glober package

Mary E. Savino

Introduction

The package glober provides two tools to estimate the function f in the following nonparametric regression model:

$$
\begin{equation*}
Y_{i}=f\left(x_{i}\right)+\varepsilon_{i}, \quad 1 \leq i \leq n, \tag{1}
\end{equation*}
$$

where the ε_{i} are i.i.d centered random variables of variance σ^{2}, the x_{i} are observation points which belong to a compact set S of $\mathbb{R}^{d}, d=1$ or 2 and n is the total number of observations. This estimation is performed using the GLOBER approach described in [1]. This method consists in estimating f by approximating it with a linear combination of B-splines, where their knots are selected adaptively using the Generalized Lasso proposed by [2], since they can be seen as changes in the derivatives of the function to estimate. We refer the reader to [1] for further details.

Estimation of f in the one-dimensional case ($d=1$)

In the following, we apply our method to a function of one input variable f_{1}. This function is defined as a linear combination of quadratic B-splines with the set of knots $\mathbf{t}=(0.1,0.27,0.745)$ and $\sigma=0.1$ in (1).

Description of the dataset

We load the dataset of observations with $n=70$ provided within the package $\left(x_{1}, \ldots, x_{70}\right)$:

```
## --- Loading the values of the input variable --- ##
data('x_1D')
and (Y
## --- Loading the corresponding noisy values of the response variable --- ##
data('y_1D')
```

We load the dataset containing the values of the input variable $\left\{x_{1}, \ldots, x_{N}\right\}$ for which an estimation of f_{1} is sought. They correspond to the observation points as well as additional points where f_{1} has not been observed. Here, $N=201$. In order to have a better idea of the underlying function f_{1}, we load the corresponding evaluations of f_{1} at these input values.

```
## --- Loading the values of the input variable for which an estimation
## of f_1 is required --- ##
data('xpred_1D')
## --- Loading the corresponding evaluations to plot the function --- ##
data('f_1D')
```

We can visualize it for 201 input values by using the ggplot2 package:

```
## -- Building dataframes to plot -- ##
data_1D = data.frame(x = xpred_1D, f = f_1D)
obs_1D = data.frame(x = x_1D, y = y_1D)
real.knots = c(0.1, 0.27,0.745)
```


The vertical dashed lines represent the real knots \mathbf{t} implied in the definition of f_{1}, the red curve describes the true underlying function f_{1} to estimate and the blue crosses are the observation points.

Application of glober. 1d to estimate f_{1}

The glober.1d function of the glober package is applied by using the following arguments: the input values $\left(x_{i}\right)_{1 \leq i \leq n}(\mathrm{x})$, the corresponding $\left(Y_{i}\right)_{1 \leq i \leq n}(\mathrm{y}), N$ input values $\left\{x_{1}, \ldots, x_{N}\right\}$ for which f_{1} has to be estimated (xpred) and the order of the B-spline basis used to estimate f_{1} (ord).

```
res = glober.1d(x = x_1D, y = y_1D, xpred = xpred_1D, ord = 3, parallel = FALSE)
```

Additional arguments can also be used in this function:

- parallel: Logical, if set to TRUE then a parallelized version of the code is used. The default value is FALSE.
- nb.Cores: Numerical, it represents the number of cores used for parallelization, if parallel is set to TRUE.

The resulting outputs are the following:

- festimated: the estimated values of f_{1}.
- knotSelec: the selected knots used in the definition of the B-splines of the GLOBER estimator.
- rss: Residual sum-of-squares (RSS) of the model defined as: $\sum_{k=1}^{n}\left(Y_{i}-\widehat{f}_{1}\left(x_{i}\right)\right)^{2}$, where \widehat{f}_{1} is the estimator of f_{1}.
- rsq: R-squared of the model, calculated as $1-R S S / T S S$ where TSS is the total sum-of-squares of the model defined as $\sum_{k=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}$ with $\bar{Y}=\left(\sum_{i=1}^{n} Y_{i}\right) / n$.

Thus, we can print the estimated values corresponding to the input values $\left\{x_{1}, \ldots, x_{N}\right\}$:

```
fhat = res$festimated
head(fhat)
## [1] -0.02579931 -0.26804301 -0.49284982 -0.70021972 -0.89015272 -1.06264882
```

The value of the Residual Sum-of-square:

```
res$rss
## [1] 40.91661
```

The value of the R -squared:

```
res$rsq
## [1] 0.9970843
```

We can get the set of the estimated knots $\widehat{\mathbf{t}}$:

```
knots.set = res$Selected.knots
print(knots.set)
## [1] 0.100 0.155 0.235 0.275 0.435 0.545 0.680}0.70.705 0.775 0.780 0.790 0.890
```

Finally, we can display the estimation of f_{1} by using the ggplot2 package:

```
## Dataframe of selected knots ##
idknots = which(xpred_1D %in% knots.set)
yknots = f_1D[idknots]
data_knots = data.frame(x.knots = knots.set, y.knots = yknots)
## Dataframe of the estimation ##
data_res = data.frame(xpred = xpred_1D, fhat = fhat)
plot_1D = ggplot(data_1D, aes(xpred_1D, f_1D)) +
    geom_line(color = 'red') +
    geom_line(data = data_1D, aes(x = xpred_1D, y = fhat), color = "black") +
    geom_vline(xintercept = real.knots, linetype = 'dashed', color = 'grey27') +
    geom_point(aes(x, y), data = obs_1D, shape = 4, color = "blue", size = 4)+
    geom_point(aes(x.knots, y.knots), data = data_knots, shape = 19, color = "blue",
                size = 4)+
    xlab('x') +
    ylab('y') +
    theme_bw()+
    theme(axis.title.x = element_text(size = 20), axis.title.y = element_text(size = 20),
                axis.text.x = element_text(size = 19),
                axis.text.y = element_text(size = 19))
plot_1D
```


The vertical dashed lines represent the real knots \mathbf{t} implied in the definition of f_{1}, the red curve describes the true underlying function f_{1} to estimate, the black curve corresponds to the estimation with GLOBER, the blue crosses are the observation points and the blue bullets are the observation points chosen as estimated knots \widehat{t}.

