or point_fill
aesthetics (below) to set sub-geometry colors separately.

• alpha: The opacity of the slab, interval, and point sub-geometries. Use the slab_alpha,
interval_alpha, or point_alpha aesthetics (below) to set sub-geometry colors separately.

• colour_ramp: (or color_ramp) A secondary scale that modifies the color scale to "ramp" to
another color. See scale_colour_ramp() for examples.

• fill_ramp: A secondary scale that modifies the fill scale to "ramp" to another color. See
scale_fill_ramp() for examples.

Line aesthetics

• linewidth: Width of the line used to draw the interval (except with geom_slab(): then
it is the width of the slab). With composite geometries including an interval and slab, use
slab_linewidth to set the line width of the slab (see below). For interval, raw linewidth
values are transformed according to the interval_size_domain and interval_size_range
parameters of the geom (see above).

• size: Determines the size of the point. If linewidth is not provided, size will also deter-
mines the width of the line used to draw the interval (this allows line width and point size to be
modified together by setting only size and not linewidth). Raw size values are transformed
according to the interval_size_domain, interval_size_range, and fatten_point pa-
rameters of the geom (see above). Use the point_size aesthetic (below) to set sub-geometry
size directly without applying the effects of interval_size_domain, interval_size_range,
and fatten_point.

180 stat_dotsinterval

• stroke: Width of the outline around the point sub-geometry.

• linetype: Type of line (e.g., "solid", "dashed", etc) used to draw the interval and the
outline of the slab (if it is visible). Use the slab_linetype or interval_linetype aesthetics
(below) to set sub-geometry line types separately.

Slab-specific color and line override aesthetics

• slab_fill: Override for fill: the fill color of the slab.

• slab_colour: (or slab_color) Override for colour/color: the outline color of the slab.

• slab_alpha: Override for alpha: the opacity of the slab.

• slab_linewidth: Override for linwidth: the width of the outline of the slab.

• slab_linetype: Override for linetype: the line type of the outline of the slab.

• slab_shape: Override for shape: the shape of the dots used to draw the dotplot slab.

Interval-specific color and line override aesthetics

• interval_colour: (or interval_color) Override for colour/color: the color of the inter-
val.

• interval_alpha: Override for alpha: the opacity of the interval.

• interval_linetype: Override for linetype: the line type of the interval.

Point-specific color and line override aesthetics

• point_fill: Override for fill: the fill color of the point.

• point_colour: (or point_color) Override for colour/color: the outline color of the point.

• point_alpha: Override for alpha: the opacity of the point.

• point_size: Override for size: the size of the point.

Deprecated aesthetics

• slab_size: Use slab_linewidth.

• interval_size: Use interval_linewidth.

Other aesthetics (these work as in standard geoms)

• width

• height

• group

See examples of some of these aesthetics in action in vignette("dotsinterval"). Learn more
about the sub-geom override aesthetics (like interval_color) in the scales documentation. Learn
more about basic ggplot aesthetics in vignette("ggplot2-specs").

stat_eye 181

References

Kay, M., Kola, T., Hullman, J. R., & Munson, S. A. (2016). When (ish) is My Bus? User-centered
Visualizations of Uncertainty in Everyday, Mobile Predictive Systems. Conference on Human Fac-
tors in Computing Systems - CHI ’16, 5092–5103. doi:10.1145/2858036.2858558.

Fernandes, M., Walls, L., Munson, S., Hullman, J., & Kay, M. (2018). Uncertainty Displays Using
Quantile Dotplots or CDFs Improve Transit Decision-Making. Conference on Human Factors in
Computing Systems - CHI ’18. doi:10.1145/3173574.3173718.

See Also

See geom_dotsinterval() for the geom underlying this stat. See vignette("dotsinterval")
for a variety of examples of use.

Other dotsinterval stats: stat_dots(), stat_mcse_dots()

Examples

library(dplyr)
library(ggplot2)
library(distributional)

theme_set(theme_ggdist())

ON SAMPLE DATA
set.seed(12345)
tibble(

x = rep(1:10, 100),
y = rnorm(1000, x)

) %>%
ggplot(aes(x = x, y = y)) +
stat_dotsinterval()

ON ANALYTICAL DISTRIBUTIONS
Vectorized distribution types, like distributional::dist_normal()
and posterior::rvar(), can be used with the `xdist` / `ydist` aesthetics
tibble(

x = 1:10,
sd = seq(1, 3, length.out = 10)

) %>%
ggplot(aes(x = x, ydist = dist_normal(x, sd))) +
stat_dotsinterval(quantiles = 50)

stat_eye Eye (violin + interval) plot (shortcut stat)

https://doi.org/10.1145/2858036.2858558
https://doi.org/10.1145/3173574.3173718

182 stat_eye

Description

Shortcut version of stat_slabinterval() with geom_slabinterval() for creating eye (violin +
interval) plots.

Roughly equivalent to:

stat_slabinterval(
aes(side = after_stat("both"))

)

Usage

stat_eye(
mapping = NULL,
data = NULL,
geom = "slabinterval",
position = "identity",
...,
p_limits = c(NA, NA),
density = "bounded",
adjust = waiver(),
trim = TRUE,
expand = FALSE,
breaks = waiver(),
align = "none",
outline_bars = FALSE,
point_interval = "median_qi",
slab_type = NULL,
limits = NULL,
n = 501,
.width = c(0.66, 0.95),
orientation = NA,
na.rm = FALSE,
show.legend = c(size = FALSE),
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.

stat_eye 183

A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom Use to override the default connection between stat_eye() and geom_slabinterval()

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function. Setting this equal to "dodge" (position_dodge()) or "dodgejust"
(position_dodgejust()) can be useful if you have overlapping geometries.

... Other arguments passed to layer(). These are often aesthetics, used to set an
aesthetic to a fixed value, like colour = "red" or linewidth = 3 (see Aesthet-
ics, below). They may also be parameters to the paired geom/stat. When paired
with the default geom, geom_slabinterval(), these include:

normalize How to normalize heights of functions input to the thickness aes-
thetic. One of:

• "all": normalize so that the maximum height across all data is 1.
• "panels": normalize within panels so that the maximum height in each

panel is 1.
• "xy": normalize within the x/y axis opposite the orientation of this

geom so that the maximum height at each value of the opposite axis is
1.

• "groups": normalize within values of the opposite axis and within
each group so that the maximum height in each group is 1.

• "none": values are taken as is with no normalization (this should prob-
ably only be used with functions whose values are in [0,1], such as
CDFs).

For a comprehensive discussion and examples of slab scaling and normal-
ization, see the thickness scale article.

fill_type What type of fill to use when the fill color or alpha varies within a
slab. One of:

• "segments": breaks up the slab geometry into segments for each unique
combination of fill color and alpha value. This approach is supported
by all graphics devices and works well for sharp cutoff values, but can
give ugly results if a large number of unique fill colors are being used
(as in gradients, like in stat_gradientinterval()).

• "gradient": a grid::linearGradient() is used to create a smooth
gradient fill. This works well for large numbers of unique fill colors,
but requires R >= 4.1 and is not yet supported on all graphics devices.
As of this writing, the png() graphics device with type = "cairo", the
svg() device, the pdf() device, and the ragg::agg_png() devices are
known to support this option. On R < 4.1, this option will fall back to
fill_type = "segments" with a message.

• "auto": attempts to use fill_type = "gradient" if support for it can
be auto-detected. On R >= 4.2, support for gradients can be auto-
detected on some graphics devices; if support is not detected, this op-
tion will fall back to fill_type = "segments" (in case of a false nega-
tive, fill_type = "gradient" can be set explicitly). On R < 4.2, sup-
port for gradients cannot be auto-detected, so this will always fall back

https://mjskay.github.io/ggdist/articles/thickness.html

184 stat_eye

to fill_type = "segments", in which case you can set fill_type =
"gradient" explicitly if you are using a graphics device that support
gradients.

interval_size_domain A length-2 numeric vector giving the minimum and
maximum of the values of the size and linewidth aesthetics that will be
translated into actual sizes for intervals drawn according to interval_size_range
(see the documentation for that argument.)

interval_size_range A length-2 numeric vector. This geom scales the raw
size aesthetic values when drawing interval and point sizes, as they tend to
be too thick when using the default settings of scale_size_continuous(),
which give sizes with a range of c(1, 6). The interval_size_domain
value indicates the input domain of raw size values (typically this should be
equal to the value of the range argument of the scale_size_continuous()
function), and interval_size_range indicates the desired output range of
the size values (the min and max of the actual sizes used to draw inter-
vals). Most of the time it is not recommended to change the value of this
argument, as it may result in strange scaling of legends; this argument is
a holdover from earlier versions that did not have size aesthetics targeting
the point and interval separately. If you want to adjust the size of the in-
terval or points separately, you can also use the linewidth or point_size
aesthetics; see sub-geometry-scales.

fatten_point A multiplicative factor used to adjust the size of the point rela-
tive to the size of the thickest interval line. If you wish to specify point sizes
directly, you can also use the point_size aesthetic and scale_point_size_continuous()
or scale_point_size_discrete(); sizes specified with that aesthetic will
not be adjusted using fatten_point.

arrow grid::arrow() giving the arrow heads to use on the interval, or NULL
for no arrows.

subguide Sub-guide used to annotate the thickness scale. One of:
• A function that takes a scale argument giving a ggplot2::Scale object

and an orientation argument giving the orientation of the geometry
and then returns a grid::grob that will draw the axis annotation, such as
subguide_axis() (to draw a traditional axis) or subguide_none() (to
draw no annotation). See subguide_axis() for a list of possibilities
and examples.

• A string giving the name of such a function when prefixed with "subguide";
e.g. "axis" or "none".

p_limits Probability limits (as a vector of size 2) used to determine the lower and upper
limits of theoretical distributions (distributions from samples ignore this param-
eter and determine their limits based on the limits of the sample). E.g., if this
is c(.001, .999), then a slab is drawn for the distribution from the quantile
at p = .001 to the quantile at p = .999. If the lower (respectively upper) limit is
NA, then the lower (upper) limit will be the minimum (maximum) of the distribu-
tion’s support if it is finite, and 0.001 (0.999) if it is not finite. E.g., if p_limits
is c(NA, NA), on a gamma distribution the effective value of p_limits would be
c(0, .999) since the gamma distribution is defined on (0, Inf); whereas on
a normal distribution it would be equivalent to c(.001, .999) since the normal
distribution is defined on (-Inf, Inf).

stat_eye 185

density Density estimator for sample data. One of:

• A function which takes a numeric vector and returns a list with elements
x (giving grid points for the density estimator) and y (the corresponding
densities). ggdist provides a family of functions following this format, in-
cluding density_unbounded() and density_bounded(). This format is
also compatible with stats::density().

• A string giving the suffix of a function name that starts with "density_";
e.g. "bounded" for [density_bounded()], "unbounded" for [density_unbounded()],
or "histogram" for density_histogram(). Defaults to "bounded", i.e.
density_bounded(), which estimates the bounds from the data and then
uses a bounded density estimator based on the reflection method.

adjust Passed to density: the bandwidth for the density estimator for sample data is
adjusted by multiplying it by this value. See e.g. density_bounded() for more
information. Default (waiver()) defers to the default of the density estimator,
which is usually 1.

trim For sample data, should the density estimate be trimmed to the range of the data?
Passed on to the density estimator; see the density parameter. Default TRUE.

expand For sample data, should the slab be expanded to the limits of the scale? Default
FALSE. Can be length two to control expansion to the lower and upper limit
respectively.

breaks Determines the breakpoints defining bins. Defaults to "Scott". Similar to (but
not exactly the same as) the breaks argument to graphics::hist(). One of:

• A scalar (length-1) numeric giving the number of bins
• A vector numeric giving the breakpoints between histogram bins
• A function taking x and weights and returning either the number of bins or

a vector of breakpoints
• A string giving the suffix of a function that starts with "breaks_". ggdist

provides weighted implementations of the "Sturges", "Scott", and "FD"
break-finding algorithms from graphics::hist(), as well as breaks_fixed()
for manually setting the bin width. See breaks.

For example, breaks = "Sturges" will use the breaks_Sturges() algorithm,
breaks = 9 will create 9 bins, and breaks = breaks_fixed(width = 1) will set
the bin width to 1.

align Determines how to align the breakpoints defining bins. Default ("none") per-
forms no alignment. One of:

• A scalar (length-1) numeric giving an offset that is subtracted from the
breaks. The offset must be between 0 and the bin width.

• A function taking a sorted vector of breaks (bin edges) and returning an
offset to subtract from the breaks.

• A string giving the suffix of a function that starts with "align_" used to
determine the alignment, such as align_none(), align_boundary(), or
align_center().

For example, align = "none" will provide no alignment, align = align_center(at
= 0) will center a bin on 0, and align = align_boundary(at = 0) will align a
bin edge on 0.

186 stat_eye

outline_bars For sample data (if density is "histogram") and for discrete analytical dis-
tributions (whose slabs are drawn as histograms), determines if outlines in be-
tween the bars are drawn when the slab_color aesthetic is used. If FALSE (the
default), the outline is drawn only along the tops of the bars; if TRUE, outlines in
between bars are also drawn. See density_histogram().

point_interval A function from the point_interval() family (e.g., median_qi, mean_qi,
mode_hdi, etc), or a string giving the name of a function from that family (e.g.,
"median_qi", "mean_qi", "mode_hdi", etc; if a string, the caller’s environment
is searched for the function, followed by the ggdist environment). This function
determines the point summary (typically mean, median, or mode) and interval
type (quantile interval, qi; highest-density interval, hdi; or highest-density con-
tinuous interval, hdci). Output will be converted to the appropriate x- or y-based
aesthetics depending on the value of orientation. See the point_interval()
family of functions for more information.

slab_type (deprecated) The type of slab function to calculate: probability density (or mass)
function ("pdf"), cumulative distribution function ("cdf"), or complementary
CDF ("ccdf"). Instead of using slab_type to change f and then mapping f
onto an aesthetic, it is now recommended to simply map the corresponding com-
puted variable (e.g. pdf, cdf, or 1 - cdf) directly onto the desired aesthetic.

limits Manually-specified limits for the slab, as a vector of length two. These limits are
combined with those computed based on p_limits as well as the limits defined
by the scales of the plot to determine the limits used to draw the slab functions:
these limits specify the maximal limits; i.e., if specified, the limits will not be
wider than these (but may be narrower). Use NA to leave a limit alone; e.g.
limits = c(0, NA) will ensure that the lower limit does not go below 0, but let
the upper limit be determined by either p_limits or the scale settings.

n Number of points at which to evaluate the function that defines the slab.

.width The .width argument passed to point_interval: a vector of probabilities to
use that determine the widths of the resulting intervals. If multiple probabilities
are provided, multiple intervals per group are generated, each with a different
probability interval (and value of the corresponding .width and level gener-
ated variables).

orientation Whether this geom is drawn horizontally or vertically. One of:

• NA (default): automatically detect the orientation based on how the aesthet-
ics are assigned. Automatic detection works most of the time.

• "horizontal" (or "y"): draw horizontally, using the y aesthetic to identify
different groups. For each group, uses the x, xmin, xmax, and thickness
aesthetics to draw points, intervals, and slabs.

• "vertical" (or "x"): draw vertically, using the x aesthetic to identify dif-
ferent groups. For each group, uses the y, ymin, ymax, and thickness
aesthetics to draw points, intervals, and slabs.

For compatibility with the base ggplot naming scheme for orientation, "x"
can be used as an alias for "vertical" and "y" as an alias for "horizontal"
(ggdist had an orientation parameter before base ggplot did, hence the dis-
crepancy).

stat_eye 187

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend Should this layer be included in the legends? Default is c(size = FALSE), unlike
most geoms, to match its common use cases. FALSE hides all legends, TRUE
shows all legends, and NA shows only those that are mapped (the default for
most geoms).

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Details

To visualize sample data, such as a data distribution, samples from a bootstrap distribution, or a
Bayesian posterior, you can supply samples to the x or y aesthetic.

To visualize analytical distributions, you can use the xdist or ydist aesthetic. For historical
reasons, you can also use dist to specify the distribution, though this is not recommended as it
does not work as well with orientation detection. These aesthetics can be used as follows:

• xdist, ydist, and dist can be any distribution object from the distributional package (dist_normal(),
dist_beta(), etc) or can be a posterior::rvar() object. Since these functions are vector-
ized, other columns can be passed directly to them in an aes() specification; e.g. aes(dist =
dist_normal(mu, sigma)) will work if mu and sigma are columns in the input data frame.

• dist can be a character vector giving the distribution name. Then the arg1, ... arg9 aes-
thetics (or args as a list column) specify distribution arguments. Distribution names should
correspond to R functions that have "p", "q", and "d" functions; e.g. "norm" is a valid dis-
tribution name because R defines the pnorm(), qnorm(), and dnorm() functions for Normal
distributions.
See the parse_dist() function for a useful way to generate dist and args values from
human-readable distribution specs (like "normal(0,1)"). Such specs are also produced by
other packages (like the brms::get_prior function in brms); thus, parse_dist() combined
with the stats described here can help you visualize the output of those functions.

Value

A ggplot2::Stat representing a eye (violin + interval) geometry which can be added to a ggplot()
object.

Computed Variables

The following variables are computed by this stat and made available for use in aesthetic specifica-
tions (aes()) using the after_stat() function or the after_stat argument of stage():

• x or y: For slabs, the input values to the slab function. For intervals, the point summary from
the interval function. Whether it is x or y depends on orientation

• xmin or ymin: For intervals, the lower end of the interval from the interval function.

• xmax or ymax: For intervals, the upper end of the interval from the interval function.

• .width: For intervals, the interval width as a numeric value in [0, 1]. For slabs, the width
of the smallest interval containing that value of the slab.

https://pkg.mitchelloharawild.com/distributional/

188 stat_eye

• level: For intervals, the interval width as an ordered factor. For slabs, the level of the smallest
interval containing that value of the slab.

• pdf: For slabs, the probability density function (PDF). If options("ggdist.experimental.slab_data_in_intervals")
is TRUE: For intervals, the PDF at the point summary; intervals also have pdf_min and pdf_max
for the PDF at the lower and upper ends of the interval.

• cdf: For slabs, the cumulative distribution function. If options("ggdist.experimental.slab_data_in_intervals")
is TRUE: For intervals, the CDF at the point summary; intervals also have cdf_min and cdf_max
for the CDF at the lower and upper ends of the interval.

• n: For slabs, the number of data points summarized into that slab. If the slab was created from
an analytical distribution via the xdist, ydist, or dist aesthetic, n will be Inf.

• f: (deprecated) For slabs, the output values from the slab function (such as the PDF, CDF, or
CCDF), determined by slab_type. Instead of using slab_type to change f and then map-
ping f onto an aesthetic, it is now recommended to simply map the corresponding computed
variable (e.g. pdf, cdf, or 1 - cdf) directly onto the desired aesthetic.

Aesthetics

The slab+interval stats and geoms have a wide variety of aesthetics that control the appearance of
their three sub-geometries: the slab, the point, and the interval.
These stats support the following aesthetics:

• x: x position of the geometry (when orientation = "vertical"); or sample data to be summa-
rized (when orientation = "horizontal" with sample data).

• y: y position of the geometry (when orientation = "horizontal"); or sample data to be sum-
marized (when orientation = "vertical" with sample data).

• weight: When using samples (i.e. the x and y aesthetics, not xdist or ydist), optional
weights to be applied to each draw.

• xdist: When using analytical distributions, distribution to map on the x axis: a distributional
object (e.g. dist_normal()) or a posterior::rvar() object.

• ydist: When using analytical distributions, distribution to map on the y axis: a distributional
object (e.g. dist_normal()) or a posterior::rvar() object.

• dist: When using analytical distributions, a name of a distribution (e.g. "norm"), a distribu-
tional object (e.g. dist_normal()), or a posterior::rvar() object. See Details.

• args: Distribution arguments (args or arg1, ... arg9). See Details.

In addition, in their default configuration (paired with geom_slabinterval()) the following aes-
thetics are supported by the underlying geom:

Slab-specific aesthetics

• thickness: The thickness of the slab at each x value (if orientation = "horizontal") or y
value (if orientation = "vertical") of the slab.

• side: Which side to place the slab on. "topright", "top", and "right" are synonyms
which cause the slab to be drawn on the top or the right depending on if orientation
is "horizontal" or "vertical". "bottomleft", "bottom", and "left" are synonyms
which cause the slab to be drawn on the bottom or the left depending on if orientation

stat_eye 189

is "horizontal" or "vertical". "topleft" causes the slab to be drawn on the top or the
left, and "bottomright" causes the slab to be drawn on the bottom or the right. "both" draws
the slab mirrored on both sides (as in a violin plot).

• scale: What proportion of the region allocated to this geom to use to draw the slab. If scale
= 1, slabs that use the maximum range will just touch each other. Default is 0.9 to leave some
space between adjacent slabs. For a comprehensive discussion and examples of slab scaling
and normalization, see the thickness scale article.

• justification: Justification of the interval relative to the slab, where 0 indicates bottom/left
justification and 1 indicates top/right justification (depending on orientation). If justification
is NULL (the default), then it is set automatically based on the value of side: when side is
"top"/"right" justification is set to 0, when side is "bottom"/"left" justification
is set to 1, and when side is "both" justification is set to 0.5.

• datatype: When using composite geoms directly without a stat (e.g. geom_slabinterval()),
datatype is used to indicate which part of the geom a row in the data targets: rows with
datatype = "slab" target the slab portion of the geometry and rows with datatype = "interval"
target the interval portion of the geometry. This is set automatically when using ggdist stats.

Interval-specific aesthetics

• xmin: Left end of the interval sub-geometry (if orientation = "horizontal").

• xmax: Right end of the interval sub-geometry (if orientation = "horizontal").

• ymin: Lower end of the interval sub-geometry (if orientation = "vertical").

• ymax: Upper end of the interval sub-geometry (if orientation = "vertical").

Point-specific aesthetics

• shape: Shape type used to draw the point sub-geometry.

Color aesthetics

• colour: (or color) The color of the interval and point sub-geometries. Use the slab_color,
interval_color, or point_color aesthetics (below) to set sub-geometry colors separately.

• fill: The fill color of the slab and point sub-geometries. Use the slab_fill or point_fill
aesthetics (below) to set sub-geometry colors separately.

• alpha: The opacity of the slab, interval, and point sub-geometries. Use the slab_alpha,
interval_alpha, or point_alpha aesthetics (below) to set sub-geometry colors separately.

• colour_ramp: (or color_ramp) A secondary scale that modifies the color scale to "ramp" to
another color. See scale_colour_ramp() for examples.

• fill_ramp: A secondary scale that modifies the fill scale to "ramp" to another color. See
scale_fill_ramp() for examples.

Line aesthetics

• linewidth: Width of the line used to draw the interval (except with geom_slab(): then
it is the width of the slab). With composite geometries including an interval and slab, use
slab_linewidth to set the line width of the slab (see below). For interval, raw linewidth
values are transformed according to the interval_size_domain and interval_size_range
parameters of the geom (see above).

https://mjskay.github.io/ggdist/articles/thickness.html

190 stat_eye

• size: Determines the size of the point. If linewidth is not provided, size will also deter-
mines the width of the line used to draw the interval (this allows line width and point size to be
modified together by setting only size and not linewidth). Raw size values are transformed
according to the interval_size_domain, interval_size_range, and fatten_point pa-
rameters of the geom (see above). Use the point_size aesthetic (below) to set sub-geometry
size directly without applying the effects of interval_size_domain, interval_size_range,
and fatten_point.

• stroke: Width of the outline around the point sub-geometry.

• linetype: Type of line (e.g., "solid", "dashed", etc) used to draw the interval and the
outline of the slab (if it is visible). Use the slab_linetype or interval_linetype aesthetics
(below) to set sub-geometry line types separately.

Slab-specific color and line override aesthetics

• slab_fill: Override for fill: the fill color of the slab.

• slab_colour: (or slab_color) Override for colour/color: the outline color of the slab.

• slab_alpha: Override for alpha: the opacity of the slab.

• slab_linewidth: Override for linwidth: the width of the outline of the slab.

• slab_linetype: Override for linetype: the line type of the outline of the slab.

Interval-specific color and line override aesthetics

• interval_colour: (or interval_color) Override for colour/color: the color of the inter-
val.

• interval_alpha: Override for alpha: the opacity of the interval.

• interval_linetype: Override for linetype: the line type of the interval.

Point-specific color and line override aesthetics

• point_fill: Override for fill: the fill color of the point.

• point_colour: (or point_color) Override for colour/color: the outline color of the point.

• point_alpha: Override for alpha: the opacity of the point.

• point_size: Override for size: the size of the point.

Deprecated aesthetics

• slab_size: Use slab_linewidth.

• interval_size: Use interval_linewidth.

Other aesthetics (these work as in standard geoms)

• width

• height

• group

See examples of some of these aesthetics in action in vignette("slabinterval"). Learn more
about the sub-geom override aesthetics (like interval_color) in the scales documentation. Learn
more about basic ggplot aesthetics in vignette("ggplot2-specs").

stat_gradientinterval 191

See Also

See geom_slabinterval() for the geom underlying this stat. See stat_slabinterval() for the
stat this shortcut is based on.

Other slabinterval stats: stat_ccdfinterval(), stat_cdfinterval(), stat_gradientinterval(),
stat_halfeye(), stat_histinterval(), stat_interval(), stat_pointinterval(), stat_slab(),
stat_spike()

Examples

library(dplyr)
library(ggplot2)
library(distributional)

theme_set(theme_ggdist())

ON SAMPLE DATA
set.seed(1234)
df = data.frame(

group = c("a", "b", "c"),
value = rnorm(1500, mean = c(5, 7, 9), sd = c(1, 1.5, 1))

)
df %>%

ggplot(aes(x = value, y = group)) +
stat_eye()

ON ANALYTICAL DISTRIBUTIONS
dist_df = data.frame(

group = c("a", "b", "c"),
mean = c(5, 7, 8),
sd = c(1, 1.5, 1)

)
Vectorized distribution types, like distributional::dist_normal()
and posterior::rvar(), can be used with the `xdist` / `ydist` aesthetics
dist_df %>%

ggplot(aes(y = group, xdist = dist_normal(mean, sd))) +
stat_eye()

stat_gradientinterval Gradient + interval plot (shortcut stat)

Description

Shortcut version of stat_slabinterval() with geom_slabinterval() for creating gradient +
interval plots.

Roughly equivalent to:

stat_slabinterval(
aes(

192 stat_gradientinterval

justification = after_stat(0.5),
thickness = after_stat(thickness(1)),
slab_alpha = after_stat(f)

),
fill_type = "auto",
show.legend = c(size = FALSE, slab_alpha = FALSE)

)

If your graphics device supports it, it is recommended to use this stat with fill_type = "gradient"
(see the description of that parameter). On R >= 4.2, support for fill_type = "gradient" should
be auto-detected based on the graphics device you are using.

Usage

stat_gradientinterval(
mapping = NULL,
data = NULL,
geom = "slabinterval",
position = "identity",
...,
fill_type = "auto",
p_limits = c(NA, NA),
density = "bounded",
adjust = waiver(),
trim = TRUE,
expand = FALSE,
breaks = waiver(),
align = "none",
outline_bars = FALSE,
point_interval = "median_qi",
slab_type = NULL,
limits = NULL,
n = 501,
.width = c(0.66, 0.95),
orientation = NA,
na.rm = FALSE,
show.legend = c(size = FALSE, slab_alpha = FALSE),
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().

stat_gradientinterval 193

A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom Use to override the default connection between stat_gradientinterval()
and geom_slabinterval()

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function. Setting this equal to "dodge" (position_dodge()) or "dodgejust"
(position_dodgejust()) can be useful if you have overlapping geometries.

... Other arguments passed to layer(). These are often aesthetics, used to set an
aesthetic to a fixed value, like colour = "red" or linewidth = 3 (see Aesthet-
ics, below). They may also be parameters to the paired geom/stat. When paired
with the default geom, geom_slabinterval(), these include:

normalize How to normalize heights of functions input to the thickness aes-
thetic. One of:

• "all": normalize so that the maximum height across all data is 1.
• "panels": normalize within panels so that the maximum height in each

panel is 1.
• "xy": normalize within the x/y axis opposite the orientation of this

geom so that the maximum height at each value of the opposite axis is
1.

• "groups": normalize within values of the opposite axis and within
each group so that the maximum height in each group is 1.

• "none": values are taken as is with no normalization (this should prob-
ably only be used with functions whose values are in [0,1], such as
CDFs).

For a comprehensive discussion and examples of slab scaling and normal-
ization, see the thickness scale article.

interval_size_domain A length-2 numeric vector giving the minimum and
maximum of the values of the size and linewidth aesthetics that will be
translated into actual sizes for intervals drawn according to interval_size_range
(see the documentation for that argument.)

interval_size_range A length-2 numeric vector. This geom scales the raw
size aesthetic values when drawing interval and point sizes, as they tend to
be too thick when using the default settings of scale_size_continuous(),
which give sizes with a range of c(1, 6). The interval_size_domain
value indicates the input domain of raw size values (typically this should be
equal to the value of the range argument of the scale_size_continuous()
function), and interval_size_range indicates the desired output range of
the size values (the min and max of the actual sizes used to draw inter-
vals). Most of the time it is not recommended to change the value of this
argument, as it may result in strange scaling of legends; this argument is
a holdover from earlier versions that did not have size aesthetics targeting

https://mjskay.github.io/ggdist/articles/thickness.html

194 stat_gradientinterval

the point and interval separately. If you want to adjust the size of the in-
terval or points separately, you can also use the linewidth or point_size
aesthetics; see sub-geometry-scales.

fatten_point A multiplicative factor used to adjust the size of the point rela-
tive to the size of the thickest interval line. If you wish to specify point sizes
directly, you can also use the point_size aesthetic and scale_point_size_continuous()
or scale_point_size_discrete(); sizes specified with that aesthetic will
not be adjusted using fatten_point.

arrow grid::arrow() giving the arrow heads to use on the interval, or NULL
for no arrows.

subguide Sub-guide used to annotate the thickness scale. One of:
• A function that takes a scale argument giving a ggplot2::Scale object

and an orientation argument giving the orientation of the geometry
and then returns a grid::grob that will draw the axis annotation, such as
subguide_axis() (to draw a traditional axis) or subguide_none() (to
draw no annotation). See subguide_axis() for a list of possibilities
and examples.

• A string giving the name of such a function when prefixed with "subguide";
e.g. "axis" or "none".

fill_type What type of fill to use when the fill color or alpha varies within a slab. One of:

• "segments": breaks up the slab geometry into segments for each unique
combination of fill color and alpha value. This approach is supported by all
graphics devices and works well for sharp cutoff values, but can give ugly
results if a large number of unique fill colors are being used (as in gradients,
like in stat_gradientinterval()).

• "gradient": a grid::linearGradient() is used to create a smooth gra-
dient fill. This works well for large numbers of unique fill colors, but re-
quires R >= 4.1 and is not yet supported on all graphics devices. As of
this writing, the png() graphics device with type = "cairo", the svg()
device, the pdf() device, and the ragg::agg_png() devices are known to
support this option. On R < 4.1, this option will fall back to fill_type =
"segments" with a message.

• "auto": attempts to use fill_type = "gradient" if support for it can be
auto-detected. On R >= 4.2, support for gradients can be auto-detected
on some graphics devices; if support is not detected, this option will fall
back to fill_type = "segments" (in case of a false negative, fill_type =
"gradient" can be set explicitly). On R < 4.2, support for gradients cannot
be auto-detected, so this will always fall back to fill_type = "segments",
in which case you can set fill_type = "gradient" explicitly if you are
using a graphics device that support gradients.

p_limits Probability limits (as a vector of size 2) used to determine the lower and upper
limits of theoretical distributions (distributions from samples ignore this param-
eter and determine their limits based on the limits of the sample). E.g., if this
is c(.001, .999), then a slab is drawn for the distribution from the quantile
at p = .001 to the quantile at p = .999. If the lower (respectively upper) limit is
NA, then the lower (upper) limit will be the minimum (maximum) of the distribu-
tion’s support if it is finite, and 0.001 (0.999) if it is not finite. E.g., if p_limits

stat_gradientinterval 195

is c(NA, NA), on a gamma distribution the effective value of p_limits would be
c(0, .999) since the gamma distribution is defined on (0, Inf); whereas on
a normal distribution it would be equivalent to c(.001, .999) since the normal
distribution is defined on (-Inf, Inf).

density Density estimator for sample data. One of:
• A function which takes a numeric vector and returns a list with elements
x (giving grid points for the density estimator) and y (the corresponding
densities). ggdist provides a family of functions following this format, in-
cluding density_unbounded() and density_bounded(). This format is
also compatible with stats::density().

