Package ‘grpnet’

February 21, 2024
Type Package
Title Group Elastic Net Regularized GLMs and GAMs
Version 0.3
Date 2024-02-20

Description Efficient algorithms for fitting generalized linear and additive models with group elas-
tic net penalties. Implements group lasso, group MCP, and group SCAD with an op-
tional group ridge penalty. Computes the regularization path for linear regression (gaussian), lo-
gistic regression (binomial), multinomial logistic regression (multinomial), log-linear count re-
gression (poisson and negative.binomial), and log-linear continuous regression (gamma and in-
verse gaussian). Supports default and formula methods for model specification, k-fold cross-
validation for tuning the regularization parameters, and nonparametric regression via ten-
sor product reproducing kernel (smoothing spline) basis function expansion.

License GPL (>=2)

Encoding UTF-8

Depends R (>=3.5.0)

NeedsCompilation yes

Author Nathaniel E. Helwig [aut, cre]

Maintainer Nathaniel E. Helwig <helwig@umn.edu>
Repository CRAN

Date/Publication 2024-02-20 23:00:02 UTC

R topics documented:

AULO . . L L e 2
coef . L e 3
CV.EIPNEL . . . o o ot it e e e e e e e e e e 5
SIPNEL . . . o o e e e e e e e e e e e 11
PIOLCV.IPNEt e e e e e e e e e e 19
PlOL.EIrpnet L e e e e e e e e e 21
predict.cv.gIpnet e e 22
predict.grpnet e e e e 27
PIINt . . . o e 33

o« 35
rkomodel.matrix L L e e e 37
row.kronecker L e e 39
StartupMessageo e e e e e e 40
Index 41
auto Auto MPG Data Set
Description

Miles per gallon and other characteristics of vehicles from the 1970s-1980s. A version of this
dataset was used as the 1983 American Statistical Association Exposition dataset.

Usage

data("auto")

Format

A data frame with 392 observations on the following 9 variables.

mpg miles per gallon (numeric vector)

cylinders number of cylinders: 3,4,5,6,8 (ordered factor)
displacement engine displacement in cubic inches (numeric vector)
horsepower engine horsepower (integer vector)

weight vehicle weight in of lbs. (integer vector)

acceleration 0-60 mph time in sec. (numeric vector)

model.year ranging from 1970 to 1982 (integer vector)

origin region of origin: American, European, Japanese (factor vector)

Details

This is a modified version of the "Auto MPG Data Set" on the UCI Machine Learning Repository,
which is a modified version of the "cars" dataset on StatLib.

Compared to the version of the dataset in UCI’s MLR, this version of the dataset has removed (i) the
6 rows with missing horsepower scores, and (ii) the last column giving the name of each vehicle
(car.name).

Source

The dataset was originally collected by Ernesto Ramos and David Donoho.
StatLib—Datasets Archive at Carnegie Mellon University http://lib.stat.cmu.edu/datasets/cars.data

Machine Learning Repository at University of California Irvine https://archive.ics.uci.edu/ml/datasets/Auto+MPG

coef

Examples

load data
data(auto)

display structure

str(auto)

display header
head(auto)

see 'cv.grpnet' for cross-validation examples

?cv.grpnet

see 'grpnet' for fitting examples

?grpnet

coef

Extract Coefficients for cv.grpnet and grpnet Fits

Description

Obtain coefficients from a cross-validated group elastic net regularized GLM (cv.grpnet) or a group
elastic net regularized GLM (grpnet) object.

Usage
S3 method for class 'cv.grpnet'
coef(object,
s = c("lambda.min”", "lambda.l1se"),
.)
S3 method for class 'grpnet'
coef(object,
s = NULL,
)
Arguments
object Object of class "cv.grpnet"” or "grpnet”
s Lambda value(s) at which predictions should be obtained. For "cv.grpnet" ob-

jects, default uses the lambda that minimizes the cross-validation loss function.
For "grpnet" objects, default uses s = object$lambda. Interpolation is used for
s values that are not included in object$lambda.

Additional arguments (ignored)

4 coef

Details

coef.cv.grpnet:
Returns the coefficients that are used by the predict.cv.grpnet function to form predictions from
afit cv.grpnet object.

coef.grpnet:
Returns the coefficients that are used by the predict.grpnet function to form predictions from a
fit grpnet object.

Value

For multinomial response variables, returns a list of length length(object$ylev), where the j-th
element is a matrix of dimension c(ncoef, length(s)) giving the coefficients for object$ylev[j].

For other response variables, returns a matrix of dimension c(ncoef, length(s)), where the i-th
column gives the coefficients for s[i].

Note
The syntax of these functions closely mimics that of the coef.cv.glmnet and coef.glmnet func-
tions in the glmnet package (Friedman, Hastie, & Tibshirani, 2010).