Estimation of f in the two-dimensional case ($d=2$)

In the following, we apply our method to a function of two input variables f_{2}. This function is defined as a linear combination of tensor products of quadratic univariate B-splines with the sets of knots $\mathbf{t}_{1}=(0.24,0.545)$ and $\mathbf{t}_{2}=(0.395,0.645)$ and $\sigma=0.01$ in (1).

Description of the dataset

We load the dataset of observations with $n=100$, provided within the package (x_{1}, \ldots, x_{100})

```
## --- Loading the values of the input variables --- ##
data('x_2D')
head(x_2D)
```

```
## Var1 Var2
```

\#\# [1,] 0.0050 .005
\#\# [2,] 0.0050 .385
\#\# [3,] 0.0050 .390
\#\# [4,] 0.0050 .395
\#\# [5,] 0.0050 .640
\#\# [6,] 0.0050 .645
and $\left(Y_{1}, \ldots, Y_{100}\right)$:
\#\# --- Loading the corresponding noisy values of the response variable --- \#\#
data('y_2D')

We load the dataset containing the values of the input variables $\left\{x_{1}, \ldots, x_{N}\right\}$ for which an estimation of f_{2} is sought. They correspond to the observation points as well as additional points where f_{2} has not been observed. Here, $N=10000$. In order to have a better idea of the underlying function f_{2}, we load the corresponding evaluations of f_{2} at these input values.

```
## --- Loading the values of the input variables for which an estimation
## of f_2 is required --- ##
data('xpred_2D')
head(xpred_2D)
## Var1 Var2
## [1,] 0 0.000
## [2,] 0 0.005
## [3,] 0 0.015
## [4,] 0 0.035
## [5,] 0 0.050
## [6,] 0 0.080
## --- Loading the corresponding evaluations to plot the function --- ##
data('f_2D')
```

We can visualize it for 10000 input values by using the plot3D package:

Application of glober.2d to estimate f_{2}

The glober. 2 d function of the glober package is applied by using the following arguments: the input values $\left(x_{i}\right)_{1 \leq i \leq n}(\mathrm{x})$, the corresponding $\left(Y_{i}\right)_{1 \leq i \leq n}(\mathrm{y}), N$ input values $\left\{x_{1}, \ldots, x_{N}\right\}$ for which f_{2} has to be estimated (xpred) and the order of the B-spline basis used to estimate f_{2} (ord).

```
res = glober.2d(x = x_2D, y = y_2D, xpred = xpred_2D, ord = 3, parallel = FALSE)
```

Additional arguments can also be used in this function:

- parallel: Logical, if TRUE then a parallelized version of the code is used. Default is FALSE.
- nb.Cores: Numerical, it corresponds to the number of cores used for parallelization, if parallel is set to TRUE.

Outputs:

- festimated: the estimated values of f_{2}.
- knotSelec: the selected knots used in the definition of the B-splines of the GLOBER estimator.
- rss: Residual sum-of-squares (RSS) of the model defined as: $\sum_{k=1}^{n}\left(Y_{i}-\widehat{f}_{2}\left(x_{i}\right)\right)^{2}$, where $\widehat{f_{2}}$ is the estimator of f_{2}.
- rsq: R-squared of the model, calculated as $1-R S S / T S S$ where TSS is the total sum-of-squares of the model defined as $\sum_{k=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}$.
Thus, we can print the estimated values corresponding to the input values $\left\{x_{1}, \ldots, x_{N}\right\}$:

```
fhat_2D = res$festimated
head(fhat_2D)
## [1] -0.001507484 -0.001594391 -0.001764006 -0.002086438 -0.002313565
## [6] -0.002730025
```

The value of the Residual Sum-of-square:

```
res$rss
## [1] 1.910738
```

The value of the R -squared:

```
res$rsq
## [1] 0.9988952
```

We can get the set of estimated knots for each dimension $\widehat{\mathbf{t}}_{\mathbf{1}}$ and $\widehat{\mathbf{t}}_{\mathbf{2}}$:

```
knots.set = res$Selected.knots
print('For the first dimension:')
## [1] "For the first dimension:"
print(knots.set[[1]])
## [1] 0.255 0.540
print('For the second dimension:')
## [1] "For the second dimension:"
print(knots.set[[2]])
## [1] 0.650 0.655
```

As for f_{1}, we can visualize the corresponding estimation of f_{2} :
scatter3D(xpred_2D[,1], xpred_2D[,2], f_2D, bty = "g", pch = 18, col = 'red', theta $=180$, phi $=10)$

scatter3D(xpred_2D[,1], xpred_2D[,2], fhat_2D, bty = "g", pch = 18, col = 'forestgreen', theta $=180$, phi $=10$)

The red surface describes the true underlying function f_{2} to estimate and the green surface corresponds to the estimation with GLOBER.

References

[1] Savino, M. E. and Lévy-Leduc, C. A novel approach for estimating functions in the multivariate setting based on an adaptive knot selection for B-splines with an application to a chemical system used in geoscience (2023), arXiv:2306.00686.
[2] Tibshirani, R. J. and J. Taylor (2011). The solution path of the generalized lasso. The Annals of Statistics 39(3), 1335 - 1371.