• A string giving the suffix of a function name that starts with "density_";
e.g. "bounded" for [density_bounded()], "unbounded" for [density_unbounded()],
or "histogram" for density_histogram(). Defaults to "bounded", i.e.
density_bounded(), which estimates the bounds from the data and then
uses a bounded density estimator based on the reflection method.

adjust Passed to density: the bandwidth for the density estimator for sample data is
adjusted by multiplying it by this value. See e.g. density_bounded() for more
information. Default (waiver()) defers to the default of the density estimator,
which is usually 1.

trim For sample data, should the density estimate be trimmed to the range of the data?
Passed on to the density estimator; see the density parameter. Default TRUE.

expand For sample data, should the slab be expanded to the limits of the scale? Default
FALSE. Can be length two to control expansion to the lower and upper limit
respectively.

breaks Determines the breakpoints defining bins. Defaults to "Scott". Similar to (but
not exactly the same as) the breaks argument to graphics::hist(). One of:

• A scalar (length-1) numeric giving the number of bins
• A vector numeric giving the breakpoints between histogram bins
• A function taking x and weights and returning either the number of bins or

a vector of breakpoints
• A string giving the suffix of a function that starts with "breaks_". ggdist

provides weighted implementations of the "Sturges", "Scott", and "FD"
break-finding algorithms from graphics::hist(), as well as breaks_fixed()
for manually setting the bin width. See breaks.

For example, breaks = "Sturges" will use the breaks_Sturges() algorithm,
breaks = 9 will create 9 bins, and breaks = breaks_fixed(width = 1) will set
the bin width to 1.

align Determines how to align the breakpoints defining bins. Default ("none") per-
forms no alignment. One of:

• A scalar (length-1) numeric giving an offset that is subtracted from the
breaks. The offset must be between 0 and the bin width.

• A function taking a sorted vector of breaks (bin edges) and returning an
offset to subtract from the breaks.

• A string giving the suffix of a function that starts with "align_" used to
determine the alignment, such as align_none(), align_boundary(), or
align_center().

196 stat_gradientinterval

For example, align = "none" will provide no alignment, align = align_center(at
= 0) will center a bin on 0, and align = align_boundary(at = 0) will align a
bin edge on 0.

outline_bars For sample data (if density is "histogram") and for discrete analytical dis-
tributions (whose slabs are drawn as histograms), determines if outlines in be-
tween the bars are drawn when the slab_color aesthetic is used. If FALSE (the
default), the outline is drawn only along the tops of the bars; if TRUE, outlines in
between bars are also drawn. See density_histogram().

point_interval A function from the point_interval() family (e.g., median_qi, mean_qi,
mode_hdi, etc), or a string giving the name of a function from that family (e.g.,
"median_qi", "mean_qi", "mode_hdi", etc; if a string, the caller’s environment
is searched for the function, followed by the ggdist environment). This function
determines the point summary (typically mean, median, or mode) and interval
type (quantile interval, qi; highest-density interval, hdi; or highest-density con-
tinuous interval, hdci). Output will be converted to the appropriate x- or y-based
aesthetics depending on the value of orientation. See the point_interval()
family of functions for more information.

slab_type (deprecated) The type of slab function to calculate: probability density (or mass)
function ("pdf"), cumulative distribution function ("cdf"), or complementary
CDF ("ccdf"). Instead of using slab_type to change f and then mapping f
onto an aesthetic, it is now recommended to simply map the corresponding com-
puted variable (e.g. pdf, cdf, or 1 - cdf) directly onto the desired aesthetic.

limits Manually-specified limits for the slab, as a vector of length two. These limits are
combined with those computed based on p_limits as well as the limits defined
by the scales of the plot to determine the limits used to draw the slab functions:
these limits specify the maximal limits; i.e., if specified, the limits will not be
wider than these (but may be narrower). Use NA to leave a limit alone; e.g.
limits = c(0, NA) will ensure that the lower limit does not go below 0, but let
the upper limit be determined by either p_limits or the scale settings.

n Number of points at which to evaluate the function that defines the slab.

.width The .width argument passed to point_interval: a vector of probabilities to
use that determine the widths of the resulting intervals. If multiple probabilities
are provided, multiple intervals per group are generated, each with a different
probability interval (and value of the corresponding .width and level gener-
ated variables).

orientation Whether this geom is drawn horizontally or vertically. One of:

• NA (default): automatically detect the orientation based on how the aesthet-
ics are assigned. Automatic detection works most of the time.

• "horizontal" (or "y"): draw horizontally, using the y aesthetic to identify
different groups. For each group, uses the x, xmin, xmax, and thickness
aesthetics to draw points, intervals, and slabs.

• "vertical" (or "x"): draw vertically, using the x aesthetic to identify dif-
ferent groups. For each group, uses the y, ymin, ymax, and thickness
aesthetics to draw points, intervals, and slabs.

For compatibility with the base ggplot naming scheme for orientation, "x"
can be used as an alias for "vertical" and "y" as an alias for "horizontal"

stat_gradientinterval 197

(ggdist had an orientation parameter before base ggplot did, hence the dis-
crepancy).

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend Should this layer be included in the legends? Default is c(size = FALSE), unlike
most geoms, to match its common use cases. FALSE hides all legends, TRUE
shows all legends, and NA shows only those that are mapped (the default for
most geoms).

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Details

To visualize sample data, such as a data distribution, samples from a bootstrap distribution, or a
Bayesian posterior, you can supply samples to the x or y aesthetic.

To visualize analytical distributions, you can use the xdist or ydist aesthetic. For historical
reasons, you can also use dist to specify the distribution, though this is not recommended as it
does not work as well with orientation detection. These aesthetics can be used as follows:

• xdist, ydist, and dist can be any distribution object from the distributional package (dist_normal(),
dist_beta(), etc) or can be a posterior::rvar() object. Since these functions are vector-
ized, other columns can be passed directly to them in an aes() specification; e.g. aes(dist =
dist_normal(mu, sigma)) will work if mu and sigma are columns in the input data frame.

• dist can be a character vector giving the distribution name. Then the arg1, ... arg9 aes-
thetics (or args as a list column) specify distribution arguments. Distribution names should
correspond to R functions that have "p", "q", and "d" functions; e.g. "norm" is a valid dis-
tribution name because R defines the pnorm(), qnorm(), and dnorm() functions for Normal
distributions.
See the parse_dist() function for a useful way to generate dist and args values from
human-readable distribution specs (like "normal(0,1)"). Such specs are also produced by
other packages (like the brms::get_prior function in brms); thus, parse_dist() combined
with the stats described here can help you visualize the output of those functions.

Value

A ggplot2::Stat representing a gradient + interval geometry which can be added to a ggplot()
object.

Computed Variables

The following variables are computed by this stat and made available for use in aesthetic specifica-
tions (aes()) using the after_stat() function or the after_stat argument of stage():

• x or y: For slabs, the input values to the slab function. For intervals, the point summary from
the interval function. Whether it is x or y depends on orientation

• xmin or ymin: For intervals, the lower end of the interval from the interval function.

• xmax or ymax: For intervals, the upper end of the interval from the interval function.

https://pkg.mitchelloharawild.com/distributional/

198 stat_gradientinterval

• .width: For intervals, the interval width as a numeric value in [0, 1]. For slabs, the width
of the smallest interval containing that value of the slab.

• level: For intervals, the interval width as an ordered factor. For slabs, the level of the smallest
interval containing that value of the slab.

• pdf: For slabs, the probability density function (PDF). If options("ggdist.experimental.slab_data_in_intervals")
is TRUE: For intervals, the PDF at the point summary; intervals also have pdf_min and pdf_max
for the PDF at the lower and upper ends of the interval.

• cdf: For slabs, the cumulative distribution function. If options("ggdist.experimental.slab_data_in_intervals")
is TRUE: For intervals, the CDF at the point summary; intervals also have cdf_min and cdf_max
for the CDF at the lower and upper ends of the interval.

• n: For slabs, the number of data points summarized into that slab. If the slab was created from
an analytical distribution via the xdist, ydist, or dist aesthetic, n will be Inf.

• f: (deprecated) For slabs, the output values from the slab function (such as the PDF, CDF, or
CCDF), determined by slab_type. Instead of using slab_type to change f and then map-
ping f onto an aesthetic, it is now recommended to simply map the corresponding computed
variable (e.g. pdf, cdf, or 1 - cdf) directly onto the desired aesthetic.

Aesthetics

The slab+interval stats and geoms have a wide variety of aesthetics that control the appearance of
their three sub-geometries: the slab, the point, and the interval.

These stats support the following aesthetics:

• x: x position of the geometry (when orientation = "vertical"); or sample data to be summa-
rized (when orientation = "horizontal" with sample data).

• y: y position of the geometry (when orientation = "horizontal"); or sample data to be sum-
marized (when orientation = "vertical" with sample data).

• weight: When using samples (i.e. the x and y aesthetics, not xdist or ydist), optional
weights to be applied to each draw.

• xdist: When using analytical distributions, distribution to map on the x axis: a distributional
object (e.g. dist_normal()) or a posterior::rvar() object.

• ydist: When using analytical distributions, distribution to map on the y axis: a distributional
object (e.g. dist_normal()) or a posterior::rvar() object.

• dist: When using analytical distributions, a name of a distribution (e.g. "norm"), a distribu-
tional object (e.g. dist_normal()), or a posterior::rvar() object. See Details.

• args: Distribution arguments (args or arg1, ... arg9). See Details.

In addition, in their default configuration (paired with geom_slabinterval()) the following aes-
thetics are supported by the underlying geom:

Slab-specific aesthetics

• thickness: The thickness of the slab at each x value (if orientation = "horizontal") or y
value (if orientation = "vertical") of the slab.

stat_gradientinterval 199

• side: Which side to place the slab on. "topright", "top", and "right" are synonyms
which cause the slab to be drawn on the top or the right depending on if orientation
is "horizontal" or "vertical". "bottomleft", "bottom", and "left" are synonyms
which cause the slab to be drawn on the bottom or the left depending on if orientation
is "horizontal" or "vertical". "topleft" causes the slab to be drawn on the top or the
left, and "bottomright" causes the slab to be drawn on the bottom or the right. "both" draws
the slab mirrored on both sides (as in a violin plot).

• scale: What proportion of the region allocated to this geom to use to draw the slab. If scale
= 1, slabs that use the maximum range will just touch each other. Default is 0.9 to leave some
space between adjacent slabs. For a comprehensive discussion and examples of slab scaling
and normalization, see the thickness scale article.

• justification: Justification of the interval relative to the slab, where 0 indicates bottom/left
justification and 1 indicates top/right justification (depending on orientation). If justification
is NULL (the default), then it is set automatically based on the value of side: when side is
"top"/"right" justification is set to 0, when side is "bottom"/"left" justification
is set to 1, and when side is "both" justification is set to 0.5.

• datatype: When using composite geoms directly without a stat (e.g. geom_slabinterval()),
datatype is used to indicate which part of the geom a row in the data targets: rows with
datatype = "slab" target the slab portion of the geometry and rows with datatype = "interval"
target the interval portion of the geometry. This is set automatically when using ggdist stats.

Interval-specific aesthetics

• xmin: Left end of the interval sub-geometry (if orientation = "horizontal").

• xmax: Right end of the interval sub-geometry (if orientation = "horizontal").

• ymin: Lower end of the interval sub-geometry (if orientation = "vertical").

• ymax: Upper end of the interval sub-geometry (if orientation = "vertical").

Point-specific aesthetics

• shape: Shape type used to draw the point sub-geometry.

Color aesthetics

• colour: (or color) The color of the interval and point sub-geometries. Use the slab_color,
interval_color, or point_color aesthetics (below) to set sub-geometry colors separately.

• fill: The fill color of the slab and point sub-geometries. Use the slab_fill or point_fill
aesthetics (below) to set sub-geometry colors separately.

• alpha: The opacity of the slab, interval, and point sub-geometries. Use the slab_alpha,
interval_alpha, or point_alpha aesthetics (below) to set sub-geometry colors separately.

• colour_ramp: (or color_ramp) A secondary scale that modifies the color scale to "ramp" to
another color. See scale_colour_ramp() for examples.

• fill_ramp: A secondary scale that modifies the fill scale to "ramp" to another color. See
scale_fill_ramp() for examples.

Line aesthetics

https://mjskay.github.io/ggdist/articles/thickness.html

200 stat_gradientinterval

• linewidth: Width of the line used to draw the interval (except with geom_slab(): then
it is the width of the slab). With composite geometries including an interval and slab, use
slab_linewidth to set the line width of the slab (see below). For interval, raw linewidth
values are transformed according to the interval_size_domain and interval_size_range
parameters of the geom (see above).

• size: Determines the size of the point. If linewidth is not provided, size will also deter-
mines the width of the line used to draw the interval (this allows line width and point size to be
modified together by setting only size and not linewidth). Raw size values are transformed
according to the interval_size_domain, interval_size_range, and fatten_point pa-
rameters of the geom (see above). Use the point_size aesthetic (below) to set sub-geometry
size directly without applying the effects of interval_size_domain, interval_size_range,
and fatten_point.

• stroke: Width of the outline around the point sub-geometry.

• linetype: Type of line (e.g., "solid", "dashed", etc) used to draw the interval and the
outline of the slab (if it is visible). Use the slab_linetype or interval_linetype aesthetics
(below) to set sub-geometry line types separately.

Slab-specific color and line override aesthetics

• slab_fill: Override for fill: the fill color of the slab.

• slab_colour: (or slab_color) Override for colour/color: the outline color of the slab.

• slab_alpha: Override for alpha: the opacity of the slab.

• slab_linewidth: Override for linwidth: the width of the outline of the slab.

• slab_linetype: Override for linetype: the line type of the outline of the slab.

Interval-specific color and line override aesthetics

• interval_colour: (or interval_color) Override for colour/color: the color of the inter-
val.

• interval_alpha: Override for alpha: the opacity of the interval.

• interval_linetype: Override for linetype: the line type of the interval.

Point-specific color and line override aesthetics

• point_fill: Override for fill: the fill color of the point.

• point_colour: (or point_color) Override for colour/color: the outline color of the point.

• point_alpha: Override for alpha: the opacity of the point.

• point_size: Override for size: the size of the point.

Deprecated aesthetics

• slab_size: Use slab_linewidth.

• interval_size: Use interval_linewidth.

Other aesthetics (these work as in standard geoms)

stat_gradientinterval 201

• width

• height

• group

See examples of some of these aesthetics in action in vignette("slabinterval"). Learn more
about the sub-geom override aesthetics (like interval_color) in the scales documentation. Learn
more about basic ggplot aesthetics in vignette("ggplot2-specs").

See Also

See geom_slabinterval() for the geom underlying this stat. See stat_slabinterval() for the
stat this shortcut is based on.

Other slabinterval stats: stat_ccdfinterval(), stat_cdfinterval(), stat_eye(), stat_halfeye(),
stat_histinterval(), stat_interval(), stat_pointinterval(), stat_slab(), stat_spike()

Examples

library(dplyr)
library(ggplot2)
library(distributional)

theme_set(theme_ggdist())

ON SAMPLE DATA
set.seed(1234)
df = data.frame(

group = c("a", "b", "c"),
value = rnorm(1500, mean = c(5, 7, 9), sd = c(1, 1.5, 1))

)
df %>%

ggplot(aes(x = value, y = group)) +
stat_gradientinterval()

ON ANALYTICAL DISTRIBUTIONS
dist_df = data.frame(

group = c("a", "b", "c"),
mean = c(5, 7, 8),
sd = c(1, 1.5, 1)

)
Vectorized distribution types, like distributional::dist_normal()
and posterior::rvar(), can be used with the `xdist` / `ydist` aesthetics
dist_df %>%

ggplot(aes(y = group, xdist = dist_normal(mean, sd))) +
stat_gradientinterval()

202 stat_halfeye

stat_halfeye Half-eye (density + interval) plot (shortcut stat)

Description

Equivalent to stat_slabinterval(), whose default settings create half-eye (density + interval)
plots.

Usage

stat_halfeye(
mapping = NULL,
data = NULL,
geom = "slabinterval",
position = "identity",
...,
p_limits = c(NA, NA),
density = "bounded",
adjust = waiver(),
trim = TRUE,
expand = FALSE,
breaks = waiver(),
align = "none",
outline_bars = FALSE,
point_interval = "median_qi",
slab_type = NULL,
limits = NULL,
n = 501,
.width = c(0.66, 0.95),
orientation = NA,
na.rm = FALSE,
show.legend = c(size = FALSE),
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.

stat_halfeye 203

A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom Use to override the default connection between stat_halfeye() and geom_slabinterval()

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function. Setting this equal to "dodge" (position_dodge()) or "dodgejust"
(position_dodgejust()) can be useful if you have overlapping geometries.

... Other arguments passed to layer(). These are often aesthetics, used to set an
aesthetic to a fixed value, like colour = "red" or linewidth = 3 (see Aesthet-
ics, below). They may also be parameters to the paired geom/stat. When paired
with the default geom, geom_slabinterval(), these include:

normalize How to normalize heights of functions input to the thickness aes-
thetic. One of:

• "all": normalize so that the maximum height across all data is 1.
• "panels": normalize within panels so that the maximum height in each

panel is 1.
• "xy": normalize within the x/y axis opposite the orientation of this

geom so that the maximum height at each value of the opposite axis is
1.

• "groups": normalize within values of the opposite axis and within
each group so that the maximum height in each group is 1.

• "none": values are taken as is with no normalization (this should prob-
ably only be used with functions whose values are in [0,1], such as
CDFs).

For a comprehensive discussion and examples of slab scaling and normal-
ization, see the thickness scale article.

fill_type What type of fill to use when the fill color or alpha varies within a
slab. One of:

• "segments": breaks up the slab geometry into segments for each unique
combination of fill color and alpha value. This approach is supported
by all graphics devices and works well for sharp cutoff values, but can
give ugly results if a large number of unique fill colors are being used
(as in gradients, like in stat_gradientinterval()).

• "gradient": a grid::linearGradient() is used to create a smooth
gradient fill. This works well for large numbers of unique fill colors,
but requires R >= 4.1 and is not yet supported on all graphics devices.
As of this writing, the png() graphics device with type = "cairo", the
svg() device, the pdf() device, and the ragg::agg_png() devices are
known to support this option. On R < 4.1, this option will fall back to
fill_type = "segments" with a message.

• "auto": attempts to use fill_type = "gradient" if support for it can
be auto-detected. On R >= 4.2, support for gradients can be auto-
detected on some graphics devices; if support is not detected, this op-
tion will fall back to fill_type = "segments" (in case of a false nega-
tive, fill_type = "gradient" can be set explicitly). On R < 4.2, sup-
port for gradients cannot be auto-detected, so this will always fall back

https://mjskay.github.io/ggdist/articles/thickness.html

204 stat_halfeye

to fill_type = "segments", in which case you can set fill_type =
"gradient" explicitly if you are using a graphics device that support
gradients.

interval_size_domain A length-2 numeric vector giving the minimum and
maximum of the values of the size and linewidth aesthetics that will be
translated into actual sizes for intervals drawn according to interval_size_range
(see the documentation for that argument.)

interval_size_range A length-2 numeric vector. This geom scales the raw
size aesthetic values when drawing interval and point sizes, as they tend to
be too thick when using the default settings of scale_size_continuous(),
which give sizes with a range of c(1, 6). The interval_size_domain
value indicates the input domain of raw size values (typically this should be
equal to the value of the range argument of the scale_size_continuous()
function), and interval_size_range indicates the desired output range of
the size values (the min and max of the actual sizes used to draw inter-
vals). Most of the time it is not recommended to change the value of this
argument, as it may result in strange scaling of legends; this argument is
a holdover from earlier versions that did not have size aesthetics targeting
the point and interval separately. If you want to adjust the size of the in-
terval or points separately, you can also use the linewidth or point_size
aesthetics; see sub-geometry-scales.

fatten_point A multiplicative factor used to adjust the size of the point rela-
tive to the size of the thickest interval line. If you wish to specify point sizes
directly, you can also use the point_size aesthetic and scale_point_size_continuous()
or scale_point_size_discrete(); sizes specified with that aesthetic will
not be adjusted using fatten_point.

arrow grid::arrow() giving the arrow heads to use on the interval, or NULL
for no arrows.

subguide Sub-guide used to annotate the thickness scale. One of:
• A function that takes a scale argument giving a ggplot2::Scale object

and an orientation argument giving the orientation of the geometry
and then returns a grid::grob that will draw the axis annotation, such as
subguide_axis() (to draw a traditional axis) or subguide_none() (to
draw no annotation). See subguide_axis() for a list of possibilities
and examples.

• A string giving the name of such a function when prefixed with "subguide";
e.g. "axis" or "none".

p_limits Probability limits (as a vector of size 2) used to determine the lower and upper
limits of theoretical distributions (distributions from samples ignore this param-
eter and determine their limits based on the limits of the sample). E.g., if this
is c(.001, .999), then a slab is drawn for the distribution from the quantile
at p = .001 to the quantile at p = .999. If the lower (respectively upper) limit is
NA, then the lower (upper) limit will be the minimum (maximum) of the distribu-
tion’s support if it is finite, and 0.001 (0.999) if it is not finite. E.g., if p_limits
is c(NA, NA), on a gamma distribution the effective value of p_limits would be
c(0, .999) since the gamma distribution is defined on (0, Inf); whereas on
a normal distribution it would be equivalent to c(.001, .999) since the normal
distribution is defined on (-Inf, Inf).

stat_halfeye 205

density Density estimator for sample data. One of:

• A function which takes a numeric vector and returns a list with elements
x (giving grid points for the density estimator) and y (the corresponding
densities). ggdist provides a family of functions following this format, in-
cluding density_unbounded() and density_bounded(). This format is
also compatible with stats::density().

• A string giving the suffix of a function name that starts with "density_";
e.g. "bounded" for [density_bounded()], "unbounded" for [density_unbounded()],
or "histogram" for density_histogram(). Defaults to "bounded", i.e.
density_bounded(), which estimates the bounds from the data and then
uses a bounded density estimator based on the reflection method.

adjust Passed to density: the bandwidth for the density estimator for sample data is
adjusted by multiplying it by this value. See e.g. density_bounded() for more
information. Default (waiver()) defers to the default of the density estimator,
which is usually 1.

trim For sample data, should the density estimate be trimmed to the range of the data?
Passed on to the density estimator; see the density parameter. Default TRUE.

expand For sample data, should the slab be expanded to the limits of the scale? Default
FALSE. Can be length two to control expansion to the lower and upper limit
respectively.

breaks Determines the breakpoints defining bins. Defaults to "Scott". Similar to (but
not exactly the same as) the breaks argument to graphics::hist(). One of:

• A scalar (length-1) numeric giving the number of bins
• A vector numeric giving the breakpoints between histogram bins
• A function taking x and weights and returning either the number of bins or

a vector of breakpoints
• A string giving the suffix of a function that starts with "breaks_". ggdist

provides weighted implementations of the "Sturges", "Scott", and "FD"
break-finding algorithms from graphics::hist(), as well as breaks_fixed()
for manually setting the bin width. See breaks.

For example, breaks = "Sturges" will use the breaks_Sturges() algorithm,
breaks = 9 will create 9 bins, and breaks = breaks_fixed(width = 1) will set
the bin width to 1.

align Determines how to align the breakpoints defining bins. Default ("none") per-
forms no alignment. One of:

• A scalar (length-1) numeric giving an offset that is subtracted from the
breaks. The offset must be between 0 and the bin width.

• A function taking a sorted vector of breaks (bin edges) and returning an
offset to subtract from the breaks.

• A string giving the suffix of a function that starts with "align_" used to
determine the alignment, such as align_none(), align_boundary(), or
align_center().

For example, align = "none" will provide no alignment, align = align_center(at
= 0) will center a bin on 0, and align = align_boundary(at = 0) will align a
bin edge on 0.

206 stat_halfeye

outline_bars For sample data (if density is "histogram") and for discrete analytical dis-
tributions (whose slabs are drawn as histograms), determines if outlines in be-
tween the bars are drawn when the slab_color aesthetic is used. If FALSE (the
default), the outline is drawn only along the tops of the bars; if TRUE, outlines in
between bars are also drawn. See density_histogram().

point_interval A function from the point_interval() family (e.g., median_qi, mean_qi,
mode_hdi, etc), or a string giving the name of a function from that family (e.g.,
"median_qi", "mean_qi", "mode_hdi", etc; if a string, the caller’s environment
is searched for the function, followed by the ggdist environment). This function
determines the point summary (typically mean, median, or mode) and interval
type (quantile interval, qi; highest-density interval, hdi; or highest-density con-
tinuous interval, hdci). Output will be converted to the appropriate x- or y-based
aesthetics depending on the value of orientation. See the point_interval()
family of functions for more information.

slab_type (deprecated) The type of slab function to calculate: probability density (or mass)
function ("pdf"), cumulative distribution function ("cdf"), or complementary
CDF ("ccdf"). Instead of using slab_type to change f and then mapping f
onto an aesthetic, it is now recommended to simply map the corresponding com-
puted variable (e.g. pdf, cdf, or 1 - cdf) directly onto the desired aesthetic.

limits Manually-specified limits for the slab, as a vector of length two. These limits are
combined with those computed based on p_limits as well as the limits defined
by the scales of the plot to determine the limits used to draw the slab functions:
these limits specify the maximal limits; i.e., if specified, the limits will not be
wider than these (but may be narrower). Use NA to leave a limit alone; e.g.
limits = c(0, NA) will ensure that the lower limit does not go below 0, but let
the upper limit be determined by either p_limits or the scale settings.

n Number of points at which to evaluate the function that defines the slab.

.width The .width argument passed to point_interval: a vector of probabilities to
use that determine the widths of the resulting intervals. If multiple probabilities
are provided, multiple intervals per group are generated, each with a different
probability interval (and value of the corresponding .width and level gener-
ated variables).

orientation Whether this geom is drawn horizontally or vertically. One of:

• NA (default): automatically detect the orientation based on how the aesthet-
ics are assigned. Automatic detection works most of the time.

• "horizontal" (or "y"): draw horizontally, using the y aesthetic to identify
different groups. For each group, uses the x, xmin, xmax, and thickness
aesthetics to draw points, intervals, and slabs.

• "vertical" (or "x"): draw vertically, using the x aesthetic to identify dif-
ferent groups. For each group, uses the y, ymin, ymax, and thickness
aesthetics to draw points, intervals, and slabs.

For compatibility with the base ggplot naming scheme for orientation, "x"
can be used as an alias for "vertical" and "y" as an alias for "horizontal"
(ggdist had an orientation parameter before base ggplot did, hence the dis-
crepancy).

stat_halfeye 207

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend Should this layer be included in the legends? Default is c(size = FALSE), unlike
most geoms, to match its common use cases. FALSE hides all legends, TRUE
shows all legends, and NA shows only those that are mapped (the default for
most geoms).

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Details

To visualize sample data, such as a data distribution, samples from a bootstrap distribution, or a
Bayesian posterior, you can supply samples to the x or y aesthetic.

To visualize analytical distributions, you can use the xdist or ydist aesthetic. For historical
reasons, you can also use dist to specify the distribution, though this is not recommended as it
does not work as well with orientation detection. These aesthetics can be used as follows:

• xdist, ydist, and dist can be any distribution object from the distributional package (dist_normal(),
dist_beta(), etc) or can be a posterior::rvar() object. Since these functions are vector-
ized, other columns can be passed directly to them in an aes() specification; e.g. aes(dist =
dist_normal(mu, sigma)) will work if mu and sigma are columns in the input data frame.

• dist can be a character vector giving the distribution name. Then the arg1, ... arg9 aes-
thetics (or args as a list column) specify distribution arguments. Distribution names should
correspond to R functions that have "p", "q", and "d" functions; e.g. "norm" is a valid dis-
tribution name because R defines the pnorm(), qnorm(), and dnorm() functions for Normal
distributions.
See the parse_dist() function for a useful way to generate dist and args values from
human-readable distribution specs (like "normal(0,1)"). Such specs are also produced by
other packages (like the brms::get_prior function in brms); thus, parse_dist() combined
with the stats described here can help you visualize the output of those functions.

Value

A ggplot2::Stat representing a half-eye (density + interval) geometry which can be added to a
ggplot() object.

Computed Variables

The following variables are computed by this stat and made available for use in aesthetic specifica-
tions (aes()) using the after_stat() function or the after_stat argument of stage():

• x or y: For slabs, the input values to the slab function. For intervals, the point summary from
the interval function. Whether it is x or y depends on orientation

• xmin or ymin: For intervals, the lower end of the interval from the interval function.

• xmax or ymax: For intervals, the upper end of the interval from the interval function.

• .width: For intervals, the interval width as a numeric value in [0, 1]. For slabs, the width
of the smallest interval containing that value of the slab.

https://pkg.mitchelloharawild.com/distributional/

208 stat_halfeye

• level: For intervals, the interval width as an ordered factor. For slabs, the level of the smallest
interval containing that value of the slab.

• pdf: For slabs, the probability density function (PDF). If options("ggdist.experimental.slab_data_in_intervals")
is TRUE: For intervals, the PDF at the point summary; intervals also have pdf_min and pdf_max
for the PDF at the lower and upper ends of the interval.

• cdf: For slabs, the cumulative distribution function. If options("ggdist.experimental.slab_data_in_intervals")
is TRUE: For intervals, the CDF at the point summary; intervals also have cdf_min and cdf_max
for the CDF at the lower and upper ends of the interval.

• n: For slabs, the number of data points summarized into that slab. If the slab was created from
an analytical distribution via the xdist, ydist, or dist aesthetic, n will be Inf.

• f: (deprecated) For slabs, the output values from the slab function (such as the PDF, CDF, or
CCDF), determined by slab_type. Instead of using slab_type to change f and then map-
ping f onto an aesthetic, it is now recommended to simply map the corresponding computed
variable (e.g. pdf, cdf, or 1 - cdf) directly onto the desired aesthetic.

Aesthetics

The slab+interval stats and geoms have a wide variety of aesthetics that control the appearance of
their three sub-geometries: the slab, the point, and the interval.
These stats support the following aesthetics:

• x: x position of the geometry (when orientation = "vertical"); or sample data to be summa-
rized (when orientation = "horizontal" with sample data).

• y: y position of the geometry (when orientation = "horizontal"); or sample data to be sum-
marized (when orientation = "vertical" with sample data).

• weight: When using samples (i.e. the x and y aesthetics, not xdist or ydist), optional
weights to be applied to each draw.

• xdist: When using analytical distributions, distribution to map on the x axis: a distributional
object (e.g. dist_normal()) or a posterior::rvar() object.

• ydist: When using analytical distributions, distribution to map on the y axis: a distributional
object (e.g. dist_normal()) or a posterior::rvar() object.

• dist: When using analytical distributions, a name of a distribution (e.g. "norm"), a distribu-
tional object (e.g. dist_normal()), or a posterior::rvar() object. See Details.

• args: Distribution arguments (args or arg1, ... arg9). See Details.

In addition, in their default configuration (paired with geom_slabinterval()) the following aes-
thetics are supported by the underlying geom:

Slab-specific aesthetics

• thickness: The thickness of the slab at each x value (if orientation = "horizontal") or y
value (if orientation = "vertical") of the slab.

• side: Which side to place the slab on. "topright", "top", and "right" are synonyms
which cause the slab to be drawn on the top or the right depending on if orientation
is "horizontal" or "vertical". "bottomleft", "bottom", and "left" are synonyms
which cause the slab to be drawn on the bottom or the left depending on if orientation

stat_halfeye 209

is "horizontal" or "vertical". "topleft" causes the slab to be drawn on the top or the
left, and "bottomright" causes the slab to be drawn on the bottom or the right. "both" draws
the slab mirrored on both sides (as in a violin plot).

• scale: What proportion of the region allocated to this geom to use to draw the slab. If scale
= 1, slabs that use the maximum range will just touch each other. Default is 0.9 to leave some
space between adjacent slabs. For a comprehensive discussion and examples of slab scaling
and normalization, see the thickness scale article.

• justification: Justification of the interval relative to the slab, where 0 indicates bottom/left
justification and 1 indicates top/right justification (depending on orientation). If justification
is NULL (the default), then it is set automatically based on the value of side: when side is
"top"/"right" justification is set to 0, when side is "bottom"/"left" justification
is set to 1, and when side is "both" justification is set to 0.5.

• datatype: When using composite geoms directly without a stat (e.g. geom_slabinterval()),
datatype is used to indicate which part of the geom a row in the data targets: rows with
datatype = "slab" target the slab portion of the geometry and rows with datatype = "interval"
target the interval portion of the geometry. This is set automatically when using ggdist stats.

Interval-specific aesthetics

• xmin: Left end of the interval sub-geometry (if orientation = "horizontal").

• xmax: Right end of the interval sub-geometry (if orientation = "horizontal").

• ymin: Lower end of the interval sub-geometry (if orientation = "vertical").

• ymax: Upper end of the interval sub-geometry (if orientation = "vertical").

Point-specific aesthetics

• shape: Shape type used to draw the point sub-geometry.

Color aesthetics

• colour: (or color) The color of the interval and point sub-geometries. Use the slab_color,
interval_color, or point_color aesthetics (below) to set sub-geometry colors separately.

• fill: The fill color of the slab and point sub-geometries. Use the slab_fill or point_fill
aesthetics (below) to set sub-geometry colors separately.

• alpha: The opacity of the slab, interval, and point sub-geometries. Use the slab_alpha,
interval_alpha, or point_alpha aesthetics (below) to set sub-geometry colors separately.