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References
Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models
via coordinate descent. Journal of Statistical Software, 33(1), 1-22. doi:10.18637/jss.v033.i01

See Also

print.coef.grpnet for printing coef.grpnet objects
predict.cv.grpnet for predicting from cv.grpnet objects

predict.grpnet for predicting from grpnet objects
Examples
HHHEHHE ., * grpnet HHHHHEE xR

load data
data(auto)

fit model (formula method, response = mpg)
mod <- grpnet(mpg ~ ., data = auto)

extract coefs for regularization path (output = 12 x 100 matrix)
coef (mod)

extract coefs at 3 particular points (output = 12 x 3 matrix)

https://doi.org/10.18637/jss.v033.i01

cv.grpnet

coef(mod, s = c(1.5, 1, 0.5))

HHHEHE oo cv.grpnet #HEHEEP OO

load data
data(auto)

5-fold cv (formula method, response = mpg)
set.seed(1)
mod <- cv.grpnet(mpg ~ ., data = auto, nfolds = 5, alpha = 1)

extract coefs for "min"” solution (output = 12 x 1 matrix)
coef (mod)

extract coefs for "1se” solution (output = 12 x 1 matrix)
coef(mod, s = "lambda.lse")

extract coefs at 3 particular points (output = 12 x 3 matrix)
coef(mod, s = c(1.5, 1, 0.5))

cv.grpnet Cross-Validation for grpnet

Description

Implements k-fold cross-validation for grpnet to find the regularization parameters that minimize
the prediction error (deviance, mean squared error, mean absolute error, or misclassification rate).

Usage

cv.grpnet(x, ...)

Default S3 method:

cv.grpnet(x,
Y,
group,
weights = NULL,
offset = NULL,
alpha = c(0.01, 0.25, 0.5, 0.75, 1),
type.measure = NULL,
nfolds = 10,
foldid = NULL,
same.lambda = FALSE,
parallel = FALSE,
cluster = NULL,
verbose = interactive(),

>

cv.grpnet

S3 method for class 'formula'
cv.grpnet(formula,

data,

use.rk = TRUE,
weights = NULL,
offset = NULL,

alpha

= c(0.01, 0.25, 9.5, 0.75, 1),

type.measure = NULL,
nfolds = 10,

foldid = NULL,
same.lambda = FALSE,
parallel = FALSE,
cluster = NULL,

verbose = interactive(),

Arguments

X

y
group
formula

data

use.rk

weights
offset

alpha

type.measure

nfolds
foldid

Model (design) matrix of dimension nobs by nvars (n X p).

Response vector of length n. Matrix inputs are allowed for binomial and multi-
nomial families (see "Binomial and multinomial” section in grpnet).

Group label vector (factor, character, or integer) of length p. Predictors with the
same label are grouped together for regularization.

Model formula: a symbolic description of the model to be fitted. Uses the same
syntax as 1m and glm.

Optional data frame containing the variables referenced in formula.

If TRUE (default), the rk.model.matrix function is used to build the model ma-

trix. Otherwise, the model.matrix function is used to build the model matrix.

Additional arguments to the rk.model.matrix function can be passed via the
. argument.

Optional vector of length n with non-negative weights to use for weighted (pe-
nalized) likelihood estimation. Defaults to a vector of ones.

Optional vector of length n with an a priori known term to be included in the
model’s linear predictor. Defaults to a vector of zeros.

Scalar or vector specifying the elastic net tuning parameter «. If alpha is a vec-
tor (default), then (a) the same foldid is used to compute the cross-validation
error for each «, and (b) the solution for the optimal « is returned.

Loss function for cross-validation. Options include: "deviance” for model
deviance, "mse"” for mean squared error, "mae” for mean absolute error, or
"class" for classification error. Note that "class” is only available for bino-
mial and multinomial families. The default is classification error (for binomial
and multinomial) or deviance (others).

Number of folds for cross-validation.

Optional vector of length n giving the fold identification for each observation.
Must be coercible into a factor. After coersion, the nfolds argument is defined
as nfolds = nlevels(foldid).

cv.grpnet

same. lambda

parallel

cluster

verbose

Details

Logical specfying if the same)\ sequence should be used for fitting the model
to each fold’s data. If FALSE (default), the A sequence is determined separately
holding out each fold, and the A sequence from the full model is used to align the
predictions. If TRUE, the A sequence from the full model is used to fit the model
for each fold. The default often provides better (i.e., more stable) computational
performance.

Logical specifying if sequential computing (default) or parallel computing should
be used. If TRUE, the fitting for each fold is parallelized.

Optional cluster to use for parallel computing. If parallel = TRUE and cluster
= NULL, then the cluster is defined cluster = makeCluster(2L), which uses
two cores. Recommended usage: cluster = makeCluster(detectCores())

Logical indicating if the fitting progress should be printed. Defaults to TRUE in
interactive sessions and FALSE otherwise.

Optional additional arguments for grpnet (e.g., standardize, penalty. factor,
etc.)

This function calls the grpnet function nfolds+1 times: once on the full dataset to obtain the
lambda sequence, and once holding out each fold’s data to evaluate the prediction error. The syntax
of (the default S3 method for) this function closely mimics that of the cv.glmnet function in the
glmnet package (Friedman, Hastie, & Tibshirani, 2010).

Let D, = {yu, Xy} denote the u-th fold’s data, let Dy,) = {y[.], X[,]} denote the full dataset
excluding the u-th fold’s data, and let 8,[,) denote the coefficient estimates obtained from fitting
the model to Dy, using the regularization parameter .

The cross-validation error for the u-th fold is defined as

where C|(-,-) denotes the cross-validation loss function that is specified by type.measure. For
example, the "mse” loss function is defined as

C(Bapy D) = llyu — XuByplI?

where || - || denotes the L2 norm.

The mean cross-validation error cvm is defined as

where v is the total number of folds. The standard error cvsd is defined as

S = %_1) SO (ELN) — E(V)?

u=1

which is the classic definition of the standard error of the mean.

8 cv.grpnet

Value
lambda regularization parameter sequence for the full data
cvm mean cross-validation error for each 1lambda
cvsd estimated standard error of cvm
cvup upper curve: cvm + cvsd
cvlo lower curve: cvm - cvsd
nzero number of non-zero groups for each lambda
grpnet.fit fitted grpnet object for the full data
lambda.min value of 1ambda that minimizes cvm
lambda. 1se largest 1ambda such that cvm is within one cvsd from the minimum (see Note)
index two-element vector giving the indices of lambda.min and lambda.1se in the

lambda vector, i.e., c(minid, selid) as defined in the Note

type.measure loss function for cross-validation (used for plot label)

call matched call
alpha input alpha vector and min(cvm) for each alpha (if alpha is a vector)
Note

lambda. 1se is defined as follows:

minid <- which.min(cvm)

minlse <- cvm[minid] + cvsd[minid]
selid <- which(cvm<=minlse)[1]
lambda. 1se <- lambda[se1id]

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Breheny, P., & Huang, J. (2015). Group descent algorithms for nonconvex penalized linear and lo-
gistic regression models with grouped predictors. Statistics and Computing, 25, 173-187. doi:10.1007/
$1122201394242

Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models
via coordinate descent. Journal of Statistical Software, 33(1), 1-22. doi:10.18637/jss.v033.101

Yang, Y., & Zou, H. (2015). A fast unified algorithm for solving group-lasso penalize learning
problems. Statistics and Computing, 25, 1129-1141. doi:10.1007/s1122201494985

See Also

plot.cv.grpnet for plotting the cross-validation error curve
predict.cv.grpnet for predicting from cv.grpnet objects

grpnet for fitting group elastic net regularization paths

https://doi.org/10.1007/s11222-013-9424-2
https://doi.org/10.1007/s11222-013-9424-2
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.1007/s11222-014-9498-5

cv.grpnet

Examples

A oo R family = "gaussian” #HEHEHEoOoHEHERE

load data
data(auto)

5-fold cv (formula method, response = mpg)
set.seed(1)
mod <- cv.grpnet(mpg ~ ., data = auto, nfolds = 5, alpha = 1)

print min and 1se solution info
mod

plot cv error curve
plot(mod)

HHHEH ok family = "binomial” #HHHEHE

load data
data(auto)

define response (1 = American, @ = other)
y <- ifelse(auto$origin == "American”, 1, 0)

define predictors
x <- rk.model.matrix(~ @ + ., data = auto[,1:7])

define group
g <- attr(x, "assign")

10-fold cv (default method, response = y)
set.seed(1)
mod <- cv.grpnet(x, y, g, family = "binomial”, alpha = 1)

print min and 1se solution info
mod

plot cv error curve
plot(mod)

o family = "poisson” ##HHHHE cx#HHHHE

load data
data(auto)

10-fold cv (formula method, response = horsepower)
set.seed(1)
mod <- cv.grpnet(horsepower ~ ., data = auto, family = "poisson”, alpha = 1)

10

print min and 1se solution info
mod

plot cv error curve
plot(mod)

i oo family = "negative.binomial” ###HEHExx

load data
data(auto)

10-fold cv (formula method, response = horsepower)
set.seed(1)

mod <- cv.grpnet(horsepower ~ ., data = auto, family = "negative.binomial”,

alpha = 1, theta = 100)

print min and 1se solution info
mod

plot cv error curve
plot(mod)

A oo family = "multinomial” ##HHEHE < #HHHE

load data
data(auto)

10-fold cv (formula method, response = origin)
set.seed(1)

mod <- cv.grpnet(origin ~ ., data = auto, family = "multinomial”, alpha

print min and 1se solution info
mod

plot cv error curve
plot(mod)

HHH oo family = "Gamma" ##HHHHEoco

load data
data(auto)

10-fold cv (formula method, response = origin)
set.seed(1)

mod <- cv.grpnet(mpg ~ ., data = auto, family = "Gamma"

»

cv.grpnet

grpnet 11

print min and 1se solution info
mod

plot cv error curve
plot(mod)

oA family = "inverse.gaussian” ##HEHEER ok

load data
data(auto)

10-fold cv (formula method, response = origin)
set.seed(1)
mod <- cv.grpnet(mpg ~ ., data = auto, family = "inverse.gaussian”, alpha = 1)

print min and 1se solution info
mod

plot cv error curve
plot(mod)

grpnet Fit a Group Elastic Net Regularized GLM/GAM

Description

Fits generalized linear/additive models with a group elastic net penalty. Predictor groups can be
manually input (default S3 method) or inferred from the model (S3 "formula" method). The reg-
ularization path is computed at a data-generated (default) or user-provided sequence of lambda
values.

Usage
grpnet(x, ...)