• colour_ramp: (or color_ramp) A secondary scale that modifies the color scale to "ramp" to
another color. See scale_colour_ramp() for examples.

• fill_ramp: A secondary scale that modifies the fill scale to "ramp" to another color. See
scale_fill_ramp() for examples.

Line aesthetics

• linewidth: Width of the line used to draw the interval (except with geom_slab(): then
it is the width of the slab). With composite geometries including an interval and slab, use
slab_linewidth to set the line width of the slab (see below). For interval, raw linewidth
values are transformed according to the interval_size_domain and interval_size_range
parameters of the geom (see above).

https://mjskay.github.io/ggdist/articles/thickness.html

210 stat_halfeye

• size: Determines the size of the point. If linewidth is not provided, size will also deter-
mines the width of the line used to draw the interval (this allows line width and point size to be
modified together by setting only size and not linewidth). Raw size values are transformed
according to the interval_size_domain, interval_size_range, and fatten_point pa-
rameters of the geom (see above). Use the point_size aesthetic (below) to set sub-geometry
size directly without applying the effects of interval_size_domain, interval_size_range,
and fatten_point.

• stroke: Width of the outline around the point sub-geometry.

• linetype: Type of line (e.g., "solid", "dashed", etc) used to draw the interval and the
outline of the slab (if it is visible). Use the slab_linetype or interval_linetype aesthetics
(below) to set sub-geometry line types separately.

Slab-specific color and line override aesthetics

• slab_fill: Override for fill: the fill color of the slab.

• slab_colour: (or slab_color) Override for colour/color: the outline color of the slab.

• slab_alpha: Override for alpha: the opacity of the slab.

• slab_linewidth: Override for linwidth: the width of the outline of the slab.

• slab_linetype: Override for linetype: the line type of the outline of the slab.

Interval-specific color and line override aesthetics

• interval_colour: (or interval_color) Override for colour/color: the color of the inter-
val.

• interval_alpha: Override for alpha: the opacity of the interval.

• interval_linetype: Override for linetype: the line type of the interval.

Point-specific color and line override aesthetics

• point_fill: Override for fill: the fill color of the point.

• point_colour: (or point_color) Override for colour/color: the outline color of the point.

• point_alpha: Override for alpha: the opacity of the point.

• point_size: Override for size: the size of the point.

Deprecated aesthetics

• slab_size: Use slab_linewidth.

• interval_size: Use interval_linewidth.

Other aesthetics (these work as in standard geoms)

• width

• height

• group

See examples of some of these aesthetics in action in vignette("slabinterval"). Learn more
about the sub-geom override aesthetics (like interval_color) in the scales documentation. Learn
more about basic ggplot aesthetics in vignette("ggplot2-specs").

stat_histinterval 211

See Also

See geom_slabinterval() for the geom underlying this stat. See stat_slabinterval() for the
stat this shortcut is based on.

Other slabinterval stats: stat_ccdfinterval(), stat_cdfinterval(), stat_eye(), stat_gradientinterval(),
stat_histinterval(), stat_interval(), stat_pointinterval(), stat_slab(), stat_spike()

Examples

library(dplyr)
library(ggplot2)
library(distributional)

theme_set(theme_ggdist())

ON SAMPLE DATA
set.seed(1234)
df = data.frame(

group = c("a", "b", "c"),
value = rnorm(1500, mean = c(5, 7, 9), sd = c(1, 1.5, 1))

)
df %>%

ggplot(aes(x = value, y = group)) +
stat_halfeye()

ON ANALYTICAL DISTRIBUTIONS
dist_df = data.frame(

group = c("a", "b", "c"),
mean = c(5, 7, 8),
sd = c(1, 1.5, 1)

)
Vectorized distribution types, like distributional::dist_normal()
and posterior::rvar(), can be used with the `xdist` / `ydist` aesthetics
dist_df %>%

ggplot(aes(y = group, xdist = dist_normal(mean, sd))) +
stat_halfeye()

stat_histinterval Histogram + interval plot (shortcut stat)

Description

Shortcut version of stat_slabinterval() with geom_slabinterval() for creating histogram +
interval plots.

Roughly equivalent to:

stat_slabinterval(
density = "histogram"

)

212 stat_histinterval

Usage

stat_histinterval(
mapping = NULL,
data = NULL,
geom = "slabinterval",
position = "identity",
...,
density = "histogram",
p_limits = c(NA, NA),
adjust = waiver(),
trim = TRUE,
expand = FALSE,
breaks = waiver(),
align = "none",
outline_bars = FALSE,
point_interval = "median_qi",
slab_type = NULL,
limits = NULL,
n = 501,
.width = c(0.66, 0.95),
orientation = NA,
na.rm = FALSE,
show.legend = c(size = FALSE),
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom Use to override the default connection between stat_histinterval() and
geom_slabinterval()

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function. Setting this equal to "dodge" (position_dodge()) or "dodgejust"
(position_dodgejust()) can be useful if you have overlapping geometries.

... Other arguments passed to layer(). These are often aesthetics, used to set an
aesthetic to a fixed value, like colour = "red" or linewidth = 3 (see Aesthet-

stat_histinterval 213

ics, below). They may also be parameters to the paired geom/stat. When paired
with the default geom, geom_slabinterval(), these include:

normalize How to normalize heights of functions input to the thickness aes-
thetic. One of:

• "all": normalize so that the maximum height across all data is 1.
• "panels": normalize within panels so that the maximum height in each

panel is 1.
• "xy": normalize within the x/y axis opposite the orientation of this

geom so that the maximum height at each value of the opposite axis is
1.

• "groups": normalize within values of the opposite axis and within
each group so that the maximum height in each group is 1.

• "none": values are taken as is with no normalization (this should prob-
ably only be used with functions whose values are in [0,1], such as
CDFs).

For a comprehensive discussion and examples of slab scaling and normal-
ization, see the thickness scale article.

fill_type What type of fill to use when the fill color or alpha varies within a
slab. One of:

• "segments": breaks up the slab geometry into segments for each unique
combination of fill color and alpha value. This approach is supported
by all graphics devices and works well for sharp cutoff values, but can
give ugly results if a large number of unique fill colors are being used
(as in gradients, like in stat_gradientinterval()).

• "gradient": a grid::linearGradient() is used to create a smooth
gradient fill. This works well for large numbers of unique fill colors,
but requires R >= 4.1 and is not yet supported on all graphics devices.
As of this writing, the png() graphics device with type = "cairo", the
svg() device, the pdf() device, and the ragg::agg_png() devices are
known to support this option. On R < 4.1, this option will fall back to
fill_type = "segments" with a message.

• "auto": attempts to use fill_type = "gradient" if support for it can
be auto-detected. On R >= 4.2, support for gradients can be auto-
detected on some graphics devices; if support is not detected, this op-
tion will fall back to fill_type = "segments" (in case of a false nega-
tive, fill_type = "gradient" can be set explicitly). On R < 4.2, sup-
port for gradients cannot be auto-detected, so this will always fall back
to fill_type = "segments", in which case you can set fill_type =
"gradient" explicitly if you are using a graphics device that support
gradients.

interval_size_domain A length-2 numeric vector giving the minimum and
maximum of the values of the size and linewidth aesthetics that will be
translated into actual sizes for intervals drawn according to interval_size_range
(see the documentation for that argument.)

interval_size_range A length-2 numeric vector. This geom scales the raw
size aesthetic values when drawing interval and point sizes, as they tend to
be too thick when using the default settings of scale_size_continuous(),

https://mjskay.github.io/ggdist/articles/thickness.html

214 stat_histinterval

which give sizes with a range of c(1, 6). The interval_size_domain
value indicates the input domain of raw size values (typically this should be
equal to the value of the range argument of the scale_size_continuous()
function), and interval_size_range indicates the desired output range of
the size values (the min and max of the actual sizes used to draw inter-
vals). Most of the time it is not recommended to change the value of this
argument, as it may result in strange scaling of legends; this argument is
a holdover from earlier versions that did not have size aesthetics targeting
the point and interval separately. If you want to adjust the size of the in-
terval or points separately, you can also use the linewidth or point_size
aesthetics; see sub-geometry-scales.

fatten_point A multiplicative factor used to adjust the size of the point rela-
tive to the size of the thickest interval line. If you wish to specify point sizes
directly, you can also use the point_size aesthetic and scale_point_size_continuous()
or scale_point_size_discrete(); sizes specified with that aesthetic will
not be adjusted using fatten_point.

arrow grid::arrow() giving the arrow heads to use on the interval, or NULL
for no arrows.

subguide Sub-guide used to annotate the thickness scale. One of:
• A function that takes a scale argument giving a ggplot2::Scale object

and an orientation argument giving the orientation of the geometry
and then returns a grid::grob that will draw the axis annotation, such as
subguide_axis() (to draw a traditional axis) or subguide_none() (to
draw no annotation). See subguide_axis() for a list of possibilities
and examples.

• A string giving the name of such a function when prefixed with "subguide";
e.g. "axis" or "none".

density Density estimator for sample data. One of:

• A function which takes a numeric vector and returns a list with elements
x (giving grid points for the density estimator) and y (the corresponding
densities). ggdist provides a family of functions following this format, in-
cluding density_unbounded() and density_bounded(). This format is
also compatible with stats::density().

• A string giving the suffix of a function name that starts with "density_";
e.g. "bounded" for [density_bounded()], "unbounded" for [density_unbounded()],
or "histogram" for density_histogram(). Defaults to "bounded", i.e.
density_bounded(), which estimates the bounds from the data and then
uses a bounded density estimator based on the reflection method.

p_limits Probability limits (as a vector of size 2) used to determine the lower and upper
limits of theoretical distributions (distributions from samples ignore this param-
eter and determine their limits based on the limits of the sample). E.g., if this
is c(.001, .999), then a slab is drawn for the distribution from the quantile
at p = .001 to the quantile at p = .999. If the lower (respectively upper) limit is
NA, then the lower (upper) limit will be the minimum (maximum) of the distribu-
tion’s support if it is finite, and 0.001 (0.999) if it is not finite. E.g., if p_limits
is c(NA, NA), on a gamma distribution the effective value of p_limits would be
c(0, .999) since the gamma distribution is defined on (0, Inf); whereas on

stat_histinterval 215

a normal distribution it would be equivalent to c(.001, .999) since the normal
distribution is defined on (-Inf, Inf).

adjust Passed to density: the bandwidth for the density estimator for sample data is
adjusted by multiplying it by this value. See e.g. density_bounded() for more
information. Default (waiver()) defers to the default of the density estimator,
which is usually 1.

trim For sample data, should the density estimate be trimmed to the range of the data?
Passed on to the density estimator; see the density parameter. Default TRUE.

expand For sample data, should the slab be expanded to the limits of the scale? Default
FALSE. Can be length two to control expansion to the lower and upper limit
respectively.

breaks Determines the breakpoints defining bins. Defaults to "Scott". Similar to (but
not exactly the same as) the breaks argument to graphics::hist(). One of:

• A scalar (length-1) numeric giving the number of bins
• A vector numeric giving the breakpoints between histogram bins
• A function taking x and weights and returning either the number of bins or

a vector of breakpoints
• A string giving the suffix of a function that starts with "breaks_". ggdist

provides weighted implementations of the "Sturges", "Scott", and "FD"
break-finding algorithms from graphics::hist(), as well as breaks_fixed()
for manually setting the bin width. See breaks.

For example, breaks = "Sturges" will use the breaks_Sturges() algorithm,
breaks = 9 will create 9 bins, and breaks = breaks_fixed(width = 1) will set
the bin width to 1.

align Determines how to align the breakpoints defining bins. Default ("none") per-
forms no alignment. One of:

• A scalar (length-1) numeric giving an offset that is subtracted from the
breaks. The offset must be between 0 and the bin width.

• A function taking a sorted vector of breaks (bin edges) and returning an
offset to subtract from the breaks.

• A string giving the suffix of a function that starts with "align_" used to
determine the alignment, such as align_none(), align_boundary(), or
align_center().

For example, align = "none" will provide no alignment, align = align_center(at
= 0) will center a bin on 0, and align = align_boundary(at = 0) will align a
bin edge on 0.

outline_bars For sample data (if density is "histogram") and for discrete analytical dis-
tributions (whose slabs are drawn as histograms), determines if outlines in be-
tween the bars are drawn when the slab_color aesthetic is used. If FALSE (the
default), the outline is drawn only along the tops of the bars; if TRUE, outlines in
between bars are also drawn. See density_histogram().

point_interval A function from the point_interval() family (e.g., median_qi, mean_qi,
mode_hdi, etc), or a string giving the name of a function from that family (e.g.,
"median_qi", "mean_qi", "mode_hdi", etc; if a string, the caller’s environment

216 stat_histinterval

is searched for the function, followed by the ggdist environment). This function
determines the point summary (typically mean, median, or mode) and interval
type (quantile interval, qi; highest-density interval, hdi; or highest-density con-
tinuous interval, hdci). Output will be converted to the appropriate x- or y-based
aesthetics depending on the value of orientation. See the point_interval()
family of functions for more information.

slab_type (deprecated) The type of slab function to calculate: probability density (or mass)
function ("pdf"), cumulative distribution function ("cdf"), or complementary
CDF ("ccdf"). Instead of using slab_type to change f and then mapping f
onto an aesthetic, it is now recommended to simply map the corresponding com-
puted variable (e.g. pdf, cdf, or 1 - cdf) directly onto the desired aesthetic.

limits Manually-specified limits for the slab, as a vector of length two. These limits are
combined with those computed based on p_limits as well as the limits defined
by the scales of the plot to determine the limits used to draw the slab functions:
these limits specify the maximal limits; i.e., if specified, the limits will not be
wider than these (but may be narrower). Use NA to leave a limit alone; e.g.
limits = c(0, NA) will ensure that the lower limit does not go below 0, but let
the upper limit be determined by either p_limits or the scale settings.

n Number of points at which to evaluate the function that defines the slab.

.width The .width argument passed to point_interval: a vector of probabilities to
use that determine the widths of the resulting intervals. If multiple probabilities
are provided, multiple intervals per group are generated, each with a different
probability interval (and value of the corresponding .width and level gener-
ated variables).

orientation Whether this geom is drawn horizontally or vertically. One of:

• NA (default): automatically detect the orientation based on how the aesthet-
ics are assigned. Automatic detection works most of the time.

• "horizontal" (or "y"): draw horizontally, using the y aesthetic to identify
different groups. For each group, uses the x, xmin, xmax, and thickness
aesthetics to draw points, intervals, and slabs.

• "vertical" (or "x"): draw vertically, using the x aesthetic to identify dif-
ferent groups. For each group, uses the y, ymin, ymax, and thickness
aesthetics to draw points, intervals, and slabs.

For compatibility with the base ggplot naming scheme for orientation, "x"
can be used as an alias for "vertical" and "y" as an alias for "horizontal"
(ggdist had an orientation parameter before base ggplot did, hence the dis-
crepancy).

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend Should this layer be included in the legends? Default is c(size = FALSE), unlike
most geoms, to match its common use cases. FALSE hides all legends, TRUE
shows all legends, and NA shows only those that are mapped (the default for
most geoms).

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

stat_histinterval 217

Details

To visualize sample data, such as a data distribution, samples from a bootstrap distribution, or a
Bayesian posterior, you can supply samples to the x or y aesthetic.

To visualize analytical distributions, you can use the xdist or ydist aesthetic. For historical
reasons, you can also use dist to specify the distribution, though this is not recommended as it
does not work as well with orientation detection. These aesthetics can be used as follows:

• xdist, ydist, and dist can be any distribution object from the distributional package (dist_normal(),
dist_beta(), etc) or can be a posterior::rvar() object. Since these functions are vector-
ized, other columns can be passed directly to them in an aes() specification; e.g. aes(dist =
dist_normal(mu, sigma)) will work if mu and sigma are columns in the input data frame.

• dist can be a character vector giving the distribution name. Then the arg1, ... arg9 aes-
thetics (or args as a list column) specify distribution arguments. Distribution names should
correspond to R functions that have "p", "q", and "d" functions; e.g. "norm" is a valid dis-
tribution name because R defines the pnorm(), qnorm(), and dnorm() functions for Normal
distributions.
See the parse_dist() function for a useful way to generate dist and args values from
human-readable distribution specs (like "normal(0,1)"). Such specs are also produced by
other packages (like the brms::get_prior function in brms); thus, parse_dist() combined
with the stats described here can help you visualize the output of those functions.

Value

A ggplot2::Stat representing a histogram + interval geometry which can be added to a ggplot()
object.

Computed Variables

The following variables are computed by this stat and made available for use in aesthetic specifica-
tions (aes()) using the after_stat() function or the after_stat argument of stage():

• x or y: For slabs, the input values to the slab function. For intervals, the point summary from
the interval function. Whether it is x or y depends on orientation

• xmin or ymin: For intervals, the lower end of the interval from the interval function.

• xmax or ymax: For intervals, the upper end of the interval from the interval function.

• .width: For intervals, the interval width as a numeric value in [0, 1]. For slabs, the width
of the smallest interval containing that value of the slab.

• level: For intervals, the interval width as an ordered factor. For slabs, the level of the smallest
interval containing that value of the slab.

• pdf: For slabs, the probability density function (PDF). If options("ggdist.experimental.slab_data_in_intervals")
is TRUE: For intervals, the PDF at the point summary; intervals also have pdf_min and pdf_max
for the PDF at the lower and upper ends of the interval.

• cdf: For slabs, the cumulative distribution function. If options("ggdist.experimental.slab_data_in_intervals")
is TRUE: For intervals, the CDF at the point summary; intervals also have cdf_min and cdf_max
for the CDF at the lower and upper ends of the interval.

• n: For slabs, the number of data points summarized into that slab. If the slab was created from
an analytical distribution via the xdist, ydist, or dist aesthetic, n will be Inf.

https://pkg.mitchelloharawild.com/distributional/

218 stat_histinterval

• f: (deprecated) For slabs, the output values from the slab function (such as the PDF, CDF, or
CCDF), determined by slab_type. Instead of using slab_type to change f and then map-
ping f onto an aesthetic, it is now recommended to simply map the corresponding computed
variable (e.g. pdf, cdf, or 1 - cdf) directly onto the desired aesthetic.

Aesthetics

The slab+interval stats and geoms have a wide variety of aesthetics that control the appearance of
their three sub-geometries: the slab, the point, and the interval.
These stats support the following aesthetics:

• x: x position of the geometry (when orientation = "vertical"); or sample data to be summa-
rized (when orientation = "horizontal" with sample data).

• y: y position of the geometry (when orientation = "horizontal"); or sample data to be sum-
marized (when orientation = "vertical" with sample data).

• weight: When using samples (i.e. the x and y aesthetics, not xdist or ydist), optional
weights to be applied to each draw.

• xdist: When using analytical distributions, distribution to map on the x axis: a distributional
object (e.g. dist_normal()) or a posterior::rvar() object.

• ydist: When using analytical distributions, distribution to map on the y axis: a distributional
object (e.g. dist_normal()) or a posterior::rvar() object.

• dist: When using analytical distributions, a name of a distribution (e.g. "norm"), a distribu-
tional object (e.g. dist_normal()), or a posterior::rvar() object. See Details.

• args: Distribution arguments (args or arg1, ... arg9). See Details.

In addition, in their default configuration (paired with geom_slabinterval()) the following aes-
thetics are supported by the underlying geom:

Slab-specific aesthetics

• thickness: The thickness of the slab at each x value (if orientation = "horizontal") or y
value (if orientation = "vertical") of the slab.

• side: Which side to place the slab on. "topright", "top", and "right" are synonyms
which cause the slab to be drawn on the top or the right depending on if orientation
is "horizontal" or "vertical". "bottomleft", "bottom", and "left" are synonyms
which cause the slab to be drawn on the bottom or the left depending on if orientation
is "horizontal" or "vertical". "topleft" causes the slab to be drawn on the top or the
left, and "bottomright" causes the slab to be drawn on the bottom or the right. "both" draws
the slab mirrored on both sides (as in a violin plot).

• scale: What proportion of the region allocated to this geom to use to draw the slab. If scale
= 1, slabs that use the maximum range will just touch each other. Default is 0.9 to leave some
space between adjacent slabs. For a comprehensive discussion and examples of slab scaling
and normalization, see the thickness scale article.

• justification: Justification of the interval relative to the slab, where 0 indicates bottom/left
justification and 1 indicates top/right justification (depending on orientation). If justification
is NULL (the default), then it is set automatically based on the value of side: when side is
"top"/"right" justification is set to 0, when side is "bottom"/"left" justification
is set to 1, and when side is "both" justification is set to 0.5.

https://mjskay.github.io/ggdist/articles/thickness.html

stat_histinterval 219

• datatype: When using composite geoms directly without a stat (e.g. geom_slabinterval()),
datatype is used to indicate which part of the geom a row in the data targets: rows with
datatype = "slab" target the slab portion of the geometry and rows with datatype = "interval"
target the interval portion of the geometry. This is set automatically when using ggdist stats.

Interval-specific aesthetics

• xmin: Left end of the interval sub-geometry (if orientation = "horizontal").

• xmax: Right end of the interval sub-geometry (if orientation = "horizontal").

• ymin: Lower end of the interval sub-geometry (if orientation = "vertical").

• ymax: Upper end of the interval sub-geometry (if orientation = "vertical").

Point-specific aesthetics

• shape: Shape type used to draw the point sub-geometry.

Color aesthetics

• colour: (or color) The color of the interval and point sub-geometries. Use the slab_color,
interval_color, or point_color aesthetics (below) to set sub-geometry colors separately.

• fill: The fill color of the slab and point sub-geometries. Use the slab_fill or point_fill
aesthetics (below) to set sub-geometry colors separately.

• alpha: The opacity of the slab, interval, and point sub-geometries. Use the slab_alpha,
interval_alpha, or point_alpha aesthetics (below) to set sub-geometry colors separately.

• colour_ramp: (or color_ramp) A secondary scale that modifies the color scale to "ramp" to
another color. See scale_colour_ramp() for examples.

• fill_ramp: A secondary scale that modifies the fill scale to "ramp" to another color. See
scale_fill_ramp() for examples.

Line aesthetics

• linewidth: Width of the line used to draw the interval (except with geom_slab(): then
it is the width of the slab). With composite geometries including an interval and slab, use
slab_linewidth to set the line width of the slab (see below). For interval, raw linewidth
values are transformed according to the interval_size_domain and interval_size_range
parameters of the geom (see above).

• size: Determines the size of the point. If linewidth is not provided, size will also deter-
mines the width of the line used to draw the interval (this allows line width and point size to be
modified together by setting only size and not linewidth). Raw size values are transformed
according to the interval_size_domain, interval_size_range, and fatten_point pa-
rameters of the geom (see above). Use the point_size aesthetic (below) to set sub-geometry
size directly without applying the effects of interval_size_domain, interval_size_range,
and fatten_point.

• stroke: Width of the outline around the point sub-geometry.

• linetype: Type of line (e.g., "solid", "dashed", etc) used to draw the interval and the
outline of the slab (if it is visible). Use the slab_linetype or interval_linetype aesthetics
(below) to set sub-geometry line types separately.

220 stat_histinterval

Slab-specific color and line override aesthetics

• slab_fill: Override for fill: the fill color of the slab.

• slab_colour: (or slab_color) Override for colour/color: the outline color of the slab.

• slab_alpha: Override for alpha: the opacity of the slab.

• slab_linewidth: Override for linwidth: the width of the outline of the slab.

• slab_linetype: Override for linetype: the line type of the outline of the slab.

Interval-specific color and line override aesthetics

• interval_colour: (or interval_color) Override for colour/color: the color of the inter-
val.

• interval_alpha: Override for alpha: the opacity of the interval.

• interval_linetype: Override for linetype: the line type of the interval.

Point-specific color and line override aesthetics

• point_fill: Override for fill: the fill color of the point.

• point_colour: (or point_color) Override for colour/color: the outline color of the point.

• point_alpha: Override for alpha: the opacity of the point.

• point_size: Override for size: the size of the point.

Deprecated aesthetics

• slab_size: Use slab_linewidth.

• interval_size: Use interval_linewidth.

Other aesthetics (these work as in standard geoms)

• width

• height

• group

See examples of some of these aesthetics in action in vignette("slabinterval"). Learn more
about the sub-geom override aesthetics (like interval_color) in the scales documentation. Learn
more about basic ggplot aesthetics in vignette("ggplot2-specs").

See Also

See geom_slabinterval() for the geom underlying this stat. See stat_slabinterval() for the
stat this shortcut is based on.

Other slabinterval stats: stat_ccdfinterval(), stat_cdfinterval(), stat_eye(), stat_gradientinterval(),
stat_halfeye(), stat_interval(), stat_pointinterval(), stat_slab(), stat_spike()

stat_interval 221

Examples

library(dplyr)
library(ggplot2)
library(distributional)

theme_set(theme_ggdist())

ON SAMPLE DATA
set.seed(1234)
df = data.frame(

group = c("a", "b", "c"),
value = rnorm(1500, mean = c(5, 7, 9), sd = c(1, 1.5, 1))

)
df %>%

ggplot(aes(x = value, y = group)) +
stat_histinterval()

ON ANALYTICAL DISTRIBUTIONS
dist_df = data.frame(

group = c("a", "b", "c"),
mean = c(5, 7, 8),
sd = c(1, 1.5, 1)

)
Vectorized distribution types, like distributional::dist_normal()
and posterior::rvar(), can be used with the `xdist` / `ydist` aesthetics
dist_df %>%

ggplot(aes(y = group, xdist = dist_normal(mean, sd))) +
stat_histinterval()

stat_interval Multiple-interval plot (shortcut stat)

Description

Shortcut version of stat_slabinterval() with geom_interval() for creating multiple-interval
plots.

Roughly equivalent to:

stat_slabinterval(
aes(
colour = after_stat(level),
size = NULL

),
geom = "interval",
show_point = FALSE,
.width = c(0.5, 0.8, 0.95),
show_slab = FALSE,
show.legend = NA

)

222 stat_interval

Usage

stat_interval(
mapping = NULL,
data = NULL,
geom = "interval",
position = "identity",
...,
.width = c(0.5, 0.8, 0.95),
point_interval = "median_qi",
orientation = NA,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom Use to override the default connection between stat_interval() and geom_interval()

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function. Setting this equal to "dodge" (position_dodge()) or "dodgejust"
(position_dodgejust()) can be useful if you have overlapping geometries.

... Other arguments passed to layer(). These are often aesthetics, used to set an
aesthetic to a fixed value, like colour = "red" or linewidth = 3 (see Aesthet-
ics, below). They may also be parameters to the paired geom/stat. When paired
with the default geom, geom_interval(), these include:

interval_size_range A length-2 numeric vector. This geom scales the raw
size aesthetic values when drawing interval and point sizes, as they tend to
be too thick when using the default settings of scale_size_continuous(),
which give sizes with a range of c(1, 6). The interval_size_domain
value indicates the input domain of raw size values (typically this should be
equal to the value of the range argument of the scale_size_continuous()
function), and interval_size_range indicates the desired output range of
the size values (the min and max of the actual sizes used to draw inter-
vals). Most of the time it is not recommended to change the value of this

stat_interval 223

argument, as it may result in strange scaling of legends; this argument is
a holdover from earlier versions that did not have size aesthetics targeting
the point and interval separately. If you want to adjust the size of the in-
terval or points separately, you can also use the linewidth or point_size
aesthetics; see sub-geometry-scales.

interval_size_domain A length-2 numeric vector giving the minimum and
maximum of the values of the size and linewidth aesthetics that will be
translated into actual sizes for intervals drawn according to interval_size_range
(see the documentation for that argument.)

arrow grid::arrow() giving the arrow heads to use on the interval, or NULL
for no arrows.

.width The .width argument passed to point_interval: a vector of probabilities to
use that determine the widths of the resulting intervals. If multiple probabilities
are provided, multiple intervals per group are generated, each with a different
probability interval (and value of the corresponding .width and level gener-
ated variables).

point_interval A function from the point_interval() family (e.g., median_qi, mean_qi,
mode_hdi, etc), or a string giving the name of a function from that family (e.g.,
"median_qi", "mean_qi", "mode_hdi", etc; if a string, the caller’s environment
is searched for the function, followed by the ggdist environment). This function
determines the point summary (typically mean, median, or mode) and interval
type (quantile interval, qi; highest-density interval, hdi; or highest-density con-
tinuous interval, hdci). Output will be converted to the appropriate x- or y-based
aesthetics depending on the value of orientation. See the point_interval()
family of functions for more information.

orientation Whether this geom is drawn horizontally or vertically. One of:
• NA (default): automatically detect the orientation based on how the aesthet-

ics are assigned. Automatic detection works most of the time.
• "horizontal" (or "y"): draw horizontally, using the y aesthetic to identify

different groups. For each group, uses the x, xmin, xmax, and thickness
aesthetics to draw points, intervals, and slabs.

• "vertical" (or "x"): draw vertically, using the x aesthetic to identify dif-
ferent groups. For each group, uses the y, ymin, ymax, and thickness
aesthetics to draw points, intervals, and slabs.

For compatibility with the base ggplot naming scheme for orientation, "x"
can be used as an alias for "vertical" and "y" as an alias for "horizontal"
(ggdist had an orientation parameter before base ggplot did, hence the dis-
crepancy).

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend Should this layer be included in the legends? Default is c(size = FALSE), unlike
most geoms, to match its common use cases. FALSE hides all legends, TRUE
shows all legends, and NA shows only those that are mapped (the default for
most geoms).

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

224 stat_interval

Details

To visualize sample data, such as a data distribution, samples from a bootstrap distribution, or a
Bayesian posterior, you can supply samples to the x or y aesthetic.

To visualize analytical distributions, you can use the xdist or ydist aesthetic. For historical
reasons, you can also use dist to specify the distribution, though this is not recommended as it
does not work as well with orientation detection. These aesthetics can be used as follows:

• xdist, ydist, and dist can be any distribution object from the distributional package (dist_normal(),
dist_beta(), etc) or can be a posterior::rvar() object. Since these functions are vector-
ized, other columns can be passed directly to them in an aes() specification; e.g. aes(dist =
dist_normal(mu, sigma)) will work if mu and sigma are columns in the input data frame.

• dist can be a character vector giving the distribution name. Then the arg1, ... arg9 aes-
thetics (or args as a list column) specify distribution arguments. Distribution names should
correspond to R functions that have "p", "q", and "d" functions; e.g. "norm" is a valid dis-
tribution name because R defines the pnorm(), qnorm(), and dnorm() functions for Normal
distributions.
See the parse_dist() function for a useful way to generate dist and args values from
human-readable distribution specs (like "normal(0,1)"). Such specs are also produced by
other packages (like the brms::get_prior function in brms); thus, parse_dist() combined
with the stats described here can help you visualize the output of those functions.

Value

A ggplot2::Stat representing a multiple-interval geometry which can be added to a ggplot() object.

Computed Variables

The following variables are computed by this stat and made available for use in aesthetic specifica-
tions (aes()) using the after_stat() function or the after_stat argument of stage():

• x or y: For slabs, the input values to the slab function. For intervals, the point summary from
the interval function. Whether it is x or y depends on orientation

• xmin or ymin: For intervals, the lower end of the interval from the interval function.

• xmax or ymax: For intervals, the upper end of the interval from the interval function.

• .width: For intervals, the interval width as a numeric value in [0, 1]. For slabs, the width
of the smallest interval containing that value of the slab.

• level: For intervals, the interval width as an ordered factor. For slabs, the level of the smallest
interval containing that value of the slab.

• pdf: For slabs, the probability density function (PDF). If options("ggdist.experimental.slab_data_in_intervals")
is TRUE: For intervals, the PDF at the point summary; intervals also have pdf_min and pdf_max
for the PDF at the lower and upper ends of the interval.

• cdf: For slabs, the cumulative distribution function. If options("ggdist.experimental.slab_data_in_intervals")
is TRUE: For intervals, the CDF at the point summary; intervals also have cdf_min and cdf_max
for the CDF at the lower and upper ends of the interval.

https://pkg.mitchelloharawild.com/distributional/

stat_interval 225

Aesthetics

The slab+interval stats and geoms have a wide variety of aesthetics that control the appearance of
their three sub-geometries: the slab, the point, and the interval.

These stats support the following aesthetics:

• x: x position of the geometry (when orientation = "vertical"); or sample data to be summa-
rized (when orientation = "horizontal" with sample data).

• y: y position of the geometry (when orientation = "horizontal"); or sample data to be sum-
marized (when orientation = "vertical" with sample data).

• weight: When using samples (i.e. the x and y aesthetics, not xdist or ydist), optional
weights to be applied to each draw.

• xdist: When using analytical distributions, distribution to map on the x axis: a distributional
object (e.g. dist_normal()) or a posterior::rvar() object.

• ydist: When using analytical distributions, distribution to map on the y axis: a distributional
object (e.g. dist_normal()) or a posterior::rvar() object.

• dist: When using analytical distributions, a name of a distribution (e.g. "norm"), a distribu-
tional object (e.g. dist_normal()), or a posterior::rvar() object. See Details.