Default S3 method:
grpnet(x,
Y,
group,
family = c("gaussian”, "binomial”, "multinomial”, "poisson”,
"negative.binomial”, "Gamma"”, "inverse.gaussian"),
weights = NULL,
offset = NULL,
alpha = 1,

nlambda 100,

12

grpnet(

grpnet

lambda.min.ratio = ifelse(nobs < nvars, 0.05, 0.0001),
lambda = NULL,

penalty.factor = NULL,

penalty = c("LASSO”, "MCP", "SCAD"),
gamma = ifelse(penalty == "MCP", 3, 4),
theta = 1,

standardize = TRUE,

orthogonalize = FALSE,

intercept = TRUE,

thresh = 1e-04,

maxit = 1e0@5,

L)
S3 method for class 'formula’
formula,
data,
use.rk = TRUE,
family = c("gaussian”, "binomial”, "multinomial”, "poisson”,
"negative.binomial”, "Gamma", "inverse.gaussian"),

Arguments

X

y

group

formula

data

use.rk

weights = NULL,
offset = NULL,
alpha = 1,
nlambda = 100,

lambda.min.ratio = ifelse(nobs < nvars, 0.05, 0.0001),
lambda = NULL,

penalty.factor = NULL,

penalty = c("LASSO", "MCP", "SCAD"),

gamma = ifelse(penalty == "MCP"”, 3, 4),

theta = 1,

standardize = TRUE,

orthogonalize = FALSE,

thresh = 1e-04,

maxit = 1e0@5,

.2

Model (design) matrix of dimension nobs by nvars (n X p).

Response vector of length n. Matrix inputs are allowed for binomial and multi-
nomial families (see "Binomial and multinomial” section).

Group label vector (factor, character, or integer) of length p. Predictors with the
same label are grouped together for regularization.

Model formula: a symbolic description of the model to be fitted. Uses the same
syntax as 1m and glm.

Optional data frame containing the variables referenced in formula.

If TRUE (default), the rk.model.matrix function is used to build the model ma-
trix. Otherwise, the model.matrix function is used to build the model matrix.

grpnet 13

Additional arguments to the rk.model.matrix function can be passed via the
... argument.

family Character specifying the assumed distribution for the response variable. Par-
tial matching is allowed. Options include "gaussian” (real-valued response),
"binomial” (binary response), "multinomial” (multi-class response), "poisson”
(count response), "negative.binomial” (count response), "Gamma" (positive
real-valued), or "inverse.gaussian” (positive real-valued).

weights Optional vector of length n with non-negative weights to use for weighted (pe-
nalized) likelihood estimation. Defaults to a vector of ones.

offset Optional vector of length n with an a priori known term to be included in the
model’s linear predictor. Defaults to a vector of zeros.

alpha Regularization hyperparameter satisfying 0 < o < 1 that gives the balance
between the group L1 (lasso) and group L2 (ridge) penalty. Setting v = 1 uses
a group lasso penalty, setting o = 0 uses a group ridge penalty, and setting
0 < a < 1 uses a group elastic net group penalty.

nlambda Number of A\ values to use in the regularization path. Ignored if lambda is
provided.

lambda.min.ratio
The proportion 0 < 7 < 1 that defines the minimum regularization parameter
Amin as a fraction of the maximum regularization parameter Ay, via the re-
lationship Apin = TAmax. Ignored if lambda is provided. Note that Ay, is
defined such that all penalized effects are shrunk to zero.

lambda Optional vector of user-supplied regularization parameter values.

penalty.factor Default S3 method: vector of length K giving the non-negative penalty weight
for each predictor group. The order of the weights should correspond to the
order of levels(as.factor(group)). Defaults to \/p;, forallk = 1,..., K,
where py, is the number of coefficients in the k-th group. If penalty. factor[k]
= 0, then the k-th group is unpenalized, and the corresponding term is always
included in the model.

S3 "formula" method: named list giving the non-negative penalty weight for
terms specified in the formula. Incomplete lists are allowed. Any term that is
specified in formula but not in penalty.factor will be assigned the default
penalty weight of /py. If penalty.factor$z = 0, then the variable z is unpe-
nalized and always included in the model.

penalty Character specifying which (group) penalty to use: LASSO , MCP, or SCAD.

gamma Penalty hyperparameter that satisfies v > 1 for MCP and v > 2 for SCAD.
Ignored for LASSO penalty.

theta Additional ("size") parameter for negative binomial responses, where the vari-

ance function is defined as V' (i) = p + 2/

standardize Logical indicating whether the predictors should be groupwise standardized. If
TRUE (default), each column of x is mean-centered and each predictor group’s
design matrix is scaled to have a mean-square of one before fitting the model.
Regardless of whether standardization is used, the coefficients are always re-
turned on the original data scale.

14 grpnet

orthogonalize Logical indicating whether the predictors should be groupwise orthogonalized.
If TRUE, each predictor group’s design matrix is orthonormalized (i.e., XZXk =
I) before fitting the model. Regardless of whether orthogonalization is used,
the coefficients are always returned on the original data scale.

intercept Logical indicating whether an intercept term should be included in the model.
Note that the intercept is always unpenalized.

thresh Convergence threshold (tolerance). The algorithm is determined to have con-
verged once the maximum relative change in the coefficients is below this thresh-
old. See "Convergence" section.

maxit Maximum number of iterations to allow.

Additional arguments used by the default or formula method.

Details
Consider a generalized linear model of the form
g(w) =X"p

where 1 = E(Y|X) is the conditional expectation of the response Y~ given the predictor vector X,
the function g(-) is a user-specified (invertible) link function, and 3 are the unknown regression
coefficients. Furthermore, suppose that the predictors are grouped, such as

K
X'8=> X8,
k=1

where X = (X4, ..., X k) is the grouped predictor vector, and 3 = (34, ...,8x) is the grouped
coefficient vector.

Given n observations, this function finds the 3 that minimizes

L(B|D) + A\P,(B)

where L(3|D) is the loss function with D = {y, X} denoting the observed data, P, (3) is the
group elastic net penalty, and A > 0 is the regularization parameter.