• args: Distribution arguments (args or arg1, ... arg9). See Details.

In addition, in their default configuration (paired with geom_interval()) the following aesthetics
are supported by the underlying geom:

Interval-specific aesthetics

• xmin: Left end of the interval sub-geometry (if orientation = "horizontal").

• xmax: Right end of the interval sub-geometry (if orientation = "horizontal").

• ymin: Lower end of the interval sub-geometry (if orientation = "vertical").

• ymax: Upper end of the interval sub-geometry (if orientation = "vertical").

Color aesthetics

• colour: (or color) The color of the interval and point sub-geometries. Use the slab_color,
interval_color, or point_color aesthetics (below) to set sub-geometry colors separately.

• fill: The fill color of the slab and point sub-geometries. Use the slab_fill or point_fill
aesthetics (below) to set sub-geometry colors separately.

• alpha: The opacity of the slab, interval, and point sub-geometries. Use the slab_alpha,
interval_alpha, or point_alpha aesthetics (below) to set sub-geometry colors separately.

• colour_ramp: (or color_ramp) A secondary scale that modifies the color scale to "ramp" to
another color. See scale_colour_ramp() for examples.

• fill_ramp: A secondary scale that modifies the fill scale to "ramp" to another color. See
scale_fill_ramp() for examples.

Line aesthetics

226 stat_interval

• linewidth: Width of the line used to draw the interval (except with geom_slab(): then
it is the width of the slab). With composite geometries including an interval and slab, use
slab_linewidth to set the line width of the slab (see below). For interval, raw linewidth
values are transformed according to the interval_size_domain and interval_size_range
parameters of the geom (see above).

• size: Determines the size of the point. If linewidth is not provided, size will also deter-
mines the width of the line used to draw the interval (this allows line width and point size to be
modified together by setting only size and not linewidth). Raw size values are transformed
according to the interval_size_domain, interval_size_range, and fatten_point pa-
rameters of the geom (see above). Use the point_size aesthetic (below) to set sub-geometry
size directly without applying the effects of interval_size_domain, interval_size_range,
and fatten_point.

• stroke: Width of the outline around the point sub-geometry.

• linetype: Type of line (e.g., "solid", "dashed", etc) used to draw the interval and the
outline of the slab (if it is visible). Use the slab_linetype or interval_linetype aesthetics
(below) to set sub-geometry line types separately.

Interval-specific color and line override aesthetics

• interval_colour: (or interval_color) Override for colour/color: the color of the inter-
val.

• interval_alpha: Override for alpha: the opacity of the interval.

• interval_linetype: Override for linetype: the line type of the interval.

Deprecated aesthetics

• interval_size: Use interval_linewidth.

Other aesthetics (these work as in standard geoms)

• width

• height

• group

See examples of some of these aesthetics in action in vignette("slabinterval"). Learn more
about the sub-geom override aesthetics (like interval_color) in the scales documentation. Learn
more about basic ggplot aesthetics in vignette("ggplot2-specs").

See Also

See geom_interval() for the geom underlying this stat. See stat_slabinterval() for the stat
this shortcut is based on.

Other slabinterval stats: stat_ccdfinterval(), stat_cdfinterval(), stat_eye(), stat_gradientinterval(),
stat_halfeye(), stat_histinterval(), stat_pointinterval(), stat_slab(), stat_spike()

stat_lineribbon 227

Examples

library(dplyr)
library(ggplot2)
library(distributional)

theme_set(theme_ggdist())

ON SAMPLE DATA
set.seed(1234)
df = data.frame(

group = c("a", "b", "c"),
value = rnorm(1500, mean = c(5, 7, 9), sd = c(1, 1.5, 1))

)
df %>%

ggplot(aes(x = value, y = group)) +
stat_interval() +
scale_color_brewer()

ON ANALYTICAL DISTRIBUTIONS
dist_df = data.frame(

group = c("a", "b", "c"),
mean = c(5, 7, 8),
sd = c(1, 1.5, 1)

)
Vectorized distribution types, like distributional::dist_normal()
and posterior::rvar(), can be used with the `xdist` / `ydist` aesthetics
dist_df %>%

ggplot(aes(y = group, xdist = dist_normal(mean, sd))) +
stat_interval() +
scale_color_brewer()

stat_lineribbon Line + multiple-ribbon plot (shortcut stat)

Description

A combination of stat_slabinterval() and geom_lineribbon() with sensible defaults for mak-
ing line + multiple-ribbon plots. While geom_lineribbon() is intended for use on data frames that
have already been summarized using a point_interval() function, stat_lineribbon() is in-
tended for use directly on data frames of draws or of analytical distributions, and will perform the
summarization using a point_interval() function.

Roughly equivalent to:

stat_slabinterval(
aes(
group = after_stat(level),
fill = after_stat(level),
order = after_stat(level),

228 stat_lineribbon

size = NULL
),
geom = "lineribbon",
.width = c(0.5, 0.8, 0.95),
show_slab = FALSE,
show.legend = NA

)

Usage

stat_lineribbon(
mapping = NULL,
data = NULL,
geom = "lineribbon",
position = "identity",
...,
.width = c(0.5, 0.8, 0.95),
point_interval = "median_qi",
orientation = NA,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom Use to override the default connection between stat_lineribbon() and geom_lineribbon()

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function. Setting this equal to "dodge" (position_dodge()) or "dodgejust"
(position_dodgejust()) can be useful if you have overlapping geometries.

... Other arguments passed to layer(). These are often aesthetics, used to set an
aesthetic to a fixed value, like colour = "red" or linewidth = 3 (see Aesthet-
ics, below). They may also be parameters to the paired geom/stat. When paired
with the default geom, geom_lineribbon(), these include:

step Should the line/ribbon be drawn as a step function? One of:

stat_lineribbon 229

• FALSE (default): do not draw as a step function.
• "mid" (or TRUE): draw steps midway between adjacent x values.
• "hv": draw horizontal-then-vertical steps.
• "vh": draw as vertical-then-horizontal steps.

TRUE is an alias for "mid" because for a step function with ribbons, "mid"
is probably what you want (for the other two step approaches the ribbons at
either the very first or very last x value will not be visible).

.width The .width argument passed to point_interval: a vector of probabilities to
use that determine the widths of the resulting intervals. If multiple probabilities
are provided, multiple intervals per group are generated, each with a different
probability interval (and value of the corresponding .width and level gener-
ated variables).

point_interval A function from the point_interval() family (e.g., median_qi, mean_qi,
mode_hdi, etc), or a string giving the name of a function from that family (e.g.,
"median_qi", "mean_qi", "mode_hdi", etc; if a string, the caller’s environment
is searched for the function, followed by the ggdist environment). This function
determines the point summary (typically mean, median, or mode) and interval
type (quantile interval, qi; highest-density interval, hdi; or highest-density con-
tinuous interval, hdci). Output will be converted to the appropriate x- or y-based
aesthetics depending on the value of orientation. See the point_interval()
family of functions for more information.

orientation Whether this geom is drawn horizontally or vertically. One of:

• NA (default): automatically detect the orientation based on how the aesthet-
ics are assigned. Automatic detection works most of the time.

• "horizontal" (or "y"): draw horizontally, using the y aesthetic to identify
different groups. For each group, uses the x, xmin, xmax, and thickness
aesthetics to draw points, intervals, and slabs.

• "vertical" (or "x"): draw vertically, using the x aesthetic to identify dif-
ferent groups. For each group, uses the y, ymin, ymax, and thickness
aesthetics to draw points, intervals, and slabs.

For compatibility with the base ggplot naming scheme for orientation, "x"
can be used as an alias for "vertical" and "y" as an alias for "horizontal"
(ggdist had an orientation parameter before base ggplot did, hence the dis-
crepancy).

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend Should this layer be included in the legends? NA, the default, includes if any
aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Details

To visualize sample data, such as a data distribution, samples from a bootstrap distribution, or a
Bayesian posterior, you can supply samples to the x or y aesthetic.

230 stat_lineribbon

To visualize analytical distributions, you can use the xdist or ydist aesthetic. For historical
reasons, you can also use dist to specify the distribution, though this is not recommended as it
does not work as well with orientation detection. These aesthetics can be used as follows:

• xdist, ydist, and dist can be any distribution object from the distributional package (dist_normal(),
dist_beta(), etc) or can be a posterior::rvar() object. Since these functions are vector-
ized, other columns can be passed directly to them in an aes() specification; e.g. aes(dist =
dist_normal(mu, sigma)) will work if mu and sigma are columns in the input data frame.

• dist can be a character vector giving the distribution name. Then the arg1, ... arg9 aes-
thetics (or args as a list column) specify distribution arguments. Distribution names should
correspond to R functions that have "p", "q", and "d" functions; e.g. "norm" is a valid dis-
tribution name because R defines the pnorm(), qnorm(), and dnorm() functions for Normal
distributions.
See the parse_dist() function for a useful way to generate dist and args values from
human-readable distribution specs (like "normal(0,1)"). Such specs are also produced by
other packages (like the brms::get_prior function in brms); thus, parse_dist() combined
with the stats described here can help you visualize the output of those functions.

Value

A ggplot2::Stat representing a line + multiple-ribbon geometry which can be added to a ggplot()
object.

Computed Variables

The following variables are computed by this stat and made available for use in aesthetic specifica-
tions (aes()) using the after_stat() function or the after_stat argument of stage():

• x or y: For slabs, the input values to the slab function. For intervals, the point summary from
the interval function. Whether it is x or y depends on orientation

• xmin or ymin: For intervals, the lower end of the interval from the interval function.

• xmax or ymax: For intervals, the upper end of the interval from the interval function.

• .width: For intervals, the interval width as a numeric value in [0, 1]. For slabs, the width
of the smallest interval containing that value of the slab.

• level: For intervals, the interval width as an ordered factor. For slabs, the level of the smallest
interval containing that value of the slab.

• pdf: For slabs, the probability density function (PDF). If options("ggdist.experimental.slab_data_in_intervals")
is TRUE: For intervals, the PDF at the point summary; intervals also have pdf_min and pdf_max
for the PDF at the lower and upper ends of the interval.

• cdf: For slabs, the cumulative distribution function. If options("ggdist.experimental.slab_data_in_intervals")
is TRUE: For intervals, the CDF at the point summary; intervals also have cdf_min and cdf_max
for the CDF at the lower and upper ends of the interval.

Aesthetics

The line+ribbon stats and geoms have a wide variety of aesthetics that control the appearance of
their two sub-geometries: the line and the ribbon.

These stats support the following aesthetics:

https://pkg.mitchelloharawild.com/distributional/

stat_lineribbon 231

• x: x position of the geometry (when orientation = "vertical"); or sample data to be summa-
rized (when orientation = "horizontal" with sample data).

• y: y position of the geometry (when orientation = "horizontal"); or sample data to be sum-
marized (when orientation = "vertical" with sample data).

• weight: When using samples (i.e. the x and y aesthetics, not xdist or ydist), optional
weights to be applied to each draw.

• xdist: When using analytical distributions, distribution to map on the x axis: a distributional
object (e.g. dist_normal()) or a posterior::rvar() object.

• ydist: When using analytical distributions, distribution to map on the y axis: a distributional
object (e.g. dist_normal()) or a posterior::rvar() object.

• dist: When using analytical distributions, a name of a distribution (e.g. "norm"), a distribu-
tional object (e.g. dist_normal()), or a posterior::rvar() object. See Details.

• args: Distribution arguments (args or arg1, ... arg9). See Details.

In addition, in their default configuration (paired with geom_lineribbon()) the following aesthet-
ics are supported by the underlying geom:

Ribbon-specific aesthetics

• xmin: Left edge of the ribbon sub-geometry (if orientation = "horizontal").
• xmax: Right edge of the ribbon sub-geometry (if orientation = "horizontal").
• ymin: Lower edge of the ribbon sub-geometry (if orientation = "vertical").
• ymax: Upper edge of the ribbon sub-geometry (if orientation = "vertical").
• order: The order in which ribbons are drawn. Ribbons with the smallest mean value of
order are drawn first (i.e., will be drawn below ribbons with larger mean values of order).
If order is not supplied to geom_lineribbon(), -abs(xmax - xmin) or -abs(ymax - ymax)
(depending on orientation) is used, having the effect of drawing the widest (on average)
ribbons on the bottom. stat_lineribbon() uses order = after_stat(level) by default,
causing the ribbons generated from the largest .width to be drawn on the bottom.

Color aesthetics

• colour: (or color) The color of the line sub-geometry.
• fill: The fill color of the ribbon sub-geometry.
• alpha: The opacity of the line and ribbon sub-geometries.
• fill_ramp: A secondary scale that modifies the fill scale to "ramp" to another color. See
scale_fill_ramp() for examples.

Line aesthetics

• linewidth: Width of line. In ggplot2 < 3.4, was called size.
• linetype: Type of line (e.g., "solid", "dashed", etc)

Other aesthetics (these work as in standard geoms)

• group

See examples of some of these aesthetics in action in vignette("lineribbon"). Learn more about
the sub-geom override aesthetics (like interval_color) in the scales documentation. Learn more
about basic ggplot aesthetics in vignette("ggplot2-specs").

232 stat_mcse_dots

See Also

See geom_lineribbon() for the geom underlying this stat.

Other lineribbon stats: stat_ribbon()

Examples

library(dplyr)
library(ggplot2)
library(distributional)

theme_set(theme_ggdist())

ON SAMPLE DATA
set.seed(12345)
tibble(

x = rep(1:10, 100),
y = rnorm(1000, x)

) %>%
ggplot(aes(x = x, y = y)) +
stat_lineribbon() +
scale_fill_brewer()

ON ANALYTICAL DISTRIBUTIONS
Vectorized distribution types, like distributional::dist_normal()
and posterior::rvar(), can be used with the `xdist` / `ydist` aesthetics
tibble(

x = 1:10,
sd = seq(1, 3, length.out = 10)

) %>%
ggplot(aes(x = x, ydist = dist_normal(x, sd))) +
stat_lineribbon() +
scale_fill_brewer()

stat_mcse_dots Blurry MCSE dot plot (stat)

Description

Variant of stat_dots() for creating blurry dotplots of quantiles. Uses posterior::mcse_quantile()
to calculate the Monte Carlo Standard Error of each quantile computed for the dotplot, yielding an
se computed variable that is by default mapped onto the sd aesthetic of geom_blur_dots().

Usage

stat_mcse_dots(
mapping = NULL,
data = NULL,
geom = "blur_dots",

stat_mcse_dots 233

position = "identity",
...,
quantiles = NA,
orientation = NA,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom Use to override the default connection between stat_mcse_dots() and geom_blur_dots()

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function. Setting this equal to "dodge" (position_dodge()) or "dodgejust"
(position_dodgejust()) can be useful if you have overlapping geometries.

... Other arguments passed to layer(). These are often aesthetics, used to set an
aesthetic to a fixed value, like colour = "red" or linewidth = 3 (see Aesthet-
ics, below). They may also be parameters to the paired geom/stat. When paired
with the default geom, geom_blur_dots(), these include:
blur Blur function to apply to dots. One of:

• A function that takes a numeric vector of distances from the dot center,
the dot radius, and the standard deviation of the blur and returns a vec-
tor of opacities in [0, 1], such as blur_gaussian() or blur_interval().

• A string indicating what blur function to use, as the suffix to a func-
tion name starting with blur_; e.g. "gaussian" (the default) applies
blur_gaussian().

binwidth The bin width to use for laying out the dots. One of:
• NA (the default): Dynamically select the bin width based on the size of

the plot when drawn. This will pick a binwidth such that the tallest
stack of dots is at most scale in height (ideally exactly scale in height,
though this is not guaranteed).

• A length-1 (scalar) numeric or unit object giving the exact bin width.
• A length-2 (vector) numeric or unit object giving the minimum and

maximum desired bin width. The bin width will be dynamically se-
lected within these bounds.

234 stat_mcse_dots

If the value is numeric, it is assumed to be in units of data. The bin width
(or its bounds) can also be specified using unit(), which may be useful if it
is desired that the dots be a certain point size or a certain percentage of the
width/height of the viewport. For example, unit(0.1, "npc") would make
dots that are exactly 10% of the viewport size along whichever dimension
the dotplot is drawn; unit(c(0, 0.1), "npc") would make dots that are at
most 10% of the viewport size (while still ensuring the tallest stack is less
than or equal to scale).

dotsize The width of the dots relative to the binwidth. The default, 1.07,
makes dots be just a bit wider than the bin width, which is a manually-
tuned parameter that tends to work well with the default circular shape,
preventing gaps between bins from appearing to be too large visually (as
might arise from dots being precisely the binwidth). If it is desired to have
dots be precisely the binwidth, set dotsize = 1.

stackratio The distance between the center of the dots in the same stack rel-
ative to the dot height. The default, 1, makes dots in the same stack just
touch each other.

layout The layout method used for the dots:
• "bin" (default): places dots on the off-axis at the midpoint of their

bins as in the classic Wilkinson dotplot. This maintains the alignment
of rows and columns in the dotplot. This layout is slightly different
from the classic Wilkinson algorithm in that: (1) it nudges bins slightly
to avoid overlapping bins and (2) if the input data are symmetrical it
will return a symmetrical layout.

• "weave": uses the same basic binning approach of "bin", but places
dots in the off-axis at their actual positions (unless overlaps = "nudge",
in which case overlaps may be nudged out of the way). This maintains
the alignment of rows but does not align dots within columns.

• "hex": uses the same basic binning approach of "bin", but alternates
placing dots + binwidth/4 or - binwidth/4 in the off-axis from the
bin center. This allows hexagonal packing by setting a stackratio
less than 1 (something like 0.9 tends to work).

• "swarm": uses the "compactswarm" layout from beeswarm::beeswarm().
Does not maintain alignment of rows or columns, but can be more com-
pact and neat looking, especially for sample data (as opposed to quan-
tile dotplots of theoretical distributions, which may look better with
"bin", "weave", or "hex").

• "bar": for discrete distributions, lays out duplicate values in rectangu-
lar bars.

overlaps How to handle overlapping dots or bins in the "bin", "weave", and
"hex" layouts (dots never overlap in the "swarm" or "bar" layouts). For
the purposes of this argument, dots are only considered to be overlapping if
they would be overlapping when dotsize = 1 and stackratio = 1; i.e. if
you set those arguments to other values, overlaps may still occur. One of:

• "keep": leave overlapping dots as they are. Dots may overlap (usually
only slightly) in the "bin", "weave", and "hex" layouts.

• "nudge": nudge overlapping dots out of the way. Overlaps are avoided

stat_mcse_dots 235

using a constrained optimization which minimizes the squared distance
of dots to their desired positions, subject to the constraint that adjacent
dots do not overlap.

smooth Smoother to apply to dot positions. One of:
• A function that takes a numeric vector of dot positions and returns a

smoothed version of that vector, such as smooth_bounded(), smooth_unbounded(),
smooth_discrete(), or smooth_bar()‘.

• A string indicating what smoother to use, as the suffix to a function
name starting with smooth_; e.g. "none" (the default) applies smooth_none(),
which simply returns the given vector without applying smoothing.

Smoothing is most effective when the smoother is matched to the support
of the distribution; e.g. using smooth_bounded(bounds = ...).

overflow How to handle overflow of dots beyond the extent of the geom when
a minimum binwidth (or an exact binwidth) is supplied. One of:

• "keep": Keep the overflow, drawing dots outside the geom bounds.
• "warn": Keep the overflow, but produce a warning suggesting solu-

tions, such as setting binwidth = NA or overflow = "compress".
• "compress": Compress the layout. Reduces the binwidth to the size

necessary to keep the dots within bounds, then adjusts stackratio and
dotsize so that the apparent dot size is the user-specified minimum
binwidth times the user-specified dotsize.

If you find the default layout has dots that are too small, and you are okay
with dots overlapping, consider setting overflow = "compress" and sup-
plying an exact or minimum dot size using binwidth.

verbose If TRUE, print out the bin width of the dotplot. Can be useful if you
want to start from an automatically-selected bin width and then adjust it
manually. Bin width is printed both as data units and as normalized parent
coordinates or "npc"s (see unit()). Note that if you just want to scale
the selected bin width to fit within a desired area, it is probably easier to
use scale than to copy and scale binwidth manually, and if you just want
to provide constraints on the bin width, you can pass a length-2 vector to
binwidth.

subguide Sub-guide used to annotate the thickness scale. One of:
• A function that takes a scale argument giving a ggplot2::Scale object

and an orientation argument giving the orientation of the geometry
and then returns a grid::grob that will draw the axis annotation, such as
subguide_axis() (to draw a traditional axis) or subguide_none() (to
draw no annotation). See subguide_axis() for a list of possibilities
and examples.

• A string giving the name of such a function when prefixed with "subguide";
e.g. "axis" or "none".

quantiles Setting this to a value other than NA will produce a quantile dotplot: that is, a
dotplot of quantiles from the sample or distribution (for analytical distributions,
the default of NA is taken to mean 100 quantiles). The value of quantiles
determines the number of quantiles to plot. See Kay et al. (2016) and Fernandes
et al. (2018) for more information on quantile dotplots.

236 stat_mcse_dots

orientation Whether this geom is drawn horizontally or vertically. One of:

• NA (default): automatically detect the orientation based on how the aesthet-
ics are assigned. Automatic detection works most of the time.

• "horizontal" (or "y"): draw horizontally, using the y aesthetic to identify
different groups. For each group, uses the x, xmin, xmax, and thickness
aesthetics to draw points, intervals, and slabs.

• "vertical" (or "x"): draw vertically, using the x aesthetic to identify dif-
ferent groups. For each group, uses the y, ymin, ymax, and thickness
aesthetics to draw points, intervals, and slabs.

For compatibility with the base ggplot naming scheme for orientation, "x"
can be used as an alias for "vertical" and "y" as an alias for "horizontal"
(ggdist had an orientation parameter before base ggplot did, hence the dis-
crepancy).

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend logical. Should this layer be included in the legends? NA, the default, includes if
any aesthetics are mapped. FALSE never includes, and TRUE always includes. It
can also be a named logical vector to finely select the aesthetics to display.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Details

The dots family of stats and geoms are similar to geom_dotplot() but with a number of differences:

• Dots geoms act like slabs in geom_slabinterval() and can be given x positions (or y posi-
tions when in a horizontal orientation).

• Given the available space to lay out dots, the dots geoms will automatically determine how
many bins to use to fit the available space.

• Dots geoms use a dynamic layout algorithm that lays out dots from the center out if the input
data are symmetrical, guaranteeing that symmetrical data results in a symmetrical plot. The
layout algorithm also prevents dots from overlapping each other.

• The shape of the dots in these geoms can be changed using the slab_shape aesthetic (when
using the dotsinterval family) or the shape or slab_shape aesthetic (when using the dots
family)

Stats and geoms in this family include:

• geom_dots(): dotplots on raw data. Ensures the dotplot fits within available space by reduc-
ing the size of the dots automatically (may result in very small dots).

• geom_swarm() and geom_weave(): dotplots on raw data with defaults intended to create
"beeswarm" plots. Used side = "both" by default, and sets the default dot size to the same
size as geom_point() (binwidth = unit(1.5, "mm")), allowing dots to overlap instead of
getting very small.

• stat_dots(): dotplots on raw data, distributional objects, and posterior::rvar()s

stat_mcse_dots 237

• geom_dotsinterval(): dotplot + interval plots on raw data with already-calculated intervals
(rarely useful directly).

• stat_dotsinterval(): dotplot + interval plots on raw data, distributional objects, and
posterior::rvar()s (will calculate intervals for you).

• geom_blur_dots(): blurry dotplots that allow the standard deviation of a blur applied to each
dot to be specified using the sd aesthetic.

• stat_mcse_dots(): blurry dotplots of quantiles using the Monte Carlo Standard Error of
each quantile.

stat_dots() and stat_dotsinterval(), when used with the quantiles argument, are partic-
ularly useful for constructing quantile dotplots, which can be an effective way to communicate
uncertainty using a frequency framing that may be easier for laypeople to understand (Kay et al.
2016, Fernandes et al. 2018).

To visualize sample data, such as a data distribution, samples from a bootstrap distribution, or a
Bayesian posterior, you can supply samples to the x or y aesthetic.

To visualize analytical distributions, you can use the xdist or ydist aesthetic. For historical
reasons, you can also use dist to specify the distribution, though this is not recommended as it
does not work as well with orientation detection. These aesthetics can be used as follows:

• xdist, ydist, and dist can be any distribution object from the distributional package (dist_normal(),
dist_beta(), etc) or can be a posterior::rvar() object. Since these functions are vector-
ized, other columns can be passed directly to them in an aes() specification; e.g. aes(dist =
dist_normal(mu, sigma)) will work if mu and sigma are columns in the input data frame.

• dist can be a character vector giving the distribution name. Then the arg1, ... arg9 aes-
thetics (or args as a list column) specify distribution arguments. Distribution names should
correspond to R functions that have "p", "q", and "d" functions; e.g. "norm" is a valid dis-
tribution name because R defines the pnorm(), qnorm(), and dnorm() functions for Normal
distributions.
See the parse_dist() function for a useful way to generate dist and args values from
human-readable distribution specs (like "normal(0,1)"). Such specs are also produced by
other packages (like the brms::get_prior function in brms); thus, parse_dist() combined
with the stats described here can help you visualize the output of those functions.

Value

A ggplot2::Stat representing a blurry MCSE dot geometry which can be added to a ggplot() object.

Computed Variables

The following variables are computed by this stat and made available for use in aesthetic specifica-
tions (aes()) using the after_stat() function or the after_stat argument of stage():

• x or y: For slabs, the input values to the slab function. For intervals, the point summary from
the interval function. Whether it is x or y depends on orientation

• xmin or ymin: For intervals, the lower end of the interval from the interval function.

• xmax or ymax: For intervals, the upper end of the interval from the interval function.

https://pkg.mitchelloharawild.com/distributional/

238 stat_mcse_dots

• .width: For intervals, the interval width as a numeric value in [0, 1]. For slabs, the width
of the smallest interval containing that value of the slab.

• level: For intervals, the interval width as an ordered factor. For slabs, the level of the smallest
interval containing that value of the slab.

• pdf: For slabs, the probability density function (PDF). If options("ggdist.experimental.slab_data_in_intervals")
is TRUE: For intervals, the PDF at the point summary; intervals also have pdf_min and pdf_max
for the PDF at the lower and upper ends of the interval.

• cdf: For slabs, the cumulative distribution function. If options("ggdist.experimental.slab_data_in_intervals")
is TRUE: For intervals, the CDF at the point summary; intervals also have cdf_min and cdf_max
for the CDF at the lower and upper ends of the interval.

• n: For slabs, the number of data points summarized into that slab. If the slab was created from
an analytical distribution via the xdist, ydist, or dist aesthetic, n will be Inf.

• f: (deprecated) For slabs, the output values from the slab function (such as the PDF, CDF, or
CCDF), determined by slab_type. Instead of using slab_type to change f and then map-
ping f onto an aesthetic, it is now recommended to simply map the corresponding computed
variable (e.g. pdf, cdf, or 1 - cdf) directly onto the desired aesthetic.

• se: For dots, the Monte Carlo Standard Error of the quantile corresponding to each dot.

Aesthetics

The dots+interval stats and geoms have a wide variety of aesthetics that control the appearance of
their three sub-geometries: the dots (aka the slab), the point, and the interval.

These stats support the following aesthetics:

• x: x position of the geometry (when orientation = "vertical"); or sample data to be summa-
rized (when orientation = "horizontal" with sample data).

• y: y position of the geometry (when orientation = "horizontal"); or sample data to be sum-
marized (when orientation = "vertical" with sample data).

• weight: When using samples (i.e. the x and y aesthetics, not xdist or ydist), optional
weights to be applied to each draw.

• xdist: When using analytical distributions, distribution to map on the x axis: a distributional
object (e.g. dist_normal()) or a posterior::rvar() object.

• ydist: When using analytical distributions, distribution to map on the y axis: a distributional
object (e.g. dist_normal()) or a posterior::rvar() object.

• dist: When using analytical distributions, a name of a distribution (e.g. "norm"), a distribu-
tional object (e.g. dist_normal()), or a posterior::rvar() object. See Details.

• args: Distribution arguments (args or arg1, ... arg9). See Details.

In addition, in their default configuration (paired with geom_blur_dots()) the following aesthetics
are supported by the underlying geom:

Dots-specific (aka Slab-specific) aesthetics

• sd: The standard deviation (in data units) of the blur associated with each dot.

stat_mcse_dots 239

• order: The order in which data points are stacked within bins. Can be used to create the effect
of "stacked" dots by ordering dots according to a discrete variable. If omitted (NULL), the value
of the data points themselves are used to determine stacking order. Only applies when layout
is "bin" or "hex", as the other layout methods fully determine both x and y positions.

• side: Which side to place the slab on. "topright", "top", and "right" are synonyms
which cause the slab to be drawn on the top or the right depending on if orientation
is "horizontal" or "vertical". "bottomleft", "bottom", and "left" are synonyms
which cause the slab to be drawn on the bottom or the left depending on if orientation
is "horizontal" or "vertical". "topleft" causes the slab to be drawn on the top or the
left, and "bottomright" causes the slab to be drawn on the bottom or the right. "both" draws
the slab mirrored on both sides (as in a violin plot).

• scale: What proportion of the region allocated to this geom to use to draw the slab. If scale
= 1, slabs that use the maximum range will just touch each other. Default is 0.9 to leave some
space between adjacent slabs. For a comprehensive discussion and examples of slab scaling
and normalization, see the thickness scale article.

• justification: Justification of the interval relative to the slab, where 0 indicates bottom/left
justification and 1 indicates top/right justification (depending on orientation). If justification
is NULL (the default), then it is set automatically based on the value of side: when side is
"top"/"right" justification is set to 0, when side is "bottom"/"left" justification
is set to 1, and when side is "both" justification is set to 0.5.

• datatype: When using composite geoms directly without a stat (e.g. geom_slabinterval()),
datatype is used to indicate which part of the geom a row in the data targets: rows with
datatype = "slab" target the slab portion of the geometry and rows with datatype = "interval"
target the interval portion of the geometry. This is set automatically when using ggdist stats.

Interval-specific aesthetics

• xmin: Left end of the interval sub-geometry (if orientation = "horizontal").

• xmax: Right end of the interval sub-geometry (if orientation = "horizontal").

• ymin: Lower end of the interval sub-geometry (if orientation = "vertical").

• ymax: Upper end of the interval sub-geometry (if orientation = "vertical").

Color aesthetics

• colour: (or color) The color of the interval and point sub-geometries. Use the slab_color,
interval_color, or point_color aesthetics (below) to set sub-geometry colors separately.

• fill: The fill color of the slab and point sub-geometries. Use the slab_fill or point_fill
aesthetics (below) to set sub-geometry colors separately.

• alpha: The opacity of the slab, interval, and point sub-geometries. Use the slab_alpha,
interval_alpha, or point_alpha aesthetics (below) to set sub-geometry colors separately.

• colour_ramp: (or color_ramp) A secondary scale that modifies the color scale to "ramp" to
another color. See scale_colour_ramp() for examples.

• fill_ramp: A secondary scale that modifies the fill scale to "ramp" to another color. See
scale_fill_ramp() for examples.

Line aesthetics

https://mjskay.github.io/ggdist/articles/thickness.html

240 stat_mcse_dots

• linewidth: Width of the line used to draw the interval (except with geom_slab(): then
it is the width of the slab). With composite geometries including an interval and slab, use
slab_linewidth to set the line width of the slab (see below). For interval, raw linewidth
values are transformed according to the interval_size_domain and interval_size_range
parameters of the geom (see above).

• size: Determines the size of the point. If linewidth is not provided, size will also deter-
mines the width of the line used to draw the interval (this allows line width and point size to be
modified together by setting only size and not linewidth). Raw size values are transformed
according to the interval_size_domain, interval_size_range, and fatten_point pa-
rameters of the geom (see above). Use the point_size aesthetic (below) to set sub-geometry
size directly without applying the effects of interval_size_domain, interval_size_range,
and fatten_point.

• stroke: Width of the outline around the point sub-geometry.

• linetype: Type of line (e.g., "solid", "dashed", etc) used to draw the interval and the
outline of the slab (if it is visible). Use the slab_linetype or interval_linetype aesthetics
(below) to set sub-geometry line types separately.

Slab-specific color and line override aesthetics

• slab_fill: Override for fill: the fill color of the slab.

• slab_colour: (or slab_color) Override for colour/color: the outline color of the slab.

• slab_alpha: Override for alpha: the opacity of the slab.

• slab_linewidth: Override for linwidth: the width of the outline of the slab.

• slab_linetype: Override for linetype: the line type of the outline of the slab.

• slab_shape: Override for shape: the shape of the dots used to draw the dotplot slab.

Interval-specific color and line override aesthetics

• interval_colour: (or interval_color) Override for colour/color: the color of the inter-
val.

• interval_alpha: Override for alpha: the opacity of the interval.

• interval_linetype: Override for linetype: the line type of the interval.

Point-specific color and line override aesthetics

• point_fill: Override for fill: the fill color of the point.

• point_colour: (or point_color) Override for colour/color: the outline color of the point.

• point_alpha: Override for alpha: the opacity of the point.

• point_size: Override for size: the size of the point.

Deprecated aesthetics

• slab_size: Use slab_linewidth.

• interval_size: Use interval_linewidth.

Other aesthetics (these work as in standard geoms)

stat_pointinterval 241

• width

• height

• group

See examples of some of these aesthetics in action in vignette("dotsinterval"). Learn more
about the sub-geom override aesthetics (like interval_color) in the scales documentation. Learn
more about basic ggplot aesthetics in vignette("ggplot2-specs").

References

Kay, M., Kola, T., Hullman, J. R., & Munson, S. A. (2016). When (ish) is My Bus? User-centered
Visualizations of Uncertainty in Everyday, Mobile Predictive Systems. Conference on Human Fac-
tors in Computing Systems - CHI ’16, 5092–5103. doi:10.1145/2858036.2858558.

Fernandes, M., Walls, L., Munson, S., Hullman, J., & Kay, M. (2018). Uncertainty Displays Using
Quantile Dotplots or CDFs Improve Transit Decision-Making. Conference on Human Factors in
Computing Systems - CHI ’18. doi:10.1145/3173574.3173718.

See Also

See geom_blur_dots() for the geom underlying this stat. See vignette("dotsinterval") for a
variety of examples of use.

Other dotsinterval stats: stat_dots(), stat_dotsinterval()

Examples

library(dplyr)
library(ggplot2)

theme_set(theme_ggdist())

set.seed(1234)
data.frame(x = rnorm(1000)) %>%

ggplot(aes(x = x)) +
stat_mcse_dots(quantiles = 100, layout = "weave")

stat_pointinterval Point + multiple-interval plot (shortcut stat)

Description

Shortcut version of stat_slabinterval() with geom_pointinterval() for creating point + multiple-
interval plots.

Roughly equivalent to:

https://doi.org/10.1145/2858036.2858558
https://doi.org/10.1145/3173574.3173718

242 stat_pointinterval

stat_slabinterval(
geom = "pointinterval",
show_slab = FALSE

)

Usage

stat_pointinterval(
mapping = NULL,
data = NULL,
geom = "pointinterval",
position = "identity",
...,
point_interval = "median_qi",
.width = c(0.66, 0.95),
orientation = NA,
na.rm = FALSE,
show.legend = c(size = FALSE),
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom Use to override the default connection between stat_pointinterval() and
geom_pointinterval()

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function. Setting this equal to "dodge" (position_dodge()) or "dodgejust"
(position_dodgejust()) can be useful if you have overlapping geometries.

... Other arguments passed to layer(). These are often aesthetics, used to set an
aesthetic to a fixed value, like colour = "red" or linewidth = 3 (see Aesthet-
ics, below). They may also be parameters to the paired geom/stat. When paired
with the default geom, geom_pointinterval(), these include:
interval_size_domain A length-2 numeric vector giving the minimum and

maximum of the values of the size and linewidth aesthetics that will be
translated into actual sizes for intervals drawn according to interval_size_range
(see the documentation for that argument.)

stat_pointinterval 243

interval_size_range A length-2 numeric vector. This geom scales the raw
size aesthetic values when drawing interval and point sizes, as they tend to
be too thick when using the default settings of scale_size_continuous(),
which give sizes with a range of c(1, 6). The interval_size_domain
value indicates the input domain of raw size values (typically this should be
equal to the value of the range argument of the scale_size_continuous()
function), and interval_size_range indicates the desired output range of
the size values (the min and max of the actual sizes used to draw inter-
vals). Most of the time it is not recommended to change the value of this
argument, as it may result in strange scaling of legends; this argument is
a holdover from earlier versions that did not have size aesthetics targeting
the point and interval separately. If you want to adjust the size of the in-
terval or points separately, you can also use the linewidth or point_size
aesthetics; see sub-geometry-scales.

fatten_point A multiplicative factor used to adjust the size of the point rela-
tive to the size of the thickest interval line. If you wish to specify point sizes
directly, you can also use the point_size aesthetic and scale_point_size_continuous()
or scale_point_size_discrete(); sizes specified with that aesthetic will
not be adjusted using fatten_point.

arrow grid::arrow() giving the arrow heads to use on the interval, or NULL
for no arrows.

point_interval A function from the point_interval() family (e.g., median_qi, mean_qi,
mode_hdi, etc), or a string giving the name of a function from that family (e.g.,
"median_qi", "mean_qi", "mode_hdi", etc; if a string, the caller’s environment
is searched for the function, followed by the ggdist environment). This function
determines the point summary (typically mean, median, or mode) and interval
type (quantile interval, qi; highest-density interval, hdi; or highest-density con-
tinuous interval, hdci). Output will be converted to the appropriate x- or y-based
aesthetics depending on the value of orientation. See the point_interval()
family of functions for more information.

.width The .width argument passed to point_interval: a vector of probabilities to
use that determine the widths of the resulting intervals. If multiple probabilities
are provided, multiple intervals per group are generated, each with a different
probability interval (and value of the corresponding .width and level gener-
ated variables).

orientation Whether this geom is drawn horizontally or vertically. One of:

• NA (default): automatically detect the orientation based on how the aesthet-
ics are assigned. Automatic detection works most of the time.

• "horizontal" (or "y"): draw horizontally, using the y aesthetic to identify
different groups. For each group, uses the x, xmin, xmax, and thickness
aesthetics to draw points, intervals, and slabs.

• "vertical" (or "x"): draw vertically, using the x aesthetic to identify dif-
ferent groups. For each group, uses the y, ymin, ymax, and thickness
aesthetics to draw points, intervals, and slabs.

For compatibility with the base ggplot naming scheme for orientation, "x"
can be used as an alias for "vertical" and "y" as an alias for "horizontal"

244 stat_pointinterval

(ggdist had an orientation parameter before base ggplot did, hence the dis-
crepancy).

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend Should this layer be included in the legends? Default is c(size = FALSE), unlike
most geoms, to match its common use cases. FALSE hides all legends, TRUE
shows all legends, and NA shows only those that are mapped (the default for
most geoms).

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Details

To visualize sample data, such as a data distribution, samples from a bootstrap distribution, or a
Bayesian posterior, you can supply samples to the x or y aesthetic.

To visualize analytical distributions, you can use the xdist or ydist aesthetic. For historical
reasons, you can also use dist to specify the distribution, though this is not recommended as it
does not work as well with orientation detection. These aesthetics can be used as follows:

• xdist, ydist, and dist can be any distribution object from the distributional package (dist_normal(),
dist_beta(), etc) or can be a posterior::rvar() object. Since these functions are vector-
ized, other columns can be passed directly to them in an aes() specification; e.g. aes(dist =
dist_normal(mu, sigma)) will work if mu and sigma are columns in the input data frame.

• dist can be a character vector giving the distribution name. Then the arg1, ... arg9 aes-
thetics (or args as a list column) specify distribution arguments. Distribution names should
correspond to R functions that have "p", "q", and "d" functions; e.g. "norm" is a valid dis-
tribution name because R defines the pnorm(), qnorm(), and dnorm() functions for Normal
distributions.
See the parse_dist() function for a useful way to generate dist and args values from
human-readable distribution specs (like "normal(0,1)"). Such specs are also produced by
other packages (like the brms::get_prior function in brms); thus, parse_dist() combined
with the stats described here can help you visualize the output of those functions.

Value

A ggplot2::Stat representing a point + multiple-interval geometry which can be added to a ggplot()
object.

Computed Variables

The following variables are computed by this stat and made available for use in aesthetic specifica-
tions (aes()) using the after_stat() function or the after_stat argument of stage():

• x or y: For slabs, the input values to the slab function. For intervals, the point summary from
the interval function. Whether it is x or y depends on orientation

• xmin or ymin: For intervals, the lower end of the interval from the interval function.

• xmax or ymax: For intervals, the upper end of the interval from the interval function.

https://pkg.mitchelloharawild.com/distributional/

stat_pointinterval 245

• .width: For intervals, the interval width as a numeric value in [0, 1]. For slabs, the width
of the smallest interval containing that value of the slab.

• level: For intervals, the interval width as an ordered factor. For slabs, the level of the smallest
interval containing that value of the slab.

• pdf: For slabs, the probability density function (PDF). If options("ggdist.experimental.slab_data_in_intervals")
is TRUE: For intervals, the PDF at the point summary; intervals also have pdf_min and pdf_max
for the PDF at the lower and upper ends of the interval.

• cdf: For slabs, the cumulative distribution function. If options("ggdist.experimental.slab_data_in_intervals")
is TRUE: For intervals, the CDF at the point summary; intervals also have cdf_min and cdf_max
for the CDF at the lower and upper ends of the interval.

Aesthetics

The slab+interval stats and geoms have a wide variety of aesthetics that control the appearance of
their three sub-geometries: the slab, the point, and the interval.
These stats support the following aesthetics:

• x: x position of the geometry (when orientation = "vertical"); or sample data to be summa-
rized (when orientation = "horizontal" with sample data).

• y: y position of the geometry (when orientation = "horizontal"); or sample data to be sum-
marized (when orientation = "vertical" with sample data).

• weight: When using samples (i.e. the x and y aesthetics, not xdist or ydist), optional
weights to be applied to each draw.

• xdist: When using analytical distributions, distribution to map on the x axis: a distributional
object (e.g. dist_normal()) or a posterior::rvar() object.

• ydist: When using analytical distributions, distribution to map on the y axis: a distributional
object (e.g. dist_normal()) or a posterior::rvar() object.

• dist: When using analytical distributions, a name of a distribution (e.g. "norm"), a distribu-
tional object (e.g. dist_normal()), or a posterior::rvar() object. See Details.

• args: Distribution arguments (args or arg1, ... arg9). See Details.

In addition, in their default configuration (paired with geom_pointinterval()) the following aes-
thetics are supported by the underlying geom:

Interval-specific aesthetics

• xmin: Left end of the interval sub-geometry (if orientation = "horizontal").

• xmax: Right end of the interval sub-geometry (if orientation = "horizontal").

• ymin: Lower end of the interval sub-geometry (if orientation = "vertical").

• ymax: Upper end of the interval sub-geometry (if orientation = "vertical").

Point-specific aesthetics

• shape: Shape type used to draw the point sub-geometry.

Color aesthetics

246 stat_pointinterval

• colour: (or color) The color of the interval and point sub-geometries. Use the slab_color,
interval_color, or point_color aesthetics (below) to set sub-geometry colors separately.

• fill: The fill color of the slab and point sub-geometries. Use the slab_fill or point_fill
aesthetics (below) to set sub-geometry colors separately.

• alpha: The opacity of the slab, interval, and point sub-geometries. Use the slab_alpha,
interval_alpha, or point_alpha aesthetics (below) to set sub-geometry colors separately.

• colour_ramp: (or color_ramp) A secondary scale that modifies the color scale to "ramp" to
another color. See scale_colour_ramp() for examples.

• fill_ramp: A secondary scale that modifies the fill scale to "ramp" to another color. See
scale_fill_ramp() for examples.

Line aesthetics

• linewidth: Width of the line used to draw the interval (except with geom_slab(): then
it is the width of the slab). With composite geometries including an interval and slab, use
slab_linewidth to set the line width of the slab (see below). For interval, raw linewidth
values are transformed according to the interval_size_domain and interval_size_range
parameters of the geom (see above).

• size: Determines the size of the point. If linewidth is not provided, size will also deter-
mines the width of the line used to draw the interval (this allows line width and point size to be
modified together by setting only size and not linewidth). Raw size values are transformed
according to the interval_size_domain, interval_size_range, and fatten_point pa-
rameters of the geom (see above). Use the point_size aesthetic (below) to set sub-geometry
size directly without applying the effects of interval_size_domain, interval_size_range,
and fatten_point.

• stroke: Width of the outline around the point sub-geometry.

• linetype: Type of line (e.g., "solid", "dashed", etc) used to draw the interval and the
outline of the slab (if it is visible). Use the slab_linetype or interval_linetype aesthetics
(below) to set sub-geometry line types separately.

Interval-specific color and line override aesthetics

• interval_colour: (or interval_color) Override for colour/color: the color of the inter-
val.

• interval_alpha: Override for alpha: the opacity of the interval.

• interval_linetype: Override for linetype: the line type of the interval.

Point-specific color and line override aesthetics

• point_fill: Override for fill: the fill color of the point.

• point_colour: (or point_color) Override for colour/color: the outline color of the point.

• point_alpha: Override for alpha: the opacity of the point.

• point_size: Override for size: the size of the point.

Deprecated aesthetics

• interval_size: Use interval_linewidth.

stat_pointinterval 247

Other aesthetics (these work as in standard geoms)

• width

• height

• group

See examples of some of these aesthetics in action in vignette("slabinterval"). Learn more
about the sub-geom override aesthetics (like interval_color) in the scales documentation. Learn
more about basic ggplot aesthetics in vignette("ggplot2-specs").

See Also

See geom_pointinterval() for the geom underlying this stat. See stat_slabinterval() for the
stat this shortcut is based on.

Other slabinterval stats: stat_ccdfinterval(), stat_cdfinterval(), stat_eye(), stat_gradientinterval(),
stat_halfeye(), stat_histinterval(), stat_interval(), stat_slab(), stat_spike()

Examples

library(dplyr)
library(ggplot2)
library(distributional)

theme_set(theme_ggdist())

ON SAMPLE DATA
set.seed(1234)
df = data.frame(

group = c("a", "b", "c"),
value = rnorm(1500, mean = c(5, 7, 9), sd = c(1, 1.5, 1))

)
df %>%

ggplot(aes(x = value, y = group)) +
stat_pointinterval()

ON ANALYTICAL DISTRIBUTIONS
dist_df = data.frame(

group = c("a", "b", "c"),
mean = c(5, 7, 8),
sd = c(1, 1.5, 1)

)
Vectorized distribution types, like distributional::dist_normal()
and posterior::rvar(), can be used with the `xdist` / `ydist` aesthetics
dist_df %>%

ggplot(aes(y = group, xdist = dist_normal(mean, sd))) +
stat_pointinterval()

248 stat_ribbon

stat_ribbon Multiple-ribbon plot (shortcut stat)

Description

A combination of stat_slabinterval() and geom_lineribbon() with sensible defaults for mak-
ing multiple-ribbon plots. While geom_lineribbon() is intended for use on data frames that have
already been summarized using a point_interval() function, stat_ribbon() is intended for use
directly on data frames of draws or of analytical distributions, and will perform the summarization
using a point_interval() function.

Roughly equivalent to:

stat_lineribbon(
show_point = FALSE

)

Usage

stat_ribbon(
mapping = NULL,
data = NULL,
geom = "lineribbon",
position = "identity",
...,
.width = c(0.5, 0.8, 0.95),
point_interval = "median_qi",
orientation = NA,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

stat_ribbon 249

geom Use to override the default connection between stat_ribbon() and geom_lineribbon()

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function. Setting this equal to "dodge" (position_dodge()) or "dodgejust"
(position_dodgejust()) can be useful if you have overlapping geometries.

... Other arguments passed to layer(). These are often aesthetics, used to set an
aesthetic to a fixed value, like colour = "red" or linewidth = 3 (see Aesthet-
ics, below). They may also be parameters to the paired geom/stat. When paired
with the default geom, geom_lineribbon(), these include:

step Should the line/ribbon be drawn as a step function? One of:
• FALSE (default): do not draw as a step function.
• "mid" (or TRUE): draw steps midway between adjacent x values.
• "hv": draw horizontal-then-vertical steps.
• "vh": draw as vertical-then-horizontal steps.

TRUE is an alias for "mid" because for a step function with ribbons, "mid"
is probably what you want (for the other two step approaches the ribbons at
either the very first or very last x value will not be visible).

.width The .width argument passed to point_interval: a vector of probabilities to
use that determine the widths of the resulting intervals. If multiple probabilities
are provided, multiple intervals per group are generated, each with a different
probability interval (and value of the corresponding .width and level gener-
ated variables).

point_interval A function from the point_interval() family (e.g., median_qi, mean_qi,
mode_hdi, etc), or a string giving the name of a function from that family (e.g.,
"median_qi", "mean_qi", "mode_hdi", etc; if a string, the caller’s environment
is searched for the function, followed by the ggdist environment). This function
determines the point summary (typically mean, median, or mode) and interval
type (quantile interval, qi; highest-density interval, hdi; or highest-density con-
tinuous interval, hdci). Output will be converted to the appropriate x- or y-based
aesthetics depending on the value of orientation. See the point_interval()
family of functions for more information.

orientation Whether this geom is drawn horizontally or vertically. One of:

• NA (default): automatically detect the orientation based on how the aesthet-
ics are assigned. Automatic detection works most of the time.

• "horizontal" (or "y"): draw horizontally, using the y aesthetic to identify
different groups. For each group, uses the x, xmin, xmax, and thickness
aesthetics to draw points, intervals, and slabs.

• "vertical" (or "x"): draw vertically, using the x aesthetic to identify dif-
ferent groups. For each group, uses the y, ymin, ymax, and thickness
aesthetics to draw points, intervals, and slabs.

For compatibility with the base ggplot naming scheme for orientation, "x"
can be used as an alias for "vertical" and "y" as an alias for "horizontal"
(ggdist had an orientation parameter before base ggplot did, hence the dis-
crepancy).

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

250 stat_ribbon

show.legend Should this layer be included in the legends? NA, the default, includes if any
aesthetics are mapped. FALSE never includes, and TRUE always includes.

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Details

To visualize sample data, such as a data distribution, samples from a bootstrap distribution, or a
Bayesian posterior, you can supply samples to the x or y aesthetic.

To visualize analytical distributions, you can use the xdist or ydist aesthetic. For historical
reasons, you can also use dist to specify the distribution, though this is not recommended as it
does not work as well with orientation detection. These aesthetics can be used as follows:

• xdist, ydist, and dist can be any distribution object from the distributional package (dist_normal(),
dist_beta(), etc) or can be a posterior::rvar() object. Since these functions are vector-
ized, other columns can be passed directly to them in an aes() specification; e.g. aes(dist =
dist_normal(mu, sigma)) will work if mu and sigma are columns in the input data frame.

• dist can be a character vector giving the distribution name. Then the arg1, ... arg9 aes-
thetics (or args as a list column) specify distribution arguments. Distribution names should
correspond to R functions that have "p", "q", and "d" functions; e.g. "norm" is a valid dis-
tribution name because R defines the pnorm(), qnorm(), and dnorm() functions for Normal
distributions.
See the parse_dist() function for a useful way to generate dist and args values from
human-readable distribution specs (like "normal(0,1)"). Such specs are also produced by
other packages (like the brms::get_prior function in brms); thus, parse_dist() combined
with the stats described here can help you visualize the output of those functions.

Value

A ggplot2::Stat representing a multiple-ribbon geometry which can be added to a ggplot() object.

Computed Variables

The following variables are computed by this stat and made available for use in aesthetic specifica-
tions (aes()) using the after_stat() function or the after_stat argument of stage():

• x or y: For slabs, the input values to the slab function. For intervals, the point summary from
the interval function. Whether it is x or y depends on orientation

• xmin or ymin: For intervals, the lower end of the interval from the interval function.

• xmax or ymax: For intervals, the upper end of the interval from the interval function.

• .width: For intervals, the interval width as a numeric value in [0, 1]. For slabs, the width
of the smallest interval containing that value of the slab.

• level: For intervals, the interval width as an ordered factor. For slabs, the level of the smallest
interval containing that value of the slab.

• pdf: For slabs, the probability density function (PDF). If options("ggdist.experimental.slab_data_in_intervals")
is TRUE: For intervals, the PDF at the point summary; intervals also have pdf_min and pdf_max
for the PDF at the lower and upper ends of the interval.

https://pkg.mitchelloharawild.com/distributional/

stat_ribbon 251

• cdf: For slabs, the cumulative distribution function. If options("ggdist.experimental.slab_data_in_intervals")
is TRUE: For intervals, the CDF at the point summary; intervals also have cdf_min and cdf_max
for the CDF at the lower and upper ends of the interval.

Aesthetics

The line+ribbon stats and geoms have a wide variety of aesthetics that control the appearance of
their two sub-geometries: the line and the ribbon.

These stats support the following aesthetics:

• x: x position of the geometry (when orientation = "vertical"); or sample data to be summa-
rized (when orientation = "horizontal" with sample data).

• y: y position of the geometry (when orientation = "horizontal"); or sample data to be sum-
marized (when orientation = "vertical" with sample data).

• weight: When using samples (i.e. the x and y aesthetics, not xdist or ydist), optional
weights to be applied to each draw.

• xdist: When using analytical distributions, distribution to map on the x axis: a distributional
object (e.g. dist_normal()) or a posterior::rvar() object.

• ydist: When using analytical distributions, distribution to map on the y axis: a distributional
object (e.g. dist_normal()) or a posterior::rvar() object.

• dist: When using analytical distributions, a name of a distribution (e.g. "norm"), a distribu-
tional object (e.g. dist_normal()), or a posterior::rvar() object. See Details.

• args: Distribution arguments (args or arg1, ... arg9). See Details.

In addition, in their default configuration (paired with geom_lineribbon()) the following aesthet-
ics are supported by the underlying geom:

Ribbon-specific aesthetics

• xmin: Left edge of the ribbon sub-geometry (if orientation = "horizontal").

• xmax: Right edge of the ribbon sub-geometry (if orientation = "horizontal").

• ymin: Lower edge of the ribbon sub-geometry (if orientation = "vertical").

• ymax: Upper edge of the ribbon sub-geometry (if orientation = "vertical").

• order: The order in which ribbons are drawn. Ribbons with the smallest mean value of
order are drawn first (i.e., will be drawn below ribbons with larger mean values of order).
If order is not supplied to geom_lineribbon(), -abs(xmax - xmin) or -abs(ymax - ymax)
(depending on orientation) is used, having the effect of drawing the widest (on average)
ribbons on the bottom. stat_lineribbon() uses order = after_stat(level) by default,
causing the ribbons generated from the largest .width to be drawn on the bottom.

Color aesthetics

• colour: (or color) The color of the line sub-geometry.

• fill: The fill color of the ribbon sub-geometry.

• alpha: The opacity of the line and ribbon sub-geometries.

252 stat_ribbon

• fill_ramp: A secondary scale that modifies the fill scale to "ramp" to another color. See
scale_fill_ramp() for examples.

Other aesthetics (these work as in standard geoms)

• group

See examples of some of these aesthetics in action in vignette("lineribbon"). Learn more about
the sub-geom override aesthetics (like interval_color) in the scales documentation. Learn more
about basic ggplot aesthetics in vignette("ggplot2-specs").

See Also

See geom_lineribbon() for the geom underlying this stat.

Other lineribbon stats: stat_lineribbon()

Examples

library(dplyr)
library(ggplot2)
library(distributional)

theme_set(theme_ggdist())

ON SAMPLE DATA
set.seed(12345)
tibble(

x = rep(1:10, 100),
y = rnorm(1000, x)

) %>%
ggplot(aes(x = x, y = y)) +
stat_ribbon() +
scale_fill_brewer()

ON ANALYTICAL DISTRIBUTIONS
Vectorized distribution types, like distributional::dist_normal()
and posterior::rvar(), can be used with the `xdist` / `ydist` aesthetics
tibble(

x = 1:10,
sd = seq(1, 3, length.out = 10)

) %>%
ggplot(aes(x = x, ydist = dist_normal(x, sd))) +
stat_ribbon() +
scale_fill_brewer()

stat_slab 253

stat_slab Slab (ridge) plot (shortcut stat)

Description

Shortcut version of stat_slabinterval() with geom_slab() for creating slab (ridge) plots.

Roughly equivalent to:

stat_slabinterval(
aes(size = NULL),
geom = "slab",
show_point = FALSE,
show_interval = FALSE,
show.legend = NA

)

Usage

stat_slab(
mapping = NULL,
data = NULL,
geom = "slab",
position = "identity",
...,
p_limits = c(NA, NA),
density = "bounded",
adjust = waiver(),
trim = TRUE,
expand = FALSE,
breaks = waiver(),
align = "none",
outline_bars = FALSE,
slab_type = NULL,
limits = NULL,
n = 501,
orientation = NA,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

254 stat_slab

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom Use to override the default connection between stat_slab() and geom_slab()

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function. Setting this equal to "dodge" (position_dodge()) or "dodgejust"
(position_dodgejust()) can be useful if you have overlapping geometries.

... Other arguments passed to layer(). These are often aesthetics, used to set an
aesthetic to a fixed value, like colour = "red" or linewidth = 3 (see Aesthet-
ics, below). They may also be parameters to the paired geom/stat. When paired
with the default geom, geom_slab(), these include:

normalize How to normalize heights of functions input to the thickness aes-
thetic. One of:

• "all": normalize so that the maximum height across all data is 1.
• "panels": normalize within panels so that the maximum height in each

panel is 1.
• "xy": normalize within the x/y axis opposite the orientation of this

geom so that the maximum height at each value of the opposite axis is
1.

• "groups": normalize within values of the opposite axis and within
each group so that the maximum height in each group is 1.

• "none": values are taken as is with no normalization (this should prob-
ably only be used with functions whose values are in [0,1], such as
CDFs).

For a comprehensive discussion and examples of slab scaling and normal-
ization, see the thickness scale article.

fill_type What type of fill to use when the fill color or alpha varies within a
slab. One of:

• "segments": breaks up the slab geometry into segments for each unique
combination of fill color and alpha value. This approach is supported
by all graphics devices and works well for sharp cutoff values, but can
give ugly results if a large number of unique fill colors are being used
(as in gradients, like in stat_gradientinterval()).

• "gradient": a grid::linearGradient() is used to create a smooth
gradient fill. This works well for large numbers of unique fill colors,
but requires R >= 4.1 and is not yet supported on all graphics devices.
As of this writing, the png() graphics device with type = "cairo", the
svg() device, the pdf() device, and the ragg::agg_png() devices are
known to support this option. On R < 4.1, this option will fall back to
fill_type = "segments" with a message.

https://mjskay.github.io/ggdist/articles/thickness.html

stat_slab 255

• "auto": attempts to use fill_type = "gradient" if support for it can
be auto-detected. On R >= 4.2, support for gradients can be auto-
detected on some graphics devices; if support is not detected, this op-
tion will fall back to fill_type = "segments" (in case of a false nega-
tive, fill_type = "gradient" can be set explicitly). On R < 4.2, sup-
port for gradients cannot be auto-detected, so this will always fall back
to fill_type = "segments", in which case you can set fill_type =
"gradient" explicitly if you are using a graphics device that support
gradients.

subguide Sub-guide used to annotate the thickness scale. One of:
• A function that takes a scale argument giving a ggplot2::Scale object

and an orientation argument giving the orientation of the geometry
and then returns a grid::grob that will draw the axis annotation, such as
subguide_axis() (to draw a traditional axis) or subguide_none() (to
draw no annotation). See subguide_axis() for a list of possibilities
and examples.

• A string giving the name of such a function when prefixed with "subguide";
e.g. "axis" or "none".

p_limits Probability limits (as a vector of size 2) used to determine the lower and upper
limits of theoretical distributions (distributions from samples ignore this param-
eter and determine their limits based on the limits of the sample). E.g., if this
is c(.001, .999), then a slab is drawn for the distribution from the quantile
at p = .001 to the quantile at p = .999. If the lower (respectively upper) limit is
NA, then the lower (upper) limit will be the minimum (maximum) of the distribu-
tion’s support if it is finite, and 0.001 (0.999) if it is not finite. E.g., if p_limits
is c(NA, NA), on a gamma distribution the effective value of p_limits would be
c(0, .999) since the gamma distribution is defined on (0, Inf); whereas on
a normal distribution it would be equivalent to c(.001, .999) since the normal
distribution is defined on (-Inf, Inf).

density Density estimator for sample data. One of:

• A function which takes a numeric vector and returns a list with elements
x (giving grid points for the density estimator) and y (the corresponding
densities). ggdist provides a family of functions following this format, in-
cluding density_unbounded() and density_bounded(). This format is
also compatible with stats::density().

• A string giving the suffix of a function name that starts with "density_";
e.g. "bounded" for [density_bounded()], "unbounded" for [density_unbounded()],
or "histogram" for density_histogram(). Defaults to "bounded", i.e.
density_bounded(), which estimates the bounds from the data and then
uses a bounded density estimator based on the reflection method.

adjust Passed to density: the bandwidth for the density estimator for sample data is
adjusted by multiplying it by this value. See e.g. density_bounded() for more
information. Default (waiver()) defers to the default of the density estimator,
which is usually 1.

trim For sample data, should the density estimate be trimmed to the range of the data?
Passed on to the density estimator; see the density parameter. Default TRUE.

256 stat_slab

expand For sample data, should the slab be expanded to the limits of the scale? Default
FALSE. Can be length two to control expansion to the lower and upper limit
respectively.

breaks Determines the breakpoints defining bins. Defaults to "Scott". Similar to (but
not exactly the same as) the breaks argument to graphics::hist(). One of:

• A scalar (length-1) numeric giving the number of bins
• A vector numeric giving the breakpoints between histogram bins
• A function taking x and weights and returning either the number of bins or

a vector of breakpoints
• A string giving the suffix of a function that starts with "breaks_". ggdist

provides weighted implementations of the "Sturges", "Scott", and "FD"
break-finding algorithms from graphics::hist(), as well as breaks_fixed()
for manually setting the bin width. See breaks.

For example, breaks = "Sturges" will use the breaks_Sturges() algorithm,
breaks = 9 will create 9 bins, and breaks = breaks_fixed(width = 1) will set
the bin width to 1.

align Determines how to align the breakpoints defining bins. Default ("none") per-
forms no alignment. One of:

• A scalar (length-1) numeric giving an offset that is subtracted from the
breaks. The offset must be between 0 and the bin width.

• A function taking a sorted vector of breaks (bin edges) and returning an
offset to subtract from the breaks.

• A string giving the suffix of a function that starts with "align_" used to
determine the alignment, such as align_none(), align_boundary(), or
align_center().

For example, align = "none" will provide no alignment, align = align_center(at
= 0) will center a bin on 0, and align = align_boundary(at = 0) will align a
bin edge on 0.

outline_bars For sample data (if density is "histogram") and for discrete analytical dis-
tributions (whose slabs are drawn as histograms), determines if outlines in be-
tween the bars are drawn when the slab_color aesthetic is used. If FALSE (the
default), the outline is drawn only along the tops of the bars; if TRUE, outlines in
between bars are also drawn. See density_histogram().

slab_type (deprecated) The type of slab function to calculate: probability density (or mass)
function ("pdf"), cumulative distribution function ("cdf"), or complementary
CDF ("ccdf"). Instead of using slab_type to change f and then mapping f
onto an aesthetic, it is now recommended to simply map the corresponding com-
puted variable (e.g. pdf, cdf, or 1 - cdf) directly onto the desired aesthetic.

limits Manually-specified limits for the slab, as a vector of length two. These limits are
combined with those computed based on p_limits as well as the limits defined
by the scales of the plot to determine the limits used to draw the slab functions:
these limits specify the maximal limits; i.e., if specified, the limits will not be
wider than these (but may be narrower). Use NA to leave a limit alone; e.g.
limits = c(0, NA) will ensure that the lower limit does not go below 0, but let
the upper limit be determined by either p_limits or the scale settings.

stat_slab 257

n Number of points at which to evaluate the function that defines the slab.

orientation Whether this geom is drawn horizontally or vertically. One of:

• NA (default): automatically detect the orientation based on how the aesthet-
ics are assigned. Automatic detection works most of the time.

• "horizontal" (or "y"): draw horizontally, using the y aesthetic to identify
different groups. For each group, uses the x, xmin, xmax, and thickness
aesthetics to draw points, intervals, and slabs.

• "vertical" (or "x"): draw vertically, using the x aesthetic to identify dif-
ferent groups. For each group, uses the y, ymin, ymax, and thickness
aesthetics to draw points, intervals, and slabs.

For compatibility with the base ggplot naming scheme for orientation, "x"
can be used as an alias for "vertical" and "y" as an alias for "horizontal"
(ggdist had an orientation parameter before base ggplot did, hence the dis-
crepancy).

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend Should this layer be included in the legends? Default is c(size = FALSE), unlike
most geoms, to match its common use cases. FALSE hides all legends, TRUE
shows all legends, and NA shows only those that are mapped (the default for
most geoms).

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Details

To visualize sample data, such as a data distribution, samples from a bootstrap distribution, or a
Bayesian posterior, you can supply samples to the x or y aesthetic.

To visualize analytical distributions, you can use the xdist or ydist aesthetic. For historical
reasons, you can also use dist to specify the distribution, though this is not recommended as it
does not work as well with orientation detection. These aesthetics can be used as follows:

• xdist, ydist, and dist can be any distribution object from the distributional package (dist_normal(),
dist_beta(), etc) or can be a posterior::rvar() object. Since these functions are vector-
ized, other columns can be passed directly to them in an aes() specification; e.g. aes(dist =
dist_normal(mu, sigma)) will work if mu and sigma are columns in the input data frame.