The loss function has the form
1 n
L(BID) = - Z;wifi(ﬂmi)

where w; > 0 are the user-supplied weights, and ¢;(3|D;) is the i-th observation’s contribution
to the loss function. Note that £(-) = — log(fy (-)) denotes the negative log-likelihood function for
the given family.

The group elastic net penalty function has the form

Po(B) = aP1(B) + (1 — a)P2(B)

where « € [0, 1] is the user-specified alpha value,

K
P(B) = ZwkIIﬁkII
k=1

grpnet

15

is the group lasso penalty with w; > 0 denoting the k-th group’s penalty. factor, and

is the group ridge penalty. Note that ||3,

LK
P (B) = 3 ZwkH/@kHz
k=1

|2 = B4 B), denotes the squared Euclidean norm. When

penalty %in% c("MCP", "SCAD"), the group L1 penalty P;(3) is replaced by the group MCP or
group SCAD penalty.

Value

An object of class "grpnet"” with the following elements:

call

ao

beta
alpha
lambda
family
dev.ratio
nulldev
df
nzgrp
nzcoef
xsd
ylev
nobs
group
ngroups
npasses
offset
args
formula
term.labels

rk.args

S3 "formula'' method

matched call

intercept sequence of length nlambda

coefficient matrix of dimension nvars by nlambda

balance between the group L1 (lasso) and group L2 (ridge) penalty
sequence of regularization parameter values

exponential family defining the loss function

proportion of (null) deviance explained for each lambda (= 1 - dev / nulldev)
null deviance for each 1lambda

effective degrees of freedom for each lambda

number of non-zero groups for each lambda

number of non-zero coefficients for each 1ambda

standard deviation of x for each group

levels of response variable (only for binomial and multinomial families)
number of observations

group label vector

number of groups K

number of iterations for each lambda

logical indicating if an offset was included

list of input argument values

input formula (possibly after expansion)

terms that appear in formula (if applicable)

arguments for rk.model.matrix function (if applicable)

Important: When using the S3 "formula" method, the S3 "predict" method forms the model matrix
for the predictions by applying the model formula to the new data. As a result, to ensure that the
corresponding S3 "predict" method works correctly, some formulaic features should be avoided.

Polynomials: When including polynomial terms, the poly function should be used with option raw
= TRUE. Default use of the poly function (with raw = FALSE) will work for fitting the model, but

16 grpnet

will result in invalid predictions for new data. Polynomials can also be included via the I function,
but this isn’t recommended because the polynomials terms wouldn’t be grouped together, i.e., the
terms x and I(x*2) would be treated as two separate groups of size one instead of a single group
of size two.

Splines: B-splines (and other spline bases) can be included via the S3 "formula" method. How-
ever, to ensure reasonable predictions for new data, it is necessary to specify the knots directly.
For example, if x is a vector with entries between zero and one, the code bs(x, df =5) will
not produce valid predictions for new data, but the code bs(x, knots =c(0.25, 0.5, 0.75),
Boundary.knots = c(@, 1)) will work as intended. Instead of attempting to integrate a call to
bs() or rk() into the model formula, it is recommended that splines be included via the use.rk =
TRUE argument.

Family argument and link functions

Unlike the glm function, the family argument of the grpnet function
* should be a character vector (not a family object)
* does not allow for specification of a link function

Currently, there is only one available link function for each family:
* gaussian (identity): = X3
* binomial (logit): log(1%-) = X' 8

.
* multinomial (symmetric): 7y = %
=1 L

* poisson (log): log(u) = X3

* negative.binomial (log): log(u) = XT3
* Gamma (log): log(p) = XT3

* inverse.gaussian (log): log(u) = XT3

Binomial and multinomial

For "binomial” responses, three different possibilities exist for the input response:
1. vector coercible into a factor with two levels

2. matrix with two columns (# successes, # failures)

3. numeric vector with entries between 0 and 1

In this case, the weights argument should be used specify the total number of trials.

For "multinomial” responses, two different possibilities exist for the input reponse:
1. vector coercible into a factor with more than two levels
2. matrix of integers (counts) for each category level

Convergence
The algorithm is determined to have converged once
18-85
max; 1+|6;1d| <€

where j € {1,...,p} and € is the thresh argument.

grpnet 17

Note

The syntax of (the default S3 method for) this function closely mimics that of the glmnet function
in the glmnet package (Friedman, Hastie, & Tibshirani, 2010).

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Breheny, P., & Huang, J. (2015). Group descent algorithms for nonconvex penalized linear and lo-
gistic regression models with grouped predictors. Statistics and Computing, 25, 173-187. doi:10.1007/
s1122201394242

Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models
via coordinate descent. Journal of Statistical Software, 33(1), 1-22. doi:10.18637/jss.v033.i01

Yang, Y., & Zou, H. (2015). A fast unified algorithm for solving group-lasso penalize learning
problems. Statistics and Computing, 25, 1129-1141. doi:10.1007/s1122201494985

See Also

plot.grpnet for plotting the regularization path
predict.grpnet for predicting from grpnet objects

cv.grpnet for k-fold cross-validation of 1ambda

Examples

A oo family = "gaussian” #HHHEHE R

load data
data(auto)

fit model (formula method, response = mpg)
mod <- grpnet(mpg ~ ., data = auto)

print regularization path info
mod

plot coefficient paths
plot(mod)

oo A family = "binomial” #HHHEHE ok HHEHEHE

load data
data(auto)

define response (1 = American, @ = other)
y <- ifelse(auto$origin == "American”, 1, 0)

https://doi.org/10.1007/s11222-013-9424-2
https://doi.org/10.1007/s11222-013-9424-2
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.1007/s11222-014-9498-5

grpnet

define predictors
x <- rk.model.matrix(~ @ + ., data = auto[,1:7])

define group
g <- attr(x, "assign")

fit model (default method, response = y)
mod <- grpnet(x, y, g, family = "binomial")

print regularization path info
mod

plot coefficient paths
plot(mod)