• dist can be a character vector giving the distribution name. Then the arg1, ... arg9 aes-
thetics (or args as a list column) specify distribution arguments. Distribution names should
correspond to R functions that have "p", "q", and "d" functions; e.g. "norm" is a valid dis-
tribution name because R defines the pnorm(), qnorm(), and dnorm() functions for Normal
distributions.
See the parse_dist() function for a useful way to generate dist and args values from
human-readable distribution specs (like "normal(0,1)"). Such specs are also produced by
other packages (like the brms::get_prior function in brms); thus, parse_dist() combined
with the stats described here can help you visualize the output of those functions.

https://pkg.mitchelloharawild.com/distributional/

258 stat_slab

Value

A ggplot2::Stat representing a slab (ridge) geometry which can be added to a ggplot() object.

Computed Variables

The following variables are computed by this stat and made available for use in aesthetic specifica-
tions (aes()) using the after_stat() function or the after_stat argument of stage():

• x or y: For slabs, the input values to the slab function. For intervals, the point summary from
the interval function. Whether it is x or y depends on orientation

• xmin or ymin: For intervals, the lower end of the interval from the interval function.

• xmax or ymax: For intervals, the upper end of the interval from the interval function.

• .width: For intervals, the interval width as a numeric value in [0, 1]. For slabs, the width
of the smallest interval containing that value of the slab.

• level: For intervals, the interval width as an ordered factor. For slabs, the level of the smallest
interval containing that value of the slab.

• pdf: For slabs, the probability density function (PDF). If options("ggdist.experimental.slab_data_in_intervals")
is TRUE: For intervals, the PDF at the point summary; intervals also have pdf_min and pdf_max
for the PDF at the lower and upper ends of the interval.

• cdf: For slabs, the cumulative distribution function. If options("ggdist.experimental.slab_data_in_intervals")
is TRUE: For intervals, the CDF at the point summary; intervals also have cdf_min and cdf_max
for the CDF at the lower and upper ends of the interval.

• n: For slabs, the number of data points summarized into that slab. If the slab was created from
an analytical distribution via the xdist, ydist, or dist aesthetic, n will be Inf.

• f: (deprecated) For slabs, the output values from the slab function (such as the PDF, CDF, or
CCDF), determined by slab_type. Instead of using slab_type to change f and then map-
ping f onto an aesthetic, it is now recommended to simply map the corresponding computed
variable (e.g. pdf, cdf, or 1 - cdf) directly onto the desired aesthetic.

Aesthetics

The slab+interval stats and geoms have a wide variety of aesthetics that control the appearance of
their three sub-geometries: the slab, the point, and the interval.
These stats support the following aesthetics:

• x: x position of the geometry (when orientation = "vertical"); or sample data to be summa-
rized (when orientation = "horizontal" with sample data).

• y: y position of the geometry (when orientation = "horizontal"); or sample data to be sum-
marized (when orientation = "vertical" with sample data).

• weight: When using samples (i.e. the x and y aesthetics, not xdist or ydist), optional
weights to be applied to each draw.

• xdist: When using analytical distributions, distribution to map on the x axis: a distributional
object (e.g. dist_normal()) or a posterior::rvar() object.

• ydist: When using analytical distributions, distribution to map on the y axis: a distributional
object (e.g. dist_normal()) or a posterior::rvar() object.

stat_slab 259

• dist: When using analytical distributions, a name of a distribution (e.g. "norm"), a distribu-
tional object (e.g. dist_normal()), or a posterior::rvar() object. See Details.

• args: Distribution arguments (args or arg1, ... arg9). See Details.

In addition, in their default configuration (paired with geom_slab()) the following aesthetics are
supported by the underlying geom:

Slab-specific aesthetics

• thickness: The thickness of the slab at each x value (if orientation = "horizontal") or y
value (if orientation = "vertical") of the slab.

• side: Which side to place the slab on. "topright", "top", and "right" are synonyms
which cause the slab to be drawn on the top or the right depending on if orientation
is "horizontal" or "vertical". "bottomleft", "bottom", and "left" are synonyms
which cause the slab to be drawn on the bottom or the left depending on if orientation
is "horizontal" or "vertical". "topleft" causes the slab to be drawn on the top or the
left, and "bottomright" causes the slab to be drawn on the bottom or the right. "both" draws
the slab mirrored on both sides (as in a violin plot).

• scale: What proportion of the region allocated to this geom to use to draw the slab. If scale
= 1, slabs that use the maximum range will just touch each other. Default is 0.9 to leave some
space between adjacent slabs. For a comprehensive discussion and examples of slab scaling
and normalization, see the thickness scale article.

• justification: Justification of the interval relative to the slab, where 0 indicates bottom/left
justification and 1 indicates top/right justification (depending on orientation). If justification
is NULL (the default), then it is set automatically based on the value of side: when side is
"top"/"right" justification is set to 0, when side is "bottom"/"left" justification
is set to 1, and when side is "both" justification is set to 0.5.

Color aesthetics

• colour: (or color) The color of the interval and point sub-geometries. Use the slab_color,
interval_color, or point_color aesthetics (below) to set sub-geometry colors separately.

• fill: The fill color of the slab and point sub-geometries. Use the slab_fill or point_fill
aesthetics (below) to set sub-geometry colors separately.

• alpha: The opacity of the slab, interval, and point sub-geometries. Use the slab_alpha,
interval_alpha, or point_alpha aesthetics (below) to set sub-geometry colors separately.

• colour_ramp: (or color_ramp) A secondary scale that modifies the color scale to "ramp" to
another color. See scale_colour_ramp() for examples.

• fill_ramp: A secondary scale that modifies the fill scale to "ramp" to another color. See
scale_fill_ramp() for examples.

Line aesthetics

• linewidth: Width of the line used to draw the interval (except with geom_slab(): then
it is the width of the slab). With composite geometries including an interval and slab, use
slab_linewidth to set the line width of the slab (see below). For interval, raw linewidth
values are transformed according to the interval_size_domain and interval_size_range
parameters of the geom (see above).

https://mjskay.github.io/ggdist/articles/thickness.html

260 stat_slab

• size: Determines the size of the point. If linewidth is not provided, size will also deter-
mines the width of the line used to draw the interval (this allows line width and point size to be
modified together by setting only size and not linewidth). Raw size values are transformed
according to the interval_size_domain, interval_size_range, and fatten_point pa-
rameters of the geom (see above). Use the point_size aesthetic (below) to set sub-geometry
size directly without applying the effects of interval_size_domain, interval_size_range,
and fatten_point.

• stroke: Width of the outline around the point sub-geometry.

• linetype: Type of line (e.g., "solid", "dashed", etc) used to draw the interval and the
outline of the slab (if it is visible). Use the slab_linetype or interval_linetype aesthetics
(below) to set sub-geometry line types separately.

Slab-specific color and line override aesthetics

• slab_fill: Override for fill: the fill color of the slab.

• slab_colour: (or slab_color) Override for colour/color: the outline color of the slab.

• slab_alpha: Override for alpha: the opacity of the slab.

• slab_linewidth: Override for linwidth: the width of the outline of the slab.

• slab_linetype: Override for linetype: the line type of the outline of the slab.

Deprecated aesthetics

• slab_size: Use slab_linewidth.

Other aesthetics (these work as in standard geoms)

• width

• height

• group

See examples of some of these aesthetics in action in vignette("slabinterval"). Learn more
about the sub-geom override aesthetics (like interval_color) in the scales documentation. Learn
more about basic ggplot aesthetics in vignette("ggplot2-specs").

See Also

See geom_slab() for the geom underlying this stat. See stat_slabinterval() for the stat this
shortcut is based on.

Other slabinterval stats: stat_ccdfinterval(), stat_cdfinterval(), stat_eye(), stat_gradientinterval(),
stat_halfeye(), stat_histinterval(), stat_interval(), stat_pointinterval(), stat_spike()

stat_slabinterval 261

Examples

library(dplyr)
library(ggplot2)
library(distributional)

theme_set(theme_ggdist())

ON SAMPLE DATA
set.seed(1234)
df = data.frame(

group = c("a", "b", "c"),
value = rnorm(1500, mean = c(5, 7, 9), sd = c(1, 1.5, 1))

)
df %>%

ggplot(aes(x = value, y = group)) +
stat_slab()

ON ANALYTICAL DISTRIBUTIONS
dist_df = data.frame(

group = c("a", "b", "c"),
mean = c(5, 7, 8),
sd = c(1, 1.5, 1)

)
Vectorized distribution types, like distributional::dist_normal()
and posterior::rvar(), can be used with the `xdist` / `ydist` aesthetics
dist_df %>%

ggplot(aes(y = group, xdist = dist_normal(mean, sd))) +
stat_slab()

RIDGE PLOTS
"ridge" plots can be created by expanding the slabs to the limits of the plot
(expand = TRUE), allowing the density estimator to be nonzero outside the
limits of the data (trim = FALSE), and increasing the height of the slabs.
data.frame(

group = letters[1:3],
value = rnorm(3000, 3:1)

) %>%
ggplot(aes(y = group, x = value)) +
stat_slab(color = "black", expand = TRUE, trim = FALSE, height = 2)

stat_slabinterval Slab + interval plots for sample data and analytical distributions (gg-
plot stat)

Description

"Meta" stat for computing distribution functions (densities or CDFs) + intervals for use with geom_slabinterval().
Useful for creating eye plots, half-eye plots, CCDF bar plots, gradient plots, histograms, and more.
Sample data can be supplied to the x and y aesthetics or analytical distributions (in a variety of
formats) can be supplied to the xdist and ydist aesthetics. See Details.

262 stat_slabinterval

Usage

stat_slabinterval(
mapping = NULL,
data = NULL,
geom = "slabinterval",
position = "identity",
...,
p_limits = c(NA, NA),
density = "bounded",
adjust = waiver(),
trim = TRUE,
expand = FALSE,
breaks = waiver(),
align = "none",
outline_bars = FALSE,
point_interval = "median_qi",
slab_type = NULL,
limits = NULL,
n = 501,
.width = c(0.66, 0.95),
orientation = NA,
na.rm = FALSE,
show.legend = c(size = FALSE),
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom Use to override the default connection between stat_slabinterval() and
geom_slabinterval()

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function. Setting this equal to "dodge" (position_dodge()) or "dodgejust"
(position_dodgejust()) can be useful if you have overlapping geometries.

... Other arguments passed to layer(). These are often aesthetics, used to set an
aesthetic to a fixed value, like colour = "red" or linewidth = 3 (see Aesthet-

stat_slabinterval 263

ics, below). They may also be parameters to the paired geom/stat. When paired
with the default geom, geom_slabinterval(), these include:

normalize How to normalize heights of functions input to the thickness aes-
thetic. One of:

• "all": normalize so that the maximum height across all data is 1.
• "panels": normalize within panels so that the maximum height in each

panel is 1.
• "xy": normalize within the x/y axis opposite the orientation of this

geom so that the maximum height at each value of the opposite axis is
1.

• "groups": normalize within values of the opposite axis and within
each group so that the maximum height in each group is 1.

• "none": values are taken as is with no normalization (this should prob-
ably only be used with functions whose values are in [0,1], such as
CDFs).

For a comprehensive discussion and examples of slab scaling and normal-
ization, see the thickness scale article.

fill_type What type of fill to use when the fill color or alpha varies within a
slab. One of:

• "segments": breaks up the slab geometry into segments for each unique
combination of fill color and alpha value. This approach is supported
by all graphics devices and works well for sharp cutoff values, but can
give ugly results if a large number of unique fill colors are being used
(as in gradients, like in stat_gradientinterval()).

• "gradient": a grid::linearGradient() is used to create a smooth
gradient fill. This works well for large numbers of unique fill colors,
but requires R >= 4.1 and is not yet supported on all graphics devices.
As of this writing, the png() graphics device with type = "cairo", the
svg() device, the pdf() device, and the ragg::agg_png() devices are
known to support this option. On R < 4.1, this option will fall back to
fill_type = "segments" with a message.

• "auto": attempts to use fill_type = "gradient" if support for it can
be auto-detected. On R >= 4.2, support for gradients can be auto-
detected on some graphics devices; if support is not detected, this op-
tion will fall back to fill_type = "segments" (in case of a false nega-
tive, fill_type = "gradient" can be set explicitly). On R < 4.2, sup-
port for gradients cannot be auto-detected, so this will always fall back
to fill_type = "segments", in which case you can set fill_type =
"gradient" explicitly if you are using a graphics device that support
gradients.

interval_size_domain A length-2 numeric vector giving the minimum and
maximum of the values of the size and linewidth aesthetics that will be
translated into actual sizes for intervals drawn according to interval_size_range
(see the documentation for that argument.)

interval_size_range A length-2 numeric vector. This geom scales the raw
size aesthetic values when drawing interval and point sizes, as they tend to
be too thick when using the default settings of scale_size_continuous(),

https://mjskay.github.io/ggdist/articles/thickness.html

264 stat_slabinterval

which give sizes with a range of c(1, 6). The interval_size_domain
value indicates the input domain of raw size values (typically this should be
equal to the value of the range argument of the scale_size_continuous()
function), and interval_size_range indicates the desired output range of
the size values (the min and max of the actual sizes used to draw inter-
vals). Most of the time it is not recommended to change the value of this
argument, as it may result in strange scaling of legends; this argument is
a holdover from earlier versions that did not have size aesthetics targeting
the point and interval separately. If you want to adjust the size of the in-
terval or points separately, you can also use the linewidth or point_size
aesthetics; see sub-geometry-scales.

fatten_point A multiplicative factor used to adjust the size of the point rela-
tive to the size of the thickest interval line. If you wish to specify point sizes
directly, you can also use the point_size aesthetic and scale_point_size_continuous()
or scale_point_size_discrete(); sizes specified with that aesthetic will
not be adjusted using fatten_point.

arrow grid::arrow() giving the arrow heads to use on the interval, or NULL
for no arrows.

subguide Sub-guide used to annotate the thickness scale. One of:
• A function that takes a scale argument giving a ggplot2::Scale object

and an orientation argument giving the orientation of the geometry
and then returns a grid::grob that will draw the axis annotation, such as
subguide_axis() (to draw a traditional axis) or subguide_none() (to
draw no annotation). See subguide_axis() for a list of possibilities
and examples.

• A string giving the name of such a function when prefixed with "subguide";
e.g. "axis" or "none".

p_limits Probability limits (as a vector of size 2) used to determine the lower and upper
limits of theoretical distributions (distributions from samples ignore this param-
eter and determine their limits based on the limits of the sample). E.g., if this
is c(.001, .999), then a slab is drawn for the distribution from the quantile
at p = .001 to the quantile at p = .999. If the lower (respectively upper) limit is
NA, then the lower (upper) limit will be the minimum (maximum) of the distribu-
tion’s support if it is finite, and 0.001 (0.999) if it is not finite. E.g., if p_limits
is c(NA, NA), on a gamma distribution the effective value of p_limits would be
c(0, .999) since the gamma distribution is defined on (0, Inf); whereas on
a normal distribution it would be equivalent to c(.001, .999) since the normal
distribution is defined on (-Inf, Inf).

density Density estimator for sample data. One of:

• A function which takes a numeric vector and returns a list with elements
x (giving grid points for the density estimator) and y (the corresponding
densities). ggdist provides a family of functions following this format, in-
cluding density_unbounded() and density_bounded(). This format is
also compatible with stats::density().

• A string giving the suffix of a function name that starts with "density_";
e.g. "bounded" for [density_bounded()], "unbounded" for [density_unbounded()],
or "histogram" for density_histogram(). Defaults to "bounded", i.e.

stat_slabinterval 265

density_bounded(), which estimates the bounds from the data and then
uses a bounded density estimator based on the reflection method.

adjust Passed to density: the bandwidth for the density estimator for sample data is
adjusted by multiplying it by this value. See e.g. density_bounded() for more
information. Default (waiver()) defers to the default of the density estimator,
which is usually 1.

trim For sample data, should the density estimate be trimmed to the range of the data?
Passed on to the density estimator; see the density parameter. Default TRUE.

expand For sample data, should the slab be expanded to the limits of the scale? Default
FALSE. Can be length two to control expansion to the lower and upper limit
respectively.

breaks Determines the breakpoints defining bins. Defaults to "Scott". Similar to (but
not exactly the same as) the breaks argument to graphics::hist(). One of:

• A scalar (length-1) numeric giving the number of bins
• A vector numeric giving the breakpoints between histogram bins
• A function taking x and weights and returning either the number of bins or

a vector of breakpoints
• A string giving the suffix of a function that starts with "breaks_". ggdist

provides weighted implementations of the "Sturges", "Scott", and "FD"
break-finding algorithms from graphics::hist(), as well as breaks_fixed()
for manually setting the bin width. See breaks.

For example, breaks = "Sturges" will use the breaks_Sturges() algorithm,
breaks = 9 will create 9 bins, and breaks = breaks_fixed(width = 1) will set
the bin width to 1.

align Determines how to align the breakpoints defining bins. Default ("none") per-
forms no alignment. One of:

• A scalar (length-1) numeric giving an offset that is subtracted from the
breaks. The offset must be between 0 and the bin width.

• A function taking a sorted vector of breaks (bin edges) and returning an
offset to subtract from the breaks.

• A string giving the suffix of a function that starts with "align_" used to
determine the alignment, such as align_none(), align_boundary(), or
align_center().

For example, align = "none" will provide no alignment, align = align_center(at
= 0) will center a bin on 0, and align = align_boundary(at = 0) will align a
bin edge on 0.

outline_bars For sample data (if density is "histogram") and for discrete analytical dis-
tributions (whose slabs are drawn as histograms), determines if outlines in be-
tween the bars are drawn when the slab_color aesthetic is used. If FALSE (the
default), the outline is drawn only along the tops of the bars; if TRUE, outlines in
between bars are also drawn. See density_histogram().

point_interval A function from the point_interval() family (e.g., median_qi, mean_qi,
mode_hdi, etc), or a string giving the name of a function from that family (e.g.,
"median_qi", "mean_qi", "mode_hdi", etc; if a string, the caller’s environment

266 stat_slabinterval

is searched for the function, followed by the ggdist environment). This function
determines the point summary (typically mean, median, or mode) and interval
type (quantile interval, qi; highest-density interval, hdi; or highest-density con-
tinuous interval, hdci). Output will be converted to the appropriate x- or y-based
aesthetics depending on the value of orientation. See the point_interval()
family of functions for more information.

slab_type (deprecated) The type of slab function to calculate: probability density (or mass)
function ("pdf"), cumulative distribution function ("cdf"), or complementary
CDF ("ccdf"). Instead of using slab_type to change f and then mapping f
onto an aesthetic, it is now recommended to simply map the corresponding com-
puted variable (e.g. pdf, cdf, or 1 - cdf) directly onto the desired aesthetic.

limits Manually-specified limits for the slab, as a vector of length two. These limits are
combined with those computed based on p_limits as well as the limits defined
by the scales of the plot to determine the limits used to draw the slab functions:
these limits specify the maximal limits; i.e., if specified, the limits will not be
wider than these (but may be narrower). Use NA to leave a limit alone; e.g.
limits = c(0, NA) will ensure that the lower limit does not go below 0, but let
the upper limit be determined by either p_limits or the scale settings.

n Number of points at which to evaluate the function that defines the slab.

.width The .width argument passed to point_interval: a vector of probabilities to
use that determine the widths of the resulting intervals. If multiple probabilities
are provided, multiple intervals per group are generated, each with a different
probability interval (and value of the corresponding .width and level gener-
ated variables).

orientation Whether this geom is drawn horizontally or vertically. One of:

• NA (default): automatically detect the orientation based on how the aesthet-
ics are assigned. Automatic detection works most of the time.

• "horizontal" (or "y"): draw horizontally, using the y aesthetic to identify
different groups. For each group, uses the x, xmin, xmax, and thickness
aesthetics to draw points, intervals, and slabs.

• "vertical" (or "x"): draw vertically, using the x aesthetic to identify dif-
ferent groups. For each group, uses the y, ymin, ymax, and thickness
aesthetics to draw points, intervals, and slabs.

For compatibility with the base ggplot naming scheme for orientation, "x"
can be used as an alias for "vertical" and "y" as an alias for "horizontal"
(ggdist had an orientation parameter before base ggplot did, hence the dis-
crepancy).

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

show.legend Should this layer be included in the legends? Default is c(size = FALSE), unlike
most geoms, to match its common use cases. FALSE hides all legends, TRUE
shows all legends, and NA shows only those that are mapped (the default for
most geoms).

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

stat_slabinterval 267

Details

A highly configurable stat for generating a variety of plots that combine a "slab" that describes a
distribution plus a point summary and any number of intervals. Several "shortcut" stats are provided
which combine multiple options to create useful geoms, particularly eye plots (a violin plot of
density plus interval), half-eye plots (a density plot plus interval), CCDF bar plots (a complementary
CDF plus interval), and gradient plots (a density encoded in color alpha plus interval).

The shortcut stats include:

• stat_eye(): Eye plots (violin + interval)

• stat_halfeye(): Half-eye plots (density + interval)

• stat_ccdfinterval(): CCDF bar plots (CCDF + interval)

• stat_cdfinterval(): CDF bar plots (CDF + interval)

• stat_gradientinterval(): Density gradient + interval plots

• stat_slab(): Density plots

• stat_histinterval(): Histogram + interval plots

• stat_pointinterval(): Point + interval plots

• stat_interval(): Interval plots

To visualize sample data, such as a data distribution, samples from a bootstrap distribution, or a
Bayesian posterior, you can supply samples to the x or y aesthetic.

To visualize analytical distributions, you can use the xdist or ydist aesthetic. For historical
reasons, you can also use dist to specify the distribution, though this is not recommended as it
does not work as well with orientation detection. These aesthetics can be used as follows:

• xdist, ydist, and dist can be any distribution object from the distributional package (dist_normal(),
dist_beta(), etc) or can be a posterior::rvar() object. Since these functions are vector-
ized, other columns can be passed directly to them in an aes() specification; e.g. aes(dist =
dist_normal(mu, sigma)) will work if mu and sigma are columns in the input data frame.

• dist can be a character vector giving the distribution name. Then the arg1, ... arg9 aes-
thetics (or args as a list column) specify distribution arguments. Distribution names should
correspond to R functions that have "p", "q", and "d" functions; e.g. "norm" is a valid dis-
tribution name because R defines the pnorm(), qnorm(), and dnorm() functions for Normal
distributions.
See the parse_dist() function for a useful way to generate dist and args values from
human-readable distribution specs (like "normal(0,1)"). Such specs are also produced by
other packages (like the brms::get_prior function in brms); thus, parse_dist() combined
with the stats described here can help you visualize the output of those functions.

Value

A ggplot2::Stat representing a slab or combined slab+interval geometry which can be added to a
ggplot() object.

https://pkg.mitchelloharawild.com/distributional/

268 stat_slabinterval

Computed Variables

The following variables are computed by this stat and made available for use in aesthetic specifica-
tions (aes()) using the after_stat() function or the after_stat argument of stage():

• x or y: For slabs, the input values to the slab function. For intervals, the point summary from
the interval function. Whether it is x or y depends on orientation

• xmin or ymin: For intervals, the lower end of the interval from the interval function.

• xmax or ymax: For intervals, the upper end of the interval from the interval function.

• .width: For intervals, the interval width as a numeric value in [0, 1]. For slabs, the width
of the smallest interval containing that value of the slab.

• level: For intervals, the interval width as an ordered factor. For slabs, the level of the smallest
interval containing that value of the slab.

• pdf: For slabs, the probability density function (PDF). If options("ggdist.experimental.slab_data_in_intervals")
is TRUE: For intervals, the PDF at the point summary; intervals also have pdf_min and pdf_max
for the PDF at the lower and upper ends of the interval.

• cdf: For slabs, the cumulative distribution function. If options("ggdist.experimental.slab_data_in_intervals")
is TRUE: For intervals, the CDF at the point summary; intervals also have cdf_min and cdf_max
for the CDF at the lower and upper ends of the interval.

• n: For slabs, the number of data points summarized into that slab. If the slab was created from
an analytical distribution via the xdist, ydist, or dist aesthetic, n will be Inf.

• f: (deprecated) For slabs, the output values from the slab function (such as the PDF, CDF, or
CCDF), determined by slab_type. Instead of using slab_type to change f and then map-
ping f onto an aesthetic, it is now recommended to simply map the corresponding computed
variable (e.g. pdf, cdf, or 1 - cdf) directly onto the desired aesthetic.

Aesthetics

The slab+interval stats and geoms have a wide variety of aesthetics that control the appearance of
their three sub-geometries: the slab, the point, and the interval.
These stats support the following aesthetics:

• x: x position of the geometry (when orientation = "vertical"); or sample data to be summa-
rized (when orientation = "horizontal" with sample data).

• y: y position of the geometry (when orientation = "horizontal"); or sample data to be sum-
marized (when orientation = "vertical" with sample data).

• weight: When using samples (i.e. the x and y aesthetics, not xdist or ydist), optional
weights to be applied to each draw.

• xdist: When using analytical distributions, distribution to map on the x axis: a distributional
object (e.g. dist_normal()) or a posterior::rvar() object.

• ydist: When using analytical distributions, distribution to map on the y axis: a distributional
object (e.g. dist_normal()) or a posterior::rvar() object.

• dist: When using analytical distributions, a name of a distribution (e.g. "norm"), a distribu-
tional object (e.g. dist_normal()), or a posterior::rvar() object. See Details.

• args: Distribution arguments (args or arg1, ... arg9). See Details.

stat_slabinterval 269

In addition, in their default configuration (paired with geom_slabinterval()) the following aes-
thetics are supported by the underlying geom:

Slab-specific aesthetics

• thickness: The thickness of the slab at each x value (if orientation = "horizontal") or y
value (if orientation = "vertical") of the slab.

• side: Which side to place the slab on. "topright", "top", and "right" are synonyms
which cause the slab to be drawn on the top or the right depending on if orientation
is "horizontal" or "vertical". "bottomleft", "bottom", and "left" are synonyms
which cause the slab to be drawn on the bottom or the left depending on if orientation
is "horizontal" or "vertical". "topleft" causes the slab to be drawn on the top or the
left, and "bottomright" causes the slab to be drawn on the bottom or the right. "both" draws
the slab mirrored on both sides (as in a violin plot).

• scale: What proportion of the region allocated to this geom to use to draw the slab. If scale
= 1, slabs that use the maximum range will just touch each other. Default is 0.9 to leave some
space between adjacent slabs. For a comprehensive discussion and examples of slab scaling
and normalization, see the thickness scale article.

• justification: Justification of the interval relative to the slab, where 0 indicates bottom/left
justification and 1 indicates top/right justification (depending on orientation). If justification
is NULL (the default), then it is set automatically based on the value of side: when side is
"top"/"right" justification is set to 0, when side is "bottom"/"left" justification
is set to 1, and when side is "both" justification is set to 0.5.

• datatype: When using composite geoms directly without a stat (e.g. geom_slabinterval()),
datatype is used to indicate which part of the geom a row in the data targets: rows with
datatype = "slab" target the slab portion of the geometry and rows with datatype = "interval"
target the interval portion of the geometry. This is set automatically when using ggdist stats.

Interval-specific aesthetics

• xmin: Left end of the interval sub-geometry (if orientation = "horizontal").

• xmax: Right end of the interval sub-geometry (if orientation = "horizontal").

• ymin: Lower end of the interval sub-geometry (if orientation = "vertical").

• ymax: Upper end of the interval sub-geometry (if orientation = "vertical").

Point-specific aesthetics

• shape: Shape type used to draw the point sub-geometry.

Color aesthetics

• colour: (or color) The color of the interval and point sub-geometries. Use the slab_color,
interval_color, or point_color aesthetics (below) to set sub-geometry colors separately.

• fill: The fill color of the slab and point sub-geometries. Use the slab_fill or point_fill
aesthetics (below) to set sub-geometry colors separately.

• alpha: The opacity of the slab, interval, and point sub-geometries. Use the slab_alpha,
interval_alpha, or point_alpha aesthetics (below) to set sub-geometry colors separately.

https://mjskay.github.io/ggdist/articles/thickness.html

270 stat_slabinterval

• colour_ramp: (or color_ramp) A secondary scale that modifies the color scale to "ramp" to
another color. See scale_colour_ramp() for examples.

• fill_ramp: A secondary scale that modifies the fill scale to "ramp" to another color. See
scale_fill_ramp() for examples.

Line aesthetics

• linewidth: Width of the line used to draw the interval (except with geom_slab(): then
it is the width of the slab). With composite geometries including an interval and slab, use
slab_linewidth to set the line width of the slab (see below). For interval, raw linewidth
values are transformed according to the interval_size_domain and interval_size_range
parameters of the geom (see above).

• size: Determines the size of the point. If linewidth is not provided, size will also deter-
mines the width of the line used to draw the interval (this allows line width and point size to be
modified together by setting only size and not linewidth). Raw size values are transformed
according to the interval_size_domain, interval_size_range, and fatten_point pa-
rameters of the geom (see above). Use the point_size aesthetic (below) to set sub-geometry
size directly without applying the effects of interval_size_domain, interval_size_range,
and fatten_point.

• stroke: Width of the outline around the point sub-geometry.

• linetype: Type of line (e.g., "solid", "dashed", etc) used to draw the interval and the
outline of the slab (if it is visible). Use the slab_linetype or interval_linetype aesthetics
(below) to set sub-geometry line types separately.

Slab-specific color and line override aesthetics

• slab_fill: Override for fill: the fill color of the slab.

• slab_colour: (or slab_color) Override for colour/color: the outline color of the slab.

• slab_alpha: Override for alpha: the opacity of the slab.

• slab_linewidth: Override for linwidth: the width of the outline of the slab.

• slab_linetype: Override for linetype: the line type of the outline of the slab.

Interval-specific color and line override aesthetics

• interval_colour: (or interval_color) Override for colour/color: the color of the inter-
val.

• interval_alpha: Override for alpha: the opacity of the interval.

• interval_linetype: Override for linetype: the line type of the interval.

Point-specific color and line override aesthetics

• point_fill: Override for fill: the fill color of the point.

• point_colour: (or point_color) Override for colour/color: the outline color of the point.

• point_alpha: Override for alpha: the opacity of the point.

• point_size: Override for size: the size of the point.

stat_slabinterval 271

Deprecated aesthetics

• slab_size: Use slab_linewidth.

• interval_size: Use interval_linewidth.

Other aesthetics (these work as in standard geoms)

• width

• height

• group

See examples of some of these aesthetics in action in vignette("slabinterval"). Learn more
about the sub-geom override aesthetics (like interval_color) in the scales documentation. Learn
more about basic ggplot aesthetics in vignette("ggplot2-specs").

See Also

See geom_slabinterval() for more information on the geom these stats use by default and some
of the options it has. See vignette("slabinterval") for a variety of examples of use.

Examples

library(dplyr)
library(ggplot2)
library(distributional)

theme_set(theme_ggdist())

EXAMPLES ON SAMPLE DATA
set.seed(1234)
df = data.frame(

group = c("a", "b", "c", "c", "c"),
value = rnorm(2500, mean = c(5, 7, 9, 9, 9), sd = c(1, 1.5, 1, 1, 1))

)

here are vertical eyes:
df %>%

ggplot(aes(x = group, y = value)) +
stat_eye()

note the sample size is not automatically incorporated into the
area of the densities in case one wishes to plot densities against
a reference (e.g. a prior distribution).
But you may wish to account for sample size if using these geoms
for something other than visualizing posteriors; in which case
you can use after_stat(f*n):
df %>%

ggplot(aes(x = group, y = value)) +
stat_eye(aes(thickness = after_stat(pdf*n)))

272 stat_spike

EXAMPLES ON ANALYTICAL DISTRIBUTIONS

dist_df = tribble(
~group, ~subgroup, ~mean, ~sd,
"a", "h", 5, 1,
"b", "h", 7, 1.5,
"c", "h", 8, 1,
"c", "i", 9, 1,
"c", "j", 7, 1

)

Using functions from the distributional package (like dist_normal()) with the
dist aesthetic can lead to more compact/expressive specifications

dist_df %>%
ggplot(aes(x = group, ydist = dist_normal(mean, sd), fill = subgroup)) +
stat_eye(position = "dodge")

using the old character vector + args approach
dist_df %>%

ggplot(aes(x = group, dist = "norm", arg1 = mean, arg2 = sd, fill = subgroup)) +
stat_eye(position = "dodge")

the stat_slabinterval family applies a Jacobian adjustment to densities
when plotting on transformed scales in order to plot them correctly.
It determines the Jacobian using symbolic differentiation if possible,
using stats::D(). If symbolic differentation fails, it falls back
to numericDeriv(), which is less reliable; therefore, it is
advisable to use scale transformation functions that are defined in
terms of basic math functions so that their derivatives can be
determined analytically (most of the transformation functions in the
scales package currently have this property).
For example, here is a log-Normal distribution plotted on the log
scale, where it will appear Normal:
data.frame(dist = "lnorm", logmean = log(10), logsd = 2*log(10)) %>%

ggplot(aes(y = 1, dist = dist, arg1 = logmean, arg2 = logsd)) +
stat_halfeye() +
scale_x_log10(breaks = 10^seq(-5,7, by = 2))

see vignette("slabinterval") for many more examples.

stat_spike Spike plot (ggplot2 stat)

Description

Stat for drawing "spikes" (optionally with points on them) at specific points on a distribution (nu-
merical or determined as a function of the distribution), intended for annotating stat_slabinterval()

stat_spike 273

geometries.