A oo AR family = "poisson” ##HHHHE ok #HHEHE

load data
data(auto)

fit model (formula method, response = horsepower)
mod <- grpnet(horsepower ~ ., data = auto, family = "poisson”)

print regularization path info
mod

plot coefficient paths
plot(mod)

H#iHHHH oS family = "negative.binomial” ##HHHHbx ok HEHEHE

load data
data(auto)

fit model (formula method, response = horsepower)
mod <- grpnet(horsepower ~ ., data = auto, family = "negative.binomial”, theta = 100)

print regularization path info
mod

plot coefficient paths
plot(mod)

HiHH oo family = "multinomial” ##HHHHE o

load data

plot.cv.grpnet 19

data(auto)

fit model (formula method, response = origin)
mod <- grpnet(origin ~ ., data = auto, family = "multinomial”)

print regularization path info
mod

plot coefficient paths
plot(mod)

oo A family = "Gamma” ##HHHHP o

load data
data(auto)

fit model (formula method, response = mpg)
mod <- grpnet(mpg ~ ., data = auto, family = "Gamma")

print regularization path info
mod

plot coefficient paths
plot(mod)

HHHEHE oo AR family = "inverse.gaussian” ##HHExxxHEHEHE

load data
data(auto)

fit model (formula method, response = mpg)
mod <- grpnet(mpg ~ ., data = auto, family = "inverse.gaussian")

print regularization path info
mod

plot coefficient paths
plot(mod)

plot.cv.grpnet Plot Cross-Validation Curve for cv.grpnet Fits

Description

Plots the mean cross-validation error, along with lower and upper standard deviation curves, as a
function of log(lambda).

20 plot.cv.grpnet

Usage

S3 method for class 'cv.grpnet'

plot(x, sign.lambda = 1, nzero = TRUE, ...)
Arguments

X Object of class "cv.grpnet"

sign.lambda Default plots log(lambda) on the x-axis. Set to -1 to plot -1xlog(lambda) on
the x-axis instead.

nzero Should the number of non-zero groups be printed on the top of the x-axis?

Additional arguments passed to the plot function.

Details

Produces cross-validation plot only (i.e., nothing is returned).

Value

No return value (produces a plot)

Note
Syntax and functionality were modeled after the plot.cv.glmnet function in the glmnet package
(Friedman, Hastie, & Tibshirani, 2010).

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models
via coordinate descent. Journal of Statistical Software, 33(1), 1-22. doi:10.18637/jss.v033.i01

See Also

cv.grpnet for k-fold cross-validation of 1ambda

plot.grpnet for plotting the regularization path

Examples

see 'cv.grpnet' for plotting examples
?cv.grpnet

https://doi.org/10.18637/jss.v033.i01

plot.grpnet 21

plot.grpnet Plot Coefficients for grpnet Fits

Description

Creates a profile plot of the coefficient paths for a fit group elastic net regularized GLM (grpnet)

object.
Usage
S3 method for class 'grpnet'
plot(x, type = c("coef”, "imp”, "norm", "znorm"),
newx, newdata, intercept = FALSE,
color.by.group = TRUE, col = NULL, ...)
Arguments
X Object of class "grpnet”
type What to plot on the Y-axis: "coef" for coefficient values, "imp" for importance

of each group’s contribution, "norm" for L2 norm of coefficients for each group,
or "znorm" for L2 norm of standardized coefficients for each group.

newx Matrix of new x scores for prediction (default S3 method). Ignored unless type
= n impll .
newdata Data frame of new data scores for prediction (S3 "formula" method). Ignored

unless type = "imp".
intercept Should the intercept be included in the plot?

color.by.group If TRUE (default), the coefficient paths are colored according to their group mem-
bership using the colors in col. If FALSE, all coefficient paths are plotted the
same color.

col If color.by.group = TRUE, this should be a vector of length K giving a color
label for each group. If color.by.group = FASLE, this should be a character
specifying a single (common) color. Default of col = NULL is the same as col =
1:Kor col = "black”.

Additional arguments passed to the plot function.

Details

Syntax and functionality were modeled after the plot.glmnet function in the glmnet package
(Friedman, Hastie, & Tibshirani, 2010).

Value

Produces a profile plot showing the requested type (y-axis) as a function of log(lambda) (x-axis).

22 predict.cv.grpnet

Note

If x is a multinomial model, the coefficients for each response class are plotted in a separate plot.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models
via coordinate descent. Journal of Statistical Software, 33(1), 1-22. doi:10.18637/jss.v033.i01

See Also

grpnet for fitting grpnet regularization paths

plot.cv.grpnet for plotting cv.grpnet objects

Examples

see 'grpnet' for plotting examples
?grpnet

predict.cv.grpnet Predict Method for cv.grpnet Fits

Description

Obtain predictions from a cross-validated group elastic net regularized GLM (cv.grpnet) object.