Usage

stat_spike(
mapping = NULL,
data = NULL,
geom = "spike",
position = "identity",
...,
at = "median",
p_limits = c(NA, NA),
density = "bounded",
adjust = waiver(),
trim = TRUE,
expand = FALSE,
breaks = waiver(),
align = "none",
outline_bars = FALSE,
slab_type = NULL,
limits = NULL,
n = 501,
orientation = NA,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping Set of aesthetic mappings created by aes(). If specified and inherit.aes =
TRUE (the default), it is combined with the default mapping at the top level of
the plot. You must supply mapping if there is no plot mapping.

data The data to be displayed in this layer. There are three options:
If NULL, the default, the data is inherited from the plot data as specified in the
call to ggplot().
A data.frame, or other object, will override the plot data. All objects will be
fortified to produce a data frame. See fortify() for which variables will be
created.
A function will be called with a single argument, the plot data. The return
value must be a data.frame, and will be used as the layer data. A function
can be created from a formula (e.g. ~ head(.x, 10)).

geom Use to override the default connection between stat_spike() and geom_spike()

position Position adjustment, either as a string, or the result of a call to a position adjust-
ment function. Setting this equal to "dodge" (position_dodge()) or "dodgejust"
(position_dodgejust()) can be useful if you have overlapping geometries.

274 stat_spike

... Other arguments passed to layer(). These are often aesthetics, used to set an
aesthetic to a fixed value, like colour = "red" or linewidth = 3 (see Aesthet-
ics, below). They may also be parameters to the paired geom/stat. When paired
with the default geom, geom_spike(), these include:

normalize How to normalize heights of functions input to the thickness aes-
thetic. One of:

• "all": normalize so that the maximum height across all data is 1.
• "panels": normalize within panels so that the maximum height in each

panel is 1.
• "xy": normalize within the x/y axis opposite the orientation of this

geom so that the maximum height at each value of the opposite axis is
1.

• "groups": normalize within values of the opposite axis and within
each group so that the maximum height in each group is 1.

• "none": values are taken as is with no normalization (this should prob-
ably only be used with functions whose values are in [0,1], such as
CDFs).

For a comprehensive discussion and examples of slab scaling and normal-
ization, see the thickness scale article.

arrow grid::arrow() giving the arrow heads to use on the spike, or NULL for
no arrows.

subguide Sub-guide used to annotate the thickness scale. One of:
• A function that takes a scale argument giving a ggplot2::Scale object

and an orientation argument giving the orientation of the geometry
and then returns a grid::grob that will draw the axis annotation, such as
subguide_axis() (to draw a traditional axis) or subguide_none() (to
draw no annotation). See subguide_axis() for a list of possibilities
and examples.

• A string giving the name of such a function when prefixed with "subguide";
e.g. "axis" or "none".

at The points at which to evaluate the PDF and CDF of the distribution. One of:

• numeric vector: points to evaluate the PDF and CDF of the distributions at.
• function or character vector: function (or names of functions) which, when

applied on a distribution-like object (e.g. a distributional object or a posterior::rvar()),
returns a vector of values to evaluate the distribution functions at.

• a list where each element is any of the above (e.g. a numeric, function,
or name of a function): the evaluation points determined by each element
of the list are concatenated together. This means, e.g., c(0, median, qi)
would add a spike at 0, the median, and the endpoints of the qi of the
distribution.

The values of at are also converted into a character vector which is supplied
as a computed variable (also called at) generated by this stat, which can be
mapped onto aesthetics using after_stat(). Non-empty names can be used to
override the values of the computed variable; e.g. at = c(zero = 0, "median",
mode = "Mode") will generate a computed variable with the values c("zero",

https://mjskay.github.io/ggdist/articles/thickness.html

stat_spike 275

"median", "mode") that is evaluated at 0, the median, and the mode of the
distribution.

p_limits Probability limits (as a vector of size 2) used to determine the lower and upper
limits of theoretical distributions (distributions from samples ignore this param-
eter and determine their limits based on the limits of the sample). E.g., if this
is c(.001, .999), then a slab is drawn for the distribution from the quantile
at p = .001 to the quantile at p = .999. If the lower (respectively upper) limit is
NA, then the lower (upper) limit will be the minimum (maximum) of the distribu-
tion’s support if it is finite, and 0.001 (0.999) if it is not finite. E.g., if p_limits
is c(NA, NA), on a gamma distribution the effective value of p_limits would be
c(0, .999) since the gamma distribution is defined on (0, Inf); whereas on
a normal distribution it would be equivalent to c(.001, .999) since the normal
distribution is defined on (-Inf, Inf).

density Density estimator for sample data. One of:

• A function which takes a numeric vector and returns a list with elements
x (giving grid points for the density estimator) and y (the corresponding
densities). ggdist provides a family of functions following this format, in-
cluding density_unbounded() and density_bounded(). This format is
also compatible with stats::density().

• A string giving the suffix of a function name that starts with "density_";
e.g. "bounded" for [density_bounded()], "unbounded" for [density_unbounded()],
or "histogram" for density_histogram(). Defaults to "bounded", i.e.
density_bounded(), which estimates the bounds from the data and then
uses a bounded density estimator based on the reflection method.

adjust Passed to density: the bandwidth for the density estimator for sample data is
adjusted by multiplying it by this value. See e.g. density_bounded() for more
information. Default (waiver()) defers to the default of the density estimator,
which is usually 1.

trim For sample data, should the density estimate be trimmed to the range of the data?
Passed on to the density estimator; see the density parameter. Default TRUE.

expand For sample data, should the slab be expanded to the limits of the scale? Default
FALSE. Can be length two to control expansion to the lower and upper limit
respectively.

breaks Determines the breakpoints defining bins. Defaults to "Scott". Similar to (but
not exactly the same as) the breaks argument to graphics::hist(). One of:

• A scalar (length-1) numeric giving the number of bins
• A vector numeric giving the breakpoints between histogram bins
• A function taking x and weights and returning either the number of bins or

a vector of breakpoints
• A string giving the suffix of a function that starts with "breaks_". ggdist

provides weighted implementations of the "Sturges", "Scott", and "FD"
break-finding algorithms from graphics::hist(), as well as breaks_fixed()
for manually setting the bin width. See breaks.

For example, breaks = "Sturges" will use the breaks_Sturges() algorithm,
breaks = 9 will create 9 bins, and breaks = breaks_fixed(width = 1) will set
the bin width to 1.

276 stat_spike

align Determines how to align the breakpoints defining bins. Default ("none") per-
forms no alignment. One of:

• A scalar (length-1) numeric giving an offset that is subtracted from the
breaks. The offset must be between 0 and the bin width.

• A function taking a sorted vector of breaks (bin edges) and returning an
offset to subtract from the breaks.

• A string giving the suffix of a function that starts with "align_" used to
determine the alignment, such as align_none(), align_boundary(), or
align_center().

For example, align = "none" will provide no alignment, align = align_center(at
= 0) will center a bin on 0, and align = align_boundary(at = 0) will align a
bin edge on 0.

outline_bars For sample data (if density is "histogram") and for discrete analytical dis-
tributions (whose slabs are drawn as histograms), determines if outlines in be-
tween the bars are drawn when the slab_color aesthetic is used. If FALSE (the
default), the outline is drawn only along the tops of the bars; if TRUE, outlines in
between bars are also drawn. See density_histogram().

slab_type (deprecated) The type of slab function to calculate: probability density (or mass)
function ("pdf"), cumulative distribution function ("cdf"), or complementary
CDF ("ccdf"). Instead of using slab_type to change f and then mapping f
onto an aesthetic, it is now recommended to simply map the corresponding com-
puted variable (e.g. pdf, cdf, or 1 - cdf) directly onto the desired aesthetic.

limits Manually-specified limits for the slab, as a vector of length two. These limits are
combined with those computed based on p_limits as well as the limits defined
by the scales of the plot to determine the limits used to draw the slab functions:
these limits specify the maximal limits; i.e., if specified, the limits will not be
wider than these (but may be narrower). Use NA to leave a limit alone; e.g.
limits = c(0, NA) will ensure that the lower limit does not go below 0, but let
the upper limit be determined by either p_limits or the scale settings.

n Number of points at which to evaluate the function that defines the slab.

orientation Whether this geom is drawn horizontally or vertically. One of:

• NA (default): automatically detect the orientation based on how the aesthet-
ics are assigned. Automatic detection works most of the time.

• "horizontal" (or "y"): draw horizontally, using the y aesthetic to identify
different groups. For each group, uses the x, xmin, xmax, and thickness
aesthetics to draw points, intervals, and slabs.

• "vertical" (or "x"): draw vertically, using the x aesthetic to identify dif-
ferent groups. For each group, uses the y, ymin, ymax, and thickness
aesthetics to draw points, intervals, and slabs.

For compatibility with the base ggplot naming scheme for orientation, "x"
can be used as an alias for "vertical" and "y" as an alias for "horizontal"
(ggdist had an orientation parameter before base ggplot did, hence the dis-
crepancy).

na.rm If FALSE, the default, missing values are removed with a warning. If TRUE,
missing values are silently removed.

stat_spike 277

show.legend Should this layer be included in the legends? Default is c(size = FALSE), unlike
most geoms, to match its common use cases. FALSE hides all legends, TRUE
shows all legends, and NA shows only those that are mapped (the default for
most geoms).

inherit.aes If FALSE, overrides the default aesthetics, rather than combining with them.
This is most useful for helper functions that define both data and aesthetics and
shouldn’t inherit behaviour from the default plot specification, e.g. borders().

Details

This stat computes slab values (i.e. PDF and CDF values) at specified locations on a distribution,
as determined by the at parameter.

To visualize sample data, such as a data distribution, samples from a bootstrap distribution, or a
Bayesian posterior, you can supply samples to the x or y aesthetic.

To visualize analytical distributions, you can use the xdist or ydist aesthetic. For historical
reasons, you can also use dist to specify the distribution, though this is not recommended as it
does not work as well with orientation detection. These aesthetics can be used as follows:

• xdist, ydist, and dist can be any distribution object from the distributional package (dist_normal(),
dist_beta(), etc) or can be a posterior::rvar() object. Since these functions are vector-
ized, other columns can be passed directly to them in an aes() specification; e.g. aes(dist =
dist_normal(mu, sigma)) will work if mu and sigma are columns in the input data frame.

• dist can be a character vector giving the distribution name. Then the arg1, ... arg9 aes-
thetics (or args as a list column) specify distribution arguments. Distribution names should
correspond to R functions that have "p", "q", and "d" functions; e.g. "norm" is a valid dis-
tribution name because R defines the pnorm(), qnorm(), and dnorm() functions for Normal
distributions.
See the parse_dist() function for a useful way to generate dist and args values from
human-readable distribution specs (like "normal(0,1)"). Such specs are also produced by
other packages (like the brms::get_prior function in brms); thus, parse_dist() combined
with the stats described here can help you visualize the output of those functions.

Value

A ggplot2::Stat representing a spike geometry which can be added to a ggplot() object.

Aesthetics

The spike geom has a wide variety of aesthetics that control the appearance of its two sub-geometries:
the spike and the point.
These stats support the following aesthetics:

• x: x position of the geometry (when orientation = "vertical"); or sample data to be summa-
rized (when orientation = "horizontal" with sample data).

• y: y position of the geometry (when orientation = "horizontal"); or sample data to be sum-
marized (when orientation = "vertical" with sample data).

• weight: When using samples (i.e. the x and y aesthetics, not xdist or ydist), optional
weights to be applied to each draw.

https://pkg.mitchelloharawild.com/distributional/

278 stat_spike

• xdist: When using analytical distributions, distribution to map on the x axis: a distributional
object (e.g. dist_normal()) or a posterior::rvar() object.

• ydist: When using analytical distributions, distribution to map on the y axis: a distributional
object (e.g. dist_normal()) or a posterior::rvar() object.

• dist: When using analytical distributions, a name of a distribution (e.g. "norm"), a distribu-
tional object (e.g. dist_normal()), or a posterior::rvar() object. See Details.

• args: Distribution arguments (args or arg1, ... arg9). See Details.

In addition, in their default configuration (paired with geom_spike()) the following aesthetics are
supported by the underlying geom:

Spike-specific (aka Slab-specific) aesthetics

• thickness: The thickness of the slab at each x value (if orientation = "horizontal") or y
value (if orientation = "vertical") of the slab.

• side: Which side to place the slab on. "topright", "top", and "right" are synonyms
which cause the slab to be drawn on the top or the right depending on if orientation
is "horizontal" or "vertical". "bottomleft", "bottom", and "left" are synonyms
which cause the slab to be drawn on the bottom or the left depending on if orientation
is "horizontal" or "vertical". "topleft" causes the slab to be drawn on the top or the
left, and "bottomright" causes the slab to be drawn on the bottom or the right. "both" draws
the slab mirrored on both sides (as in a violin plot).

• scale: What proportion of the region allocated to this geom to use to draw the slab. If scale
= 1, slabs that use the maximum range will just touch each other. Default is 0.9 to leave some
space between adjacent slabs. For a comprehensive discussion and examples of slab scaling
and normalization, see the thickness scale article.

Color aesthetics

• colour: (or color) The color of the spike and point sub-geometries.

• fill: The fill color of the point sub-geometry.

• alpha: The opacity of the spike and point sub-geometries.

• colour_ramp: (or color_ramp) A secondary scale that modifies the color scale to "ramp" to
another color. See scale_colour_ramp() for examples.

• fill_ramp: A secondary scale that modifies the fill scale to "ramp" to another color. See
scale_fill_ramp() for examples.

Line aesthetics

• linewidth: Width of the line used to draw the spike sub-geometry.

• size: Size of the point sub-geometry.

• stroke: Width of the outline around the point sub-geometry.

• linetype: Type of line (e.g., "solid", "dashed", etc) used to draw the spike.

Other aesthetics (these work as in standard geoms)

• width

https://mjskay.github.io/ggdist/articles/thickness.html

stat_spike 279

• height

• group

See examples of some of these aesthetics in action in vignette("slabinterval"). Learn more
about the sub-geom override aesthetics (like interval_color) in the scales documentation. Learn
more about basic ggplot aesthetics in vignette("ggplot2-specs").

Computed Variables

The following variables are computed by this stat and made available for use in aesthetic specifica-
tions (aes()) using the after_stat() function or the after_stat argument of stage():

• x or y: For slabs, the input values to the slab function. For intervals, the point summary from
the interval function. Whether it is x or y depends on orientation

• xmin or ymin: For intervals, the lower end of the interval from the interval function.

• xmax or ymax: For intervals, the upper end of the interval from the interval function.

• .width: For intervals, the interval width as a numeric value in [0, 1]. For slabs, the width
of the smallest interval containing that value of the slab.

• level: For intervals, the interval width as an ordered factor. For slabs, the level of the smallest
interval containing that value of the slab.

• pdf: For slabs, the probability density function (PDF). If options("ggdist.experimental.slab_data_in_intervals")
is TRUE: For intervals, the PDF at the point summary; intervals also have pdf_min and pdf_max
for the PDF at the lower and upper ends of the interval.

• cdf: For slabs, the cumulative distribution function. If options("ggdist.experimental.slab_data_in_intervals")
is TRUE: For intervals, the CDF at the point summary; intervals also have cdf_min and cdf_max
for the CDF at the lower and upper ends of the interval.

• n: For slabs, the number of data points summarized into that slab. If the slab was created from
an analytical distribution via the xdist, ydist, or dist aesthetic, n will be Inf.

• f: (deprecated) For slabs, the output values from the slab function (such as the PDF, CDF, or
CCDF), determined by slab_type. Instead of using slab_type to change f and then map-
ping f onto an aesthetic, it is now recommended to simply map the corresponding computed
variable (e.g. pdf, cdf, or 1 - cdf) directly onto the desired aesthetic.

• at: For spikes, a character vector of names of the functions or expressions used to determine
the points at which the slab functions were evaluated to create spikes. Values of this computed
variable are determined by the at parameter; see its description above.

See Also

See geom_spike() for the geom underlying this stat. See stat_slabinterval() for the stat this
shortcut is based on.

Other slabinterval stats: stat_ccdfinterval(), stat_cdfinterval(), stat_eye(), stat_gradientinterval(),
stat_halfeye(), stat_histinterval(), stat_interval(), stat_pointinterval(), stat_slab()

280 student_t

Examples

library(ggplot2)
library(distributional)
library(dplyr)

df = tibble(
d = c(dist_normal(1), dist_gamma(2,2)), g = c("a", "b")

)

annotate the density at the mode of a distribution
df %>%

ggplot(aes(y = g, xdist = d)) +
stat_slab(aes(xdist = d)) +
stat_spike(at = "Mode") +
need shared thickness scale so that stat_slab and geom_spike line up
scale_thickness_shared()

annotate the endpoints of intervals of a distribution
here we'll use an arrow instead of a point by setting size = 0
arrow_spec = arrow(angle = 45, type = "closed", length = unit(4, "pt"))
df %>%

ggplot(aes(y = g, xdist = d)) +
stat_halfeye(point_interval = mode_hdci) +
stat_spike(
at = function(x) hdci(x, .width = .66),
size = 0, arrow = arrow_spec, color = "blue", linewidth = 0.75

) +
scale_thickness_shared()

annotate quantiles of a sample
set.seed(1234)
data.frame(x = rnorm(1000, 1:2), g = c("a","b")) %>%

ggplot(aes(x, g)) +
stat_slab() +
stat_spike(at = function(x) quantile(x, ppoints(10))) +
scale_thickness_shared()

student_t Scaled and shifted Student’s t distribution

Description

Density, distribution function, quantile function and random generation for the scaled and shifted
Student’s t distribution, parameterized by degrees of freedom (df), location (mu), and scale (sigma).

Usage

dstudent_t(x, df, mu = 0, sigma = 1, log = FALSE)

student_t 281

pstudent_t(q, df, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE)

qstudent_t(p, df, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE)

rstudent_t(n, df, mu = 0, sigma = 1)

Arguments

x, q vector of quantiles.

df degrees of freedom (> 0, maybe non-integer). df = Inf is allowed.

mu Location parameter (median)

sigma Scale parameter

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X > x].

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the number
required.

Value

• dstudent_t gives the density

• pstudent_t gives the cumulative distribution function (CDF)

• qstudent_t gives the quantile function (inverse CDF)

• rstudent_t generates random draws.

The length of the result is determined by n for rstudent_t, and is the maximum of the lengths of
the numerical arguments for the other functions.

The numerical arguments other than n are recycled to the length of the result. Only the first elements
of the logical arguments are used.

See Also

parse_dist() and parsing distribution specs and the stat_slabinterval() family of stats for
visualizing them.

Examples

library(dplyr)
library(ggplot2)

expand.grid(
df = c(3,5,10,30),
scale = c(1,1.5)

) %>%
ggplot(aes(y = 0, dist = "student_t", arg1 = df, arg2 = 0, arg3 = scale, color = ordered(df))) +

282 sub-geometry-scales

stat_slab(p_limits = c(.01, .99), fill = NA) +
scale_y_continuous(breaks = NULL) +
facet_grid(~ scale) +
labs(

title = "dstudent_t(x, df, 0, sigma)",
subtitle = "Scale (sigma)",
y = NULL,
x = NULL

) +
theme_ggdist() +
theme(axis.title = element_text(hjust = 0))

sub-geometry-scales Sub-geometry scales for geom_slabinterval (ggplot2 scales)

Description

These scales allow more specific aesthetic mappings to be made when using geom_slabinterval()
and stats/geoms based on it (like eye plots).

Usage

scale_point_colour_discrete(..., aesthetics = "point_colour")

scale_point_color_discrete(..., aesthetics = "point_colour")

scale_point_colour_continuous(
...,
aesthetics = "point_colour",
guide = guide_colourbar2()

)

scale_point_color_continuous(
...,
aesthetics = "point_colour",
guide = guide_colourbar2()

)

scale_point_fill_discrete(..., aesthetics = "point_fill")

scale_point_fill_continuous(
...,
aesthetics = "point_fill",
guide = guide_colourbar2()

)

scale_point_alpha_continuous(..., range = c(0.1, 1))

sub-geometry-scales 283

scale_point_alpha_discrete(..., range = c(0.1, 1))

scale_point_size_continuous(..., range = c(1, 6))

scale_point_size_discrete(..., range = c(1, 6), na.translate = FALSE)

scale_interval_colour_discrete(..., aesthetics = "interval_colour")

scale_interval_color_discrete(..., aesthetics = "interval_colour")

scale_interval_colour_continuous(
...,
aesthetics = "interval_colour",
guide = guide_colourbar2()

)

scale_interval_color_continuous(
...,
aesthetics = "interval_colour",
guide = guide_colourbar2()

)

scale_interval_alpha_continuous(..., range = c(0.1, 1))

scale_interval_alpha_discrete(..., range = c(0.1, 1))

scale_interval_size_continuous(..., range = c(1, 6))

scale_interval_size_discrete(..., range = c(1, 6), na.translate = FALSE)

scale_interval_linetype_discrete(..., na.value = "blank")

scale_interval_linetype_continuous(...)

scale_slab_colour_discrete(..., aesthetics = "slab_colour")

scale_slab_color_discrete(..., aesthetics = "slab_colour")

scale_slab_colour_continuous(
...,
aesthetics = "slab_colour",
guide = guide_colourbar2()

)

scale_slab_color_continuous(
...,
aesthetics = "slab_colour",

284 sub-geometry-scales

guide = guide_colourbar2()
)

scale_slab_fill_discrete(..., aesthetics = "slab_fill")

scale_slab_fill_continuous(
...,
aesthetics = "slab_fill",
guide = guide_colourbar2()

)

scale_slab_alpha_continuous(
...,
limits = function(l) c(min(0, l[[1]]), l[[2]]),
range = c(0, 1)

)

scale_slab_alpha_discrete(..., range = c(0.1, 1))

scale_slab_size_continuous(..., range = c(1, 6))

scale_slab_size_discrete(..., range = c(1, 6), na.translate = FALSE)

scale_slab_linewidth_continuous(..., range = c(1, 6))

scale_slab_linewidth_discrete(..., range = c(1, 6), na.translate = FALSE)

scale_slab_linetype_discrete(..., na.value = "blank")

scale_slab_linetype_continuous(...)

scale_slab_shape_discrete(..., solid = TRUE)

scale_slab_shape_continuous(...)

guide_colourbar2(...)

guide_colorbar2(...)

Arguments

... Arguments passed to underlying scale or guide functions. E.g. scale_point_color_discrete
passes arguments to scale_color_discrete(). See those functions for more
details.

aesthetics Names of aesthetics to set scales for.

guide Guide to use for legends for an aesthetic.

range a numeric vector of length 2 that specifies the minimum and maximum size of
the plotting symbol after transformation.

sub-geometry-scales 285

na.translate In discrete scales, should we show missing values?
na.value When na.translate is true, what value should be shown?
limits One of:

• NULL to use the default scale range
• A numeric vector of length two providing limits of the scale. Use NA to

refer to the existing minimum or maximum
• A function that accepts the existing (automatic) limits and returns new

limits. Also accepts rlang lambda function notation. Note that setting
limits on positional scales will remove data outside of the limits. If the
purpose is to zoom, use the limit argument in the coordinate system (see
coord_cartesian()).

solid Should the shapes be solid, TRUE, or hollow, FALSE?

Details

The following additional scales / aesthetics are defined for use with geom_slabinterval() and
related geoms:

scale_point_color_* Point color
scale_point_fill_* Point fill color
scale_point_alpha_* Point alpha level / opacity
scale_point_size_* Point size
scale_interval_color_* Interval line color
scale_interval_alpha_* Interval alpha level / opacity
scale_interval_linetype_* Interval line type
scale_slab_color_* Slab outline color
scale_slab_fill_* Slab fill color
scale_slab_alpha_* Slab alpha level / opacity. The default settings of scale_slab_alpha_continuous

differ from scale_alpha_continuous() and are designed for gradient plots (e.g. stat_gradientinterval())
by ensuring that densities of 0 get mapped to 0 in the output.

scale_slab_linewidth_* Slab outline line width
scale_slab_linetype_* Slab outline line type
scale_slab_shape_* Slab dot shape (for geom_dotsinterval())

See the corresponding scale documentation in ggplot for more information; e.g. scale_color_discrete(),
scale_color_continuous(), etc.

Other scale functions can be used with the aesthetics/scales defined here by using the aesthetics
argument to that scale function. For example, to use color brewer scales with the point_color
aesthetic:

scale_color_brewer(..., aesthetics = "point_color")

With continuous color scales, you may also need to provide a guide as the default guide does not
work properly; this is what guide_colorbar2 is for:

scale_color_distiller(..., guide = "colorbar2", aesthetics = "point_color")

These scales have been deprecated:

286 sub-geometry-scales

scale_interval_size_* Use scale_linewidth_*

scale_slab_size_* Slab scale_size_linewidth_*

Value

A ggplot2::Scale representing one of the aesthetics used to target the appearance of specific parts of
composite ggdist geoms. Can be added to a ggplot() object.

Author(s)

Matthew Kay

See Also

Other ggplot2 scales: scale_color_discrete(), scale_color_continuous(), etc.

Other ggdist scales: scale_colour_ramp, scale_side_mirrored(), scale_thickness

Examples

library(dplyr)
library(ggplot2)

This plot shows how to set multiple specific aesthetics
NB it is very ugly and is only for demo purposes.
data.frame(distribution = "Normal(1,2)") %>%

parse_dist(distribution) %>%
ggplot(aes(y = distribution, xdist = .dist, args = .args)) +
stat_halfeye(
shape = 21, # this point shape has a fill and outline
point_color = "red",
point_fill = "black",
point_alpha = .1,
point_size = 6,
stroke = 2,
interval_color = "blue",
interval line widths are scaled from [1, 6] onto [0.6, 1.4] by default
see the interval_size_range parameter in help("geom_slabinterval")
linewidth = 8,
interval_linetype = "dashed",
interval_alpha = .25,
fill sets the fill color of the slab (here the density)
slab_color = "green",
slab_fill = "purple",
slab_linewidth = 3,
slab_linetype = "dotted",
slab_alpha = .5

)

subguide_axis 287

subguide_axis Axis sub-guide for thickness scales

Description

This is a sub-guide intended for annotating the thickness aesthetic in ggdist. It can be used with the
subguide parameter of geom_slabinterval().

Supports automatic partial function application.

Usage

subguide_axis(
values,
title = NULL,
breaks = waiver(),
labels = waiver(),
position = 0,
just = 0,
label_side = "topright",
orientation = "horizontal",
theme = theme_get()

)

subguide_inside(..., label_side = "inside")

subguide_outside(..., label_side = "outside", just = 1)

subguide_integer(..., breaks = scales::breaks_extended(Q = c(1, 5, 2, 4, 3)))

subguide_count(..., breaks = scales::breaks_width(1))

Arguments

values Values used to construct the scale used for this guide. Typically provided auto-
matically by geom_slabinterval().

title The title of the scale shown on the sub-guide’s axis.

breaks One of:

• NULL for no breaks
• waiver() for the default breaks computed by the transformation object
• A numeric vector of positions
• A function that takes the limits as input and returns breaks as output (e.g.,

a function returned by scales::extended_breaks()). Also accepts rlang
lambda function notation.

labels One of:

• NULL for no labels

288 subguide_axis

• waiver() for the default labels computed by the transformation object
• A character vector giving labels (must be same length as breaks)
• An expression vector (must be the same length as breaks). See ?plotmath

for details.
• A function that takes the breaks as input and returns labels as output. Also

accepts rlang lambda function notation.

position Numeric value between 0 and 1 giving the position of the guide relative to the
axis: 0 causes the sub-guide to be drawn on the left or bottom depending on if
orientation is "horizontal" or "vertical", and 1 causes the sub-guide to
be drawn on the top or right depending on if orientation is "horizontal"
or "vertical". May also be a string indicating the position: "top", "right",
"bottom", "left", "topright", "topleft", "bottomright", or "bottomleft".

just Numeric value between 0 and 1 giving the justification of the guide relative to its
position: 0 means aligned towards the inside of the axis edge, 1 means aligned
towards the outside of the axis edge.

label_side Which side of the axis to draw the ticks and labels on. "topright", "top",
and "right" are synonyms which cause the labels to be drawn on the top
or the right depending on if orientation is "horizontal" or "vertical".
"bottomleft", "bottom", and "left" are synonyms which cause the labels to
be drawn on the bottom or the left depending on if orientation is "horizontal"
or "vertical". "topleft" causes the labels to be drawn on the top or the left,
and "bottomright" causes the labels to be drawn on the bottom or the right.
"inside" causes the labels to be drawn on the side closest to the inside of the
chart, depending on position, and "outside" on the side closest to the outside
of the chart.

orientation Orientation of the geometry this sub-guide is for. One of "horizontal" ("y") or
"vertical" ("x"). See the orientation parameter to geom_slabinterval().

theme A ggplot2::theme object used to determine the style that the sub-guide ele-
ments are drawn in. The title label is drawn using the "axis.title.x" or
"axis.title.y" theme setting, and the axis line, ticks, and tick labels are
drawn using guide_axis(), so the same theme settings that normally apply
to axis guides will be followed.

... Arguments passed to other functions, typically back to subguide_axis() itself.

Details

subguide_inside() is a shortcut for drawing labels inside of the chart region.

subguide_outside() is a shortcut for drawing labels outside of the chart region.

subguide_integer() only draws breaks that are integer values, useful for labeling counts in
geom_dots().

subguide_count() is a shortcut for drawing labels where every whole number is labeled, useful for
labeling counts in geom_dots(). If your max count is large, subguide_integer() may be better.

See Also

Other sub-guides: subguide_none()

subguide_none 289

Examples

example code
library(ggplot2)
library(distributional)

df = data.frame(d = dist_normal(2:3, 2:3), g = c("a", "b"))

subguides allow you to label thickness axes
ggplot(df, aes(xdist = d, y = g)) +

stat_slabinterval(subguide = "inside")

they respect normalization and use of scale_thickness_shared()
ggplot(df, aes(xdist = d, y = g)) +

stat_slabinterval(subguide = "inside", normalize = "groups")

they can also be positioned outside the plot area, though
this typically requires manually adjusting plot margins
ggplot(df, aes(xdist = d, y = g)) +
stat_slabinterval(subguide = subguide_outside(title = "density", position = "right")) +
theme(plot.margin = margin(5.5, 50, 5.5, 5.5))

any of the subguide types will also work to indicate bin counts in
geom_dots(); subguide_integer() and subguide_count() can be useful for
dotplots as they only label integers / whole numbers:
df = data.frame(d = dist_gamma(2:3, 2:3), g = c("a", "b"))
ggplot(df, aes(xdist = d, y = g)) +

stat_dots(subguide = subguide_count(label_side = "left", title = "count")) +
scale_y_discrete(expand = expansion(add = 0.1)) +
scale_x_continuous(expand = expansion(add = 0.5))

subguide_none Empty sub-guide for thickness scales

Description

This is a blank sub-guide that omits annotations for the thickness aesthetic in ggdist. It can be used
with the subguide parameter of geom_slabinterval().

Usage

subguide_none(...)

Arguments

... ignored.

See Also

Other sub-guides: subguide_axis()

290 theme_ggdist

theme_ggdist Simple, light ggplot2 theme for ggdist and tidybayes

Description

A simple, relatively minimalist ggplot2 theme, and some helper functions to go with it.

Usage

theme_ggdist(
base_size = 11,
base_family = "",
base_line_size = base_size/22,
base_rect_size = base_size/22

)

theme_tidybayes(
base_size = 11,
base_family = "",
base_line_size = base_size/22,
base_rect_size = base_size/22

)

facet_title_horizontal()

axis_titles_bottom_left()

facet_title_left_horizontal()

facet_title_right_horizontal()

Arguments

base_size base font size, given in pts.

base_family base font family

base_line_size base size for line elements

base_rect_size base size for rect elements

Details

This is a relatively minimalist ggplot2 theme, intended to be used for making publication-ready
plots. It is currently based on ggplot2::theme_light().

A word of warning: this theme may (and very likely will) change in the future as I tweak it to my
taste.

theme_ggdist() and theme_tidybayes() are aliases.

tidy-format-translators 291

Value

A named list in the format of ggplot2::theme()

Author(s)

Matthew Kay

See Also

ggplot2::theme(), ggplot2::theme_set()

Examples

library(ggplot2)

theme_set(theme_ggdist())

tidy-format-translators

Translate between different tidy data frame formats for draws from
distributions

Description

These functions translate ggdist/tidybayes-style data frames to/from different data frame formats
(each format using a different naming scheme for its columns).

Usage

to_broom_names(data)

from_broom_names(data)

to_ggmcmc_names(data)

from_ggmcmc_names(data)

Arguments

data A data frame to translate.