Usage
S3 method for class 'cv.grpnet'
predict(object,
newx,
newdata,
s = c("lambda.min”, "lambda.lse"),
type = c("link"”, "response"”, "class”, "terms",
"importance"”, "coefficients”, "nonzero”, "groups”,
"ncoefs”, "ngroups”, "norm”, "znorm"),

https://doi.org/10.18637/jss.v033.i01

predict.cv.grpnet

Arguments

object

newx

newdata

type

Details

23

Object of class "cv.grpnet"

Matrix of new x scores for prediction (default S3 method). Must have p columns
arranged in the same order as the x matrix used to fit the model.

Data frame of new data scores for prediction (S3 "formula" method). Must
contain all variables in the formula used to fit the model.

Lambda value(s) at which predictions should be obtained. Can input a character
("lambda.min" or "lambda.1lse") or a numeric vector. Default of "lambda.min"
uses the 1ambda value that minimizes the mean cross-validated error.

Type of prediction to return. "link" gives predictions on the link scale (7). "re-
sponse” gives predictions on the mean scale (u). "terms" gives the predictions
for each term (group) in the model (7). "class" gives predicted class labels (for
"binomial" and "multinomial" families). "coefficients" returns the coefficients
used for predictions. "nonzero" returns a list giving the indices of non-zero co-
efficients for each s. "ncoefs" returns the number of non-zero coefficients for
each s. "ngroups" returns the number of non-zero groups for each s. "norm" re-
turns the L2 norm of each group’s (raw) coefficients for each s. "znorm" returns
the L2 norm of each group’s standardized coefficients for each s.

Additional arguments (ignored)

Predictions are calculated from the grpnet object fit to the full sample of data, which is stored as
object$grpnet.fit

See predict.grpnet for further details on the calculation of the different types of predictions.

Value

Depends on three factors...

1. the exponential family distribution
2. the length of the input s

3. the type of prediction requested

See predict.grpnet for details

Note

Syntax is inspired by the predict.cv.glmnet function in the glmnet package (Friedman, Hastie,
& Tibshirani, 2010).

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models
via coordinate descent. Journal of Statistical Software, 33(1), 1-22. doi:10.18637/jss.v033.i01

https://doi.org/10.18637/jss.v033.i01

24 predict.cv.grpnet

See Also

cv.grpnet for k-fold cross-validation of 1ambda

predict.grpnet for predicting from grpnet objects

Examples

HHHAH ook family = "gaussian” #HHHEHE oA

load data
data(auto)

10-fold cv (formula method, response = mpg)
set.seed(1)
mod <- cv.grpnet(mpg ~ ., data = auto, alpha = 1)

get fitted values at "lambda.min”
fit.min <- predict(mod, newdata = auto)

get fitted values at "lambda.lse”
fit.1se <- predict(mod, newdata = auto, s = "lambda.1se")

compare rmse for two solutions
sgrt(mean((auto$mpg - fit.min)*2))
sqrt(mean((auto$mpg - fit.1se)*2))

HHH oo family = "binomial” ##HHHHEc kI

load data
data(auto)

define response (1 = American, @ = other)
y <- ifelse(auto$origin == "American”, 1, Q)

define predictors
x <- rk.model.matrix(~ @ + ., data = auto[,1:7])

define group
g <- attr(x, "assign")

10-fold cv (default method, response = y)
set.seed(1)
mod <- cv.grpnet(x, y, g, family = "binomial”, alpha = 1)

get fitted values at "lambda.min”
fit.min <- predict(mod, newx = x, type = "response"”)

get fitted values at "lambda.lse”
fit.1se <- predict(mod, newx = x, type = "response”, s = "lambda.l1se")

predict.cv.grpnet

compare rmse for two solutions
sqrt(mean((y - fit.min)*2))
sqrt(mean((y - fit.1se)*2))

get predicted classes at "lambda.min”
fit.min <- predict(mod, newx = x, type = "class")

get predicted classes at "lambda.lse”
fit.1se <- predict(mod, newx = x, type = "class”, s = "lambda.lse")

compare misclassification rate for two solutions
1 - mean(y == fit.min)
1 - mean(y == fit.l1se)

ook family = "poisson” ##HHHHb cx#EHHE

load data
data(auto)

10-fold cv (formula method, response = horsepower)
set.seed(1)
mod <- cv.grpnet(horsepower ~ ., data = auto, family = "poisson”, alpha = 1)

get fitted values at "lambda.min”
fit.min <- predict(mod, newdata = auto, type = "response”)

get fitted values at "lambda.lse”
fit.1se <- predict(mod, newdata = auto, type = "response”, s = "lambda.lse")

compare rmse for two solutions
sgrt(mean((auto$horsepower - fit.min)*2))
sqrt(mean((auto$horsepower - fit.1se)*2))

A oo family = "negative.binomial” #Ht#HHHb R

load data
data(auto)

10-fold cv (formula method, response = horsepower)

set.seed(1)

mod <- cv.grpnet(horsepower ~ ., data = auto, family = "negative.binomial”,
alpha = 1, theta = 100)

get fitted values at "lambda.min”
fit.min <- predict(mod, newdata = auto, type = "response")

get fitted values at "lambda.lse”
fit.1se <- predict(mod, newdata = auto, type = "response”, s = "lambda.lse")

predict.cv.grpnet

compare rmse for two solutions
sqrt(mean((auto$horsepower - fit.min)*2))
sqrt(mean((auto$horsepower - fit.1se)*2))