292 tidy-format-translators

Details

Function prefixed with to_ translate from the ggdist/tidybayes format to another format, func-
tions prefixed with from_ translate from that format back to the ggdist/tidybayes format. Formats
include:

to_broom_names() / from_broom_names():

• .variable <-> term

• .value <-> estimate

• .prediction <-> .fitted

• .lower <-> conf.low

• .upper <-> conf.high

to_ggmcmc_names() / from_ggmcmc_names():

• .chain <-> Chain

• .iteration <-> Iteration

• .variable <-> Parameter

• .value <-> value

Value

A data frame with (possibly) new names in some columns, according to the translation scheme
described in Details.

Author(s)

Matthew Kay

Examples

library(dplyr)

data(RankCorr_u_tau, package = "ggdist")

df = RankCorr_u_tau %>%
dplyr::rename(.variable = i, .value = u_tau) %>%
group_by(.variable) %>%
median_qi(.value)

df

df %>%
to_broom_names()

weighted_ecdf 293

weighted_ecdf Weighted empirical cumulative distribution function

Description

A variation of ecdf() that can be applied to weighted samples.

Usage

weighted_ecdf(x, weights = NULL, na.rm = FALSE)

Arguments

x numeric vector: sample values

weights Weights for the sample. One of:

• numeric vector of same length as x: weights for corresponding values in x,
which will be normalized to sum to 1.

• NULL: indicates no weights are provided, so the unweighted empirical cu-
mulative distribution function (equivalent to ecdf()) is returned.

na.rm logical: if TRUE, corresponding entries in x and weights are removed if either is
NA.

Details

Generates a weighted empirical cumulative distribution function, F (x). Given x, a sorted vector
(derived from x), and wi, the corresponding weight for xi, F (x) is a step function with steps at
each xi with F (xi) equal to the sum of all weights up to and including wi.

Value

weighted_ecdf() returns a function of class "weighted_ecdf", which also inherits from the
stepfun() class. Thus, it also has plot() and print() methods. Like ecdf(), weighted_ecdf()
also provides a quantile() method, which dispatches to weighted_quantile().

See Also

weighted_quantile()

Examples

weighted_ecdf(1:3, weights = 1:3)
plot(weighted_ecdf(1:3, weights = 1:3))
quantile(weighted_ecdf(1:3, weights = 1:3), 0.4)

294 weighted_quantile

weighted_quantile Weighted sample quantiles

Description

A variation of quantile() that can be applied to weighted samples.

Usage

weighted_quantile(
x,
probs = seq(0, 1, 0.25),
weights = NULL,
n = NULL,
na.rm = FALSE,
names = TRUE,
type = 7,
digits = 7

)

weighted_quantile_fun(x, weights = NULL, n = NULL, na.rm = FALSE, type = 7)

Arguments

x numeric vector: sample values

probs numeric vector: probabilities in [0, 1]

weights Weights for the sample. One of:

• numeric vector of same length as x: weights for corresponding values in x,
which will be normalized to sum to 1.

• NULL: indicates no weights are provided, so unweighted sample quantiles
(equivalent to quantile()) are returned.

n Presumed effective sample size. If this is greater than 1 and continuous quantiles
(type >= 4) are requested, flat regions may be added to the approximation to the
inverse CDF in areas where the normalized weight exceeds 1/n (i.e., regions of
high density). This can be used to ensure that if a sample of size n with duplicate
x values is summarized into a weighted sample without duplicates, the result of
weighted_quantile(..., n = n) on the weighted sample is equal to the result
of quantile() on the original sample. One of:

• NULL: do not make a sample size adjustment.
• numeric: presumed effective sample size.
• function or name of function (as a string): A function applied to weights

(prior to normalization) to determine the sample size. Some useful values
may be:

– "length": i.e. use the number of elements in weights (equivalently in
x) as the effective sample size.

weighted_quantile 295

– "sum": i.e. use the sum of the unnormalized weights as the sample
size. Useful if the provided weights is unnormalized so that its sum
represents the true sample size.

na.rm logical: if TRUE, corresponding entries in x and weights are removed if either is
NA.

names logical: If TRUE, add names to the output giving the input probs formatted as a
percentage.

type integer between 1 and 9: determines the type of quantile estimator to be used.
Types 1 to 3 are for discontinuous quantiles, types 4 to 9 are for continuous
quantiles. See Details.

digits numeric: the number of digits to use to format percentages when names is TRUE.

Details

Calculates weighted quantiles using a variation of the quantile types based on a generalization of
quantile().

Type 1–3 (discontinuous) quantiles are directly a function of the inverse CDF as a step function,
and so can be directly translated to the weighted case using the natural definition of the weighted
ECDF as the cumulative sum of the normalized weights.

Type 4–9 (continuous) quantiles require some translation from the definitions in quantile().
quantile() defines continuous estimators in terms of xk, which is the kth order statistic, and
pk, which is a function of k and n (the sample size). In the weighted case, we instead take xk as
the kth smallest value of x in the weighted sample (not necessarily an order statistic, because of the
weights). Then we can re-write the formulas for pk in terms of F (xk) (the empirical CDF at xk,
i.e. the cumulative sum of normalized weights) and f(xk) (the normalized weight at xk), by using
the fact that, in the unweighted case, k = F (xk) · n and 1/n = f(xk):

Type 4 pk = k
n = F (xk)

Type 5 pk = k−0.5
n = F (xk)− f(xk)

2

Type 6 pk = k
n+1 = F (xk)

1+f(xk)

Type 7 pk = k−1
n−1 = F (xk)−f(xk)

1−f(xk)

Type 8 pk = k−1/3
n+1/3 = F (xk)−f(xk)/3

1+f(xk)/3

Type 9 pk = k−3/8
n+1/4 = F (xk)−f(xk)·3/8

1+f(xk)/4

Then the quantile function (inverse CDF) is the piece-wise linear function defined by the points
(pk, xk).

Value

weighted_quantile() returns a numeric vector of length(probs) with the estimate of the corre-
sponding quantile from probs.

weighted_quantile_fun() returns a function that takes a single argument, a vector of probabili-
ties, which itself returns the corresponding quantile estimates. It may be useful when weighted_quantile()
needs to be called repeatedly for the same sample, re-using some pre-computation.

296 weighted_quantile

See Also

weighted_ecdf()

Index

∗ bounds estimators
bounder_cdf, 13
bounder_cooke, 15
bounder_range, 16

∗ colour ramp functions
guide_rampbar, 107
partial_colour_ramp, 116
ramp_colours, 127
scale_colour_ramp, 128

∗ datasets
ggdist-deprecated, 105

∗ density estimators
density_bounded, 24
density_histogram, 27
density_unbounded, 30

∗ dotplot smooths
smooth_density, 136
smooth_discrete, 139
smooth_none, 141

∗ dotsinterval geoms
geom_blur_dots, 34
geom_dots, 42
geom_dotsinterval, 50
geom_swarm, 89
geom_weave, 97

∗ dotsinterval stats
stat_dots, 162
stat_dotsinterval, 171
stat_mcse_dots, 232

∗ ggdist scales
scale_colour_ramp, 128
scale_side_mirrored, 130
scale_thickness, 132
sub-geometry-scales, 282

∗ lineribbon stats
stat_lineribbon, 227
stat_ribbon, 248

∗ manip
tidy-format-translators, 291

∗ slabinterval geoms
geom_interval, 60
geom_pointinterval, 68
geom_slab, 73
geom_spike, 85

∗ slabinterval stats
stat_ccdfinterval, 142
stat_cdfinterval, 152
stat_eye, 181
stat_gradientinterval, 191
stat_halfeye, 202
stat_histinterval, 211
stat_interval, 221
stat_pointinterval, 241
stat_slab, 253
stat_spike, 272

∗ sub-guides
subguide_axis, 287
subguide_none, 289

aes(), 35, 43, 51, 56, 60, 65, 69, 73, 79, 86,
90, 98, 143, 147, 148, 153, 157, 158,
162, 166, 167, 172, 177, 182, 187,
192, 197, 202, 207, 212, 217, 222,
224, 228, 230, 233, 237, 242, 244,
248, 250, 253, 257, 258, 262, 267,
268, 273, 277, 279

after_stat(), 125, 126, 148, 158, 167, 177,
187, 197, 207, 217, 224, 230, 237,
244, 250, 258, 268, 274, 279

align, 5, 7, 17
align_boundary (align), 5
align_boundary(), 5, 28, 146, 156, 185, 195,

205, 215, 256, 265, 276
align_center (align), 5
align_center(), 5, 28, 146, 156, 185, 195,

205, 215, 256, 265, 276
align_none (align), 5
align_none(), 5, 28, 146, 156, 185, 195, 205,

215, 256, 265, 276

297

298 INDEX

auto_partial, 7
auto_partial(), 7
automatic partial function

application, 5, 9, 12, 13, 15, 16,
24, 27, 30, 137, 139, 141, 287

automatic-partial-functions, 138, 140,
141

automatic-partial-functions
(auto_partial), 7

axis_titles_bottom_left (theme_ggdist),
290

bandwidth, 7, 9, 25, 30
bandwidth_bcv (bandwidth), 9
bandwidth_dpi (bandwidth), 9
bandwidth_dpi(), 9
bandwidth_nrd (bandwidth), 9
bandwidth_nrd0 (bandwidth), 9
bandwidth_SJ (bandwidth), 9
bandwidth_ucv (bandwidth), 9
beeswarm::beeswarm(), 11, 33, 36, 44, 52,

92, 99, 164, 173, 234
bin_dots, 10
bin_dots(), 33
blur, 7, 12
blur_gaussian (blur), 12
blur_gaussian(), 35, 233
blur_interval (blur), 12
blur_interval(), 35, 233
borders(), 38, 46, 55, 62, 66, 70, 75, 81, 87,

93, 101, 147, 157, 165, 176, 187,
197, 207, 216, 223, 229, 236, 244,
250, 257, 266, 277

bounder_cdf, 13, 15, 16
bounder_cdf(), 14, 25, 137
bounder_cooke, 14, 15, 16
bounder_cooke(), 14, 25, 137
bounder_range, 14, 15, 16
bounder_range(), 25, 137
breaks, 6, 7, 16, 28, 145, 155, 185, 195, 205,

215, 256, 265, 275
breaks_FD (breaks), 16
breaks_FD(), 17
breaks_fixed (breaks), 16
breaks_fixed(), 17, 28, 145, 155, 185, 195,

205, 215, 256, 265, 275
breaks_quantiles (breaks), 16
breaks_quantiles(), 17
breaks_Scott (breaks), 16

breaks_Scott(), 17
breaks_Sturges (breaks), 16
breaks_Sturges(), 17, 28, 145, 155, 185,

195, 205, 215, 256, 265, 275
bw.SJ(), 9

cdf(), 23
continuous_scale(), 129
coord_cartesian(), 129, 133, 285
curve_interval, 18
curve_interval(), 20
cut_cdf_qi, 22
cut_cdf_qi(), 23

density_bounded, 24, 29, 31, 120
density_bounded(), 7, 9, 10, 13–16, 120,

137, 138, 145, 155, 185, 195, 205,
214, 215, 255, 264, 265, 275

density_histogram, 26, 27, 31
density_histogram(), 5–7, 16, 17, 145, 146,

155, 156, 185, 186, 195, 196, 205,
206, 214, 215, 255, 256, 264, 265,
275, 276

density_unbounded, 26, 29, 30, 120
density_unbounded(), 7, 9, 10, 137–139,

145, 155, 185, 195, 205, 214, 255,
264, 275

discrete_scale(), 129
dist_beta(), 56, 147, 157, 166, 177, 187,

197, 207, 217, 224, 230, 237, 244,
250, 257, 267, 277

dist_normal(), 56, 147, 148, 157, 158, 166,
168, 177, 178, 187, 188, 197, 198,
207, 208, 217, 218, 224, 225, 230,
231, 237, 238, 244, 245, 250, 251,
257–259, 267, 268, 277, 278

dist_truncated(), 115
distributional::dist_wrap(), 114
dlkjcorr_marginal (lkjcorr_marginal),

109
dnorm(), 56, 147, 157, 167, 177, 187, 197,

207, 217, 224, 230, 237, 244, 250,
257, 267, 277

dplyr::group_by(), 19, 120, 121
dstudent_t (student_t), 280

ecdf(), 293
environment, 114
expansion(), 131, 134

INDEX 299

facet_title_horizontal (theme_ggdist),
290

facet_title_left_horizontal
(theme_ggdist), 290

facet_title_right_horizontal
(theme_ggdist), 290

fda::fbplot(), 20
find_dotplot_binwidth, 32
find_dotplot_binwidth(), 12
fortify(), 35, 43, 51, 61, 65, 69, 74, 79, 86,

90, 98, 143, 153, 163, 172, 182, 193,
202, 212, 222, 228, 233, 242, 248,
254, 262, 273

from_broom_names
(tidy-format-translators), 291

from_broom_names(), 292
from_ggmcmc_names

(tidy-format-translators), 291
from_ggmcmc_names(), 292

geom_blur_dots, 34, 49, 59, 97, 105
geom_blur_dots(), 12, 13, 38, 46, 55, 94,

102, 166, 176, 232, 233, 237, 238,
241

geom_dotplot(), 38, 46, 55, 93, 101, 165,
176, 236

geom_dots, 41, 42, 59, 97, 105, 137, 139
geom_dots(), 7, 34, 38, 46, 55, 94, 102, 163,

166, 168, 170, 176, 236, 288
geom_dotsinterval, 41, 49, 50, 97, 105
geom_dotsinterval(), 4, 12, 33, 38, 41, 42,

46, 49, 50, 55, 85, 89, 94, 97, 102,
105, 130, 139, 162, 166, 171, 172,
176, 178, 181, 237, 285

geom_interval, 60, 72, 77, 88
geom_interval(), 62, 82, 221, 222, 225, 226
geom_line(), 64, 66, 67
geom_lineribbon, 64
geom_lineribbon(), 4, 66, 67, 85, 128, 227,

228, 231, 232, 248, 249, 251, 252
geom_point(), 38, 46, 55, 94, 102, 166, 176,

236
geom_pointinterval, 64, 68, 77, 88
geom_pointinterval(), 67, 70, 82, 241, 242,

245, 247
geom_ribbon(), 64, 66, 67
geom_slab, 64, 72, 73, 88
geom_slab(), 40, 48, 57, 63, 71, 76, 82, 83,

95, 103, 150, 160, 169, 179, 189,

200, 209, 219, 226, 240, 246, 253,
254, 259, 260, 270

geom_slabinterval, 78
geom_slabinterval(), 4, 11, 38, 39, 46, 47,

50, 55, 57, 59, 60, 62, 64, 68, 70, 72,
73, 77, 81–83, 85, 87, 93, 95, 101,
103, 106, 123, 128, 130, 132,
134–136, 142, 143, 149, 151–153,
159, 161, 166, 168, 176, 179, 182,
183, 188, 189, 191, 193, 198, 199,
201, 203, 208, 209, 211–213,
218–220, 236, 239, 261–263, 269,
271, 282, 285, 287–289

geom_spike, 64, 72, 77, 85
geom_spike(), 273, 274, 278, 279
geom_swarm, 41, 49, 59, 89, 105
geom_swarm(), 38, 46, 55, 94, 102, 166, 176,

236
geom_weave, 41, 49, 59, 97, 97
geom_weave(), 38, 46, 55, 94, 102, 166, 176,

236
ggdist (ggdist-package), 4
ggdist-deprecated, 105
ggdist-package, 4
ggplot(), 35, 39, 43, 47, 51, 56, 61, 62, 65,

66, 69, 70, 73, 75, 79, 82, 86, 87, 90,
94, 98, 102, 129, 132, 136, 143, 147,
153, 157, 162, 167, 172, 177, 182,
187, 192, 197, 202, 207, 212, 217,
222, 224, 228, 230, 233, 237, 242,
244, 248, 250, 254, 258, 262, 267,
273, 277, 286

ggplot2, 62, 70
ggplot2::continuous_scale, 134
ggplot2::discrete_scale, 130
ggplot2::Geom, 39, 47, 56, 62, 66, 70, 75, 82,

87, 94, 102
ggplot2::guide_colourbar, 107
ggplot2::position_dodge(), 122
ggplot2::Scale, 37, 45, 54, 75, 81, 87, 93,

101, 129, 132, 136, 144, 154, 165,
175, 184, 194, 204, 214, 235, 255,
264, 274, 286

ggplot2::Stat, 56, 147, 157, 167, 177, 187,
197, 207, 217, 224, 230, 237, 244,
250, 258, 267, 277

ggplot2::theme, 288
ggplot2::theme(), 291

300 INDEX

ggplot2::theme_light(), 290
ggplot2::theme_set(), 291
graphics::hist(), 28, 145, 155, 185, 195,

205, 215, 256, 265, 275
grDevices::nclass.FD(), 17
grid::arrow(), 54, 62, 70, 81, 87, 144, 154,

175, 184, 194, 204, 214, 223, 243,
264, 274

grid::grob, 37, 45, 54, 75, 81, 87, 93, 101,
144, 154, 165, 175, 184, 194, 204,
214, 235, 255, 264, 274

grob, 33
guide_axis(), 288
guide_colorbar2 (sub-geometry-scales),

282
guide_colourbar(), 107
guide_colourbar2 (sub-geometry-scales),

282
guide_rampbar, 107, 116, 127, 130
guide_rampbar(), 108, 129
guides(), 129, 131, 134

hdci (point_interval), 117
hdi (point_interval), 117
hdi(), 120

labs(), 107
lambda, 129, 131, 133, 134, 285, 287, 288
layer(), 35, 43, 51, 61, 65, 69, 74, 79, 86, 91,

99, 143, 153, 163, 172, 183, 193,
203, 212, 222, 228, 233, 242, 249,
254, 262, 274

list, 274
lkjcorr_marginal, 109
lkjcorr_marginal(), 111, 112
ll (point_interval), 117

make.names(), 115
marginalize_lkjcorr, 111
marginalize_lkjcorr(), 110
mean(), 120
mean_hdci (point_interval), 117
mean_hdi (point_interval), 117
mean_ll (point_interval), 117
mean_qi (point_interval), 117
mean_qi(), 7, 62, 70
mean_ul (point_interval), 117
median(), 120
median_hdci (point_interval), 117

median_hdi (point_interval), 117
median_ll (point_interval), 117
median_qi (point_interval), 117
median_qi(), 7, 62, 70
median_ul (point_interval), 117
Mode (point_interval), 117
Mode(), 120
mode_hdci (point_interval), 117
mode_hdi (point_interval), 117
mode_hdi(), 7, 62, 70
mode_ll (point_interval), 117
mode_qi (point_interval), 117
mode_ul (point_interval), 117

nclass.FD(), 17
nclass.scott(), 17
nclass.Sturges(), 17
numeric, 274

ordered, 23

p_ (Pr_), 125
p_(), 125
parse_dist, 113
parse_dist(), 56, 110–112, 115, 147, 157,

167, 177, 187, 197, 207, 217, 224,
230, 237, 244, 250, 257, 267, 277,
281

partial_colour_ramp, 108, 116, 127, 129,
130

partial_colour_ramp(), 116, 128, 129
plkjcorr_marginal (lkjcorr_marginal),

109
plot(), 26, 29, 31
pnorm(), 22, 56, 147, 157, 167, 177, 187, 197,

207, 217, 224, 230, 237, 244, 250,
257, 267, 277

point_interval, 117
point_interval(), 7, 21, 62, 64, 66, 70, 146,

156, 162, 171, 175, 186, 196, 206,
215, 216, 223, 227, 229, 243, 248,
249, 265, 266

position_dodge(), 35, 43, 51, 61, 69, 74, 79,
86, 91, 99, 143, 153, 163, 172, 183,
193, 203, 212, 222, 228, 233, 242,
249, 254, 262, 273

position_dodgejust, 122
position_dodgejust(), 35, 43, 51, 61, 69,

74, 79, 86, 91, 99, 122, 143, 153,

INDEX 301

163, 172, 183, 193, 203, 212, 222,
228, 233, 242, 249, 254, 262, 273

posterior::mcse_quantile(), 232
posterior::rvar, 19
posterior::rvar(), 20, 38, 46, 55, 56, 94,

102, 147, 148, 157, 158, 166, 168,
176–178, 187, 188, 197, 198, 207,
208, 217, 218, 224, 225, 230, 231,
236–238, 244, 245, 250, 251,
257–259, 267, 268, 274, 277, 278

Pr_, 125
Pr_(), 125
print(), 26, 29, 31
pstudent_t (student_t), 280

qi (point_interval), 117
qi(), 120
qlkjcorr_marginal (lkjcorr_marginal),

109
qnorm(), 56, 147, 157, 167, 177, 187, 197,

207, 217, 224, 230, 237, 244, 250,
257, 267, 277

qstudent_t (student_t), 280
quantile(), 293–295
quasiquotation, 125

r_dist_name (parse_dist), 113
r_dist_name(), 115
ramp_colours, 108, 116, 127, 130
ramp_colours(), 116, 129
resolution(), 139, 140
rlang::eval_tidy(), 121
rlkjcorr_marginal (lkjcorr_marginal),

109
rstudent_t (student_t), 280

scale_alpha_continuous(), 285
scale_color_continuous(), 285, 286
scale_color_discrete(), 284–286
scale_color_ramp (scale_colour_ramp),

128
scale_color_ramp_continuous

(scale_colour_ramp), 128
scale_color_ramp_discrete

(scale_colour_ramp), 128
scale_colour_gradient2(), 134
scale_colour_gradientn(), 134
scale_colour_ramp, 108, 116, 127, 128, 132,

136, 286

scale_colour_ramp(), 40, 48, 57, 63, 71, 76,
83, 88, 95, 103, 150, 160, 169, 179,
189, 199, 209, 219, 225, 239, 246,
259, 270, 278

scale_colour_ramp_continuous
(scale_colour_ramp), 128

scale_colour_ramp_continuous(), 107,
108, 129

scale_colour_ramp_discrete
(scale_colour_ramp), 128

scale_colour_ramp_discrete(), 129
scale_fill_ramp (scale_colour_ramp), 128
scale_fill_ramp(), 40, 48, 57, 63, 67, 71,

76, 83, 88, 95, 103, 150, 160, 169,
179, 189, 199, 209, 219, 225, 231,
239, 246, 252, 259, 270, 278

scale_fill_ramp_continuous
(scale_colour_ramp), 128

scale_fill_ramp_continuous(), 107, 108,
129

scale_fill_ramp_discrete
(scale_colour_ramp), 128

scale_interval_alpha_continuous
(sub-geometry-scales), 282

scale_interval_alpha_discrete
(sub-geometry-scales), 282

scale_interval_color_continuous
(sub-geometry-scales), 282

scale_interval_color_discrete
(sub-geometry-scales), 282

scale_interval_colour_continuous
(sub-geometry-scales), 282

scale_interval_colour_discrete
(sub-geometry-scales), 282

scale_interval_linetype_continuous
(sub-geometry-scales), 282

scale_interval_linetype_discrete
(sub-geometry-scales), 282

scale_interval_size_continuous
(sub-geometry-scales), 282

scale_interval_size_discrete
(sub-geometry-scales), 282

scale_point_alpha_continuous
(sub-geometry-scales), 282

scale_point_alpha_discrete
(sub-geometry-scales), 282

scale_point_color_continuous
(sub-geometry-scales), 282

302 INDEX

scale_point_color_discrete
(sub-geometry-scales), 282

scale_point_colour_continuous
(sub-geometry-scales), 282

scale_point_colour_discrete
(sub-geometry-scales), 282

scale_point_fill_continuous
(sub-geometry-scales), 282

scale_point_fill_discrete
(sub-geometry-scales), 282

scale_point_size_continuous
(sub-geometry-scales), 282

scale_point_size_continuous(), 54, 70,
81, 144, 154, 174, 184, 194, 204,
214, 243, 264

scale_point_size_discrete
(sub-geometry-scales), 282

scale_point_size_discrete(), 54, 70, 81,
144, 154, 175, 184, 194, 204, 214,
243, 264

scale_side_mirrored, 130, 130, 136, 286
scale_size_continuous(), 54, 61, 69, 70,

80, 82, 144, 154, 174, 184, 193, 204,
213, 214, 222, 243, 263, 264

scale_slab_alpha_continuous
(sub-geometry-scales), 282

scale_slab_alpha_discrete
(sub-geometry-scales), 282

scale_slab_color_continuous
(sub-geometry-scales), 282

scale_slab_color_discrete
(sub-geometry-scales), 282

scale_slab_colour_continuous
(sub-geometry-scales), 282

scale_slab_colour_discrete
(sub-geometry-scales), 282

scale_slab_fill_continuous
(sub-geometry-scales), 282

scale_slab_fill_discrete
(sub-geometry-scales), 282

scale_slab_linetype_continuous
(sub-geometry-scales), 282

scale_slab_linetype_discrete
(sub-geometry-scales), 282

scale_slab_linewidth_continuous
(sub-geometry-scales), 282

scale_slab_linewidth_discrete
(sub-geometry-scales), 282

scale_slab_shape_continuous
(sub-geometry-scales), 282

scale_slab_shape_discrete
(sub-geometry-scales), 282

scale_slab_size_continuous
(sub-geometry-scales), 282

scale_slab_size_discrete
(sub-geometry-scales), 282

scale_thickness, 130, 132, 132, 286
scale_thickness_identity

(scale_thickness), 132
scale_thickness_shared

(scale_thickness), 132
scale_thickness_shared(), 135
scales, 41, 49, 58, 64, 67, 72, 77, 84, 88, 96,

104, 151, 161, 170, 180, 190, 201,
210, 220, 226, 231, 241, 247, 252,
260, 271, 279

scales (sub-geometry-scales), 282
scales::censor(), 134
scales::extended_breaks(), 133, 287
scales::new_transform(), 135
scales::pal_area(), 134
scales::pal_hue(), 131
scales::percent_format(), 23
scales::rescale(), 134
scales::squish(), 134
scales::squish_infinite(), 134
smooth_, 26, 29, 31
smooth_bar (smooth_discrete), 139
smooth_bar(), 7, 139
smooth_bounded (smooth_density), 136
smooth_bounded(), 7
smooth_density, 136, 140, 141
smooth_discrete, 138, 139, 141
smooth_discrete(), 7, 139
smooth_none, 138, 140, 141
smooth_unbounded (smooth_density), 136
smooth_unbounded(), 7, 139, 140
stage(), 148, 158, 167, 177, 187, 197, 207,

217, 224, 230, 237, 244, 250, 258,
268, 279

stat_ccdfinterval, 142, 161, 191, 201, 211,
220, 226, 247, 260, 279

stat_ccdfinterval(), 135, 143, 267
stat_cdfinterval, 151, 152, 191, 201, 211,

220, 226, 247, 260, 279
stat_cdfinterval(), 153, 267

INDEX 303

stat_dist_ccdfinterval
(ggdist-deprecated), 105

stat_dist_cdfinterval
(ggdist-deprecated), 105

stat_dist_dots (ggdist-deprecated), 105
stat_dist_dotsinterval

(ggdist-deprecated), 105
stat_dist_eye (ggdist-deprecated), 105
stat_dist_gradientinterval

(ggdist-deprecated), 105
stat_dist_halfeye (ggdist-deprecated),

105
stat_dist_interval (ggdist-deprecated),

105
stat_dist_lineribbon

(ggdist-deprecated), 105
stat_dist_pointinterval

(ggdist-deprecated), 105
stat_dist_slab (ggdist-deprecated), 105
stat_dist_slabinterval

(ggdist-deprecated), 105
stat_dots, 162, 181, 241
stat_dots(), 38, 46, 49, 50, 55, 94, 102, 162,

163, 166, 176, 232, 236, 237
stat_dotsinterval, 170, 171, 241
stat_dotsinterval(), 4, 38, 46, 50, 55, 94,

102, 125, 166, 171, 172, 176, 237
stat_eye, 151, 161, 181, 201, 211, 220, 226,

247, 260, 279
stat_eye(), 121, 183, 267
stat_gradientinterval, 151, 161, 191, 191,

211, 220, 226, 247, 260, 279
stat_gradientinterval(), 75, 80, 135, 143,

153, 183, 193, 194, 203, 213, 254,
263, 267, 285

stat_halfeye, 151, 161, 191, 201, 202, 220,
226, 247, 260, 279

stat_halfeye(), 85, 113, 121, 203, 267
stat_histinterval, 151, 161, 191, 201, 211,

211, 226, 247, 260, 279
stat_histinterval(), 212, 267
stat_interval, 151, 161, 191, 201, 211, 220,

221, 247, 260, 279
stat_interval(), 64, 222, 267
stat_lineribbon, 227, 252
stat_lineribbon(), 4, 67, 227, 228, 231, 251
stat_mcse_dots, 170, 181, 232
stat_mcse_dots(), 12, 13, 38, 46, 55, 94,

102, 166, 176, 233, 237
stat_pointinterval, 151, 161, 191, 201,

211, 220, 226, 241, 260, 279
stat_pointinterval(), 72, 242, 267
stat_ribbon, 232, 248
stat_ribbon(), 248, 249
stat_sample_slabinterval

(ggdist-deprecated), 105
stat_slab, 151, 161, 191, 201, 211, 220, 226,

247, 253, 279
stat_slab(), 77, 254, 267
stat_slabinterval, 261
stat_slabinterval(), 4, 23, 26, 29, 31, 50,

59, 82, 85, 106, 110, 112, 113, 115,
125, 126, 135, 142, 151, 152, 161,
162, 171, 182, 191, 201, 202, 211,
220, 221, 226, 227, 241, 247, 248,
253, 260, 262, 272, 279, 281

stat_spike, 151, 161, 191, 201, 211, 220,
226, 247, 260, 272

stat_spike(), 88, 273
stat_summary(), 121
StatDistSlabinterval

(ggdist-deprecated), 105
stats::bw.SJ, 9
stats::density(), 25, 26, 28, 30, 31, 139,

145, 155, 185, 195, 205, 214, 255,
264, 275

StatSampleSlabinterval
(ggdist-deprecated), 105

stepfun(), 293
student_t, 280
sub-geometry-scales, 54, 61, 70, 81, 144,

154, 174, 184, 194, 204, 214, 223,
243, 264, 282

subguide_axis, 287, 289
subguide_axis(), 37, 45, 54, 75, 81, 87, 93,

101, 144, 154, 165, 175, 184, 194,
204, 214, 235, 255, 264, 274

subguide_count (subguide_axis), 287
subguide_count(), 288
subguide_inside (subguide_axis), 287
subguide_inside(), 288
subguide_integer (subguide_axis), 287
subguide_integer(), 288
subguide_none, 288, 289
subguide_none(), 37, 45, 54, 75, 81, 87, 93,

101, 144, 154, 165, 175, 184, 194,

304 INDEX

204, 214, 235, 255, 264, 274
subguide_outside (subguide_axis), 287
subguide_outside(), 288

theme, 107
theme_ggdist, 290
theme_ggdist(), 290
theme_tidybayes (theme_ggdist), 290
theme_tidybayes(), 290
thickness, 287, 289
thickness (scale_thickness), 132
thickness(), 135
tidy-format-translators, 291
tidyselect, 20
to_broom_names

(tidy-format-translators), 291
to_broom_names(), 292
to_ggmcmc_names

(tidy-format-translators), 291
to_ggmcmc_names(), 292
transformation object, 133, 287

ul (point_interval), 117
uniroot, 9
unit, 35, 43, 51, 52, 91, 100, 163, 172, 233
unit(), 35, 37, 43, 45, 52, 53, 91, 92, 100,

163, 165, 172, 174, 234, 235

vctrs::rcrd, 116

waiver, 7
waiver(), 7, 8, 107
weighted_ecdf, 293
weighted_ecdf(), 26, 29, 31, 293, 296
weighted_quantile, 294
weighted_quantile(), 293
weighted_quantile_fun

(weighted_quantile), 294

	ggdist-package
	align
	auto_partial
	bandwidth
	bin_dots
	blur
	bounder_cdf
	bounder_cooke
	bounder_range
	breaks
	curve_interval
	cut_cdf_qi
	density_bounded
	density_histogram
	density_unbounded
	find_dotplot_binwidth
	geom_blur_dots
	geom_dots
	geom_dotsinterval
	geom_interval
	geom_lineribbon
	geom_pointinterval
	geom_slab
	geom_slabinterval
	geom_spike
	geom_swarm
	geom_weave
	ggdist-deprecated
	guide_rampbar
	lkjcorr_marginal
	marginalize_lkjcorr
	parse_dist
	partial_colour_ramp
	point_interval
	position_dodgejust
	Pr_
	ramp_colours
	scale_colour_ramp
	scale_side_mirrored
	scale_thickness
	smooth_density
	smooth_discrete
	smooth_none
	stat_ccdfinterval
	stat_cdfinterval
	stat_dots
	stat_dotsinterval
	stat_eye
	stat_gradientinterval
	stat_halfeye
	stat_histinterval
	stat_interval
	stat_lineribbon
	stat_mcse_dots
	stat_pointinterval
	stat_ribbon
	stat_slab
	stat_slabinterval
	stat_spike
	student_t
	sub-geometry-scales
	subguide_axis
	subguide_none
	theme_ggdist
	tidy-format-translators
	weighted_ecdf
	weighted_quantile
	Index