A oo family = "multinomial” ##HHEHE < #HHHHE

load data
data(auto)

10-fold cv (formula method, response = origin)
set.seed(1)
mod <- cv.grpnet(origin ~ ., data = auto, family = "multinomial”, alpha = 1)

get predicted classes at "lambda.min”
fit.min <- predict(mod, newdata = auto, type = "class")

get predicted classes at "lambda.lse”
fit.1se <- predict(mod, newdata = auto, type = "class”, s = "lambda.lse")

compare misclassification rate for two solutions
1 - mean(auto$origin == fit.min)
1 - mean(auto$origin == fit.1se)

A oo AR family = "Gamma” ##HHHHP o

load data
data(auto)

10-fold cv (formula method, response = origin)
set.seed(1)
mod <- cv.grpnet(mpg ~ ., data = auto, family = "Gamma"”, alpha = 1)

get fitted values at "lambda.min”
fit.min <- predict(mod, newdata = auto, type = "response")

get fitted values at "lambda.lse”
fit.1se <- predict(mod, newdata = auto, type = "response”, s = "lambda.lse")

compare rmse for two solutions
sqrt(mean((auto$mpg - fit.min)*2))
sgrt(mean((auto$mpg - fit.1se)*2))

iAo A family = "inverse.gaussian” ##HHHEb xxHEHEHE

load data
data(auto)

predict.grpnet 27

10-fold cv (formula method, response = origin)
set.seed(1)
mod <- cv.grpnet(mpg ~ ., data = auto, family = "inverse.gaussian"”, alpha = 1)

get fitted values at "lambda.min”
fit.min <- predict(mod, newdata = auto, type = "response")

get fitted values at "lambda.lse”
fit.1se <- predict(mod, newdata = auto, type = "response”, s = "lambda.lse")

compare rmse for two solutions
sqrt(mean((auto$mpg - fit.min)*2))
sqrt(mean((auto$mpg - fit.1se)*2))

predict.grpnet Predict Method for grpnet Fits

Description

Obtain predictions from a fit group elastic net regularized GLM (grpnet) object.

Usage
S3 method for class 'grpnet'
predict(object,
newx,
newdata,
s = NULL,
type = c("link”, "response”, "class”, "terms"”,
"importance”, "coefficients”, "nonzero", "groups”,
"ncoefs”, "ngroups”, "norm”, "znorm"),
)
Arguments
object Object of class "grpnet"
newx Matrix of new x scores for prediction (default S3 method). Must have p columns

arranged in the same order as the x matrix used to fit the model. Ignored for the
last six types of predictions.

newdata Data frame of new data scores for prediction (S3 "formula" method). Must
contain all variables in the formula used to fit the model. Ignored for the last
six types of predictions.

s Lambda value(s) at which predictions should be obtained. Default uses s =
object$lambda. Interpolation is used for s values that are not included in
object$lambda.

28 predict.grpnet

type Type of prediction to return. "link" gives predictions on the link scale (7). "re-
sponse" gives predictions on the mean scale (u). "class" gives predicted class
labels (for "binomial" and "multinomial" families). "terms" gives the predic-
tions for each term (group) in the model (7;). "importance” gives the variable
importance index for each term (group) in the model. "coefficients" returns the
coefficients used for predictions. "nonzero" returns a list giving the indices of
non-zero coefficients for each s. "groups" returns a list giving the labels of non-
zero groups for each s. "ncoefs" returns the number of non-zero coefficients for
each s. "ngroups" returns the number of non-zero groups for each s. "norm" re-
turns the L2 norm of each group’s (raw) coefficients for each s. "znorm" returns
the L2 norm of each group’s standardized coefficients for each s.

Additional arguments (ignored)

Details

When type == "1ink", the predictions for each A have the form

N\ = XnewﬁA

where X0 is the argument newx (or the design matrix created from newdata by applying object$formula)
and 3, is the coefficient vector corresponding to A.

When type == "response”, the predictions for each A have the form

py=9""(m)

where g1 (+) is the inverse link function stored in object$family$linkinv.

When type == "class", the predictions for each A have the form
yx = argmax (1)

where 1, (1) gives the predicted probability that each observation belongs to the I-th category (for
Il =1,...,m) using the regularization parameter \.

When type == "terms”, the groupwise predictions for each A have the form

Nix = Xl(cHEW)IBk:/\

where X,(Cncw) is the portion of the argument newx (or the design matrix created from newdata by
applying object$formula) that corresponds to the k-th term/group, and 3, are the corresponding
coefficients.

When type == "importance”, the variable importance indices are defined as

-1
Tk = (UJACUOA) (WJACUOA)

where C = (I,— 11,1 denotes a centering matrix, and 1y, = Zszl ;- Note that Zszl T =
1, but some 73 could be negative. When they are positive, 7, gives the approximate proportion of
model (explained) variation that is attributed to the k-th term.

predict.grpnet 29

Value

Depends on three factors...

1. the exponential family distribution
2. the length of the input s

3. the type of prediction requested

For most response variables, the typical output will be...

* a matrix of dimension c(newnobs, length(s)) if length(s) > 1

* a vector of length newnobs if length(s) ==

For multinomial response variables, the typical output will be...

* an array of dimension c(newnobs, length(object$ylev), length(s)) if type
%in% c("link”, "response”)

* a matrix of dimension c(newobs, length(s)) if type == "class”

Note: if type == "class”, then the output will be the same class as object$ylev. Otherwise, the

output will be real-valued (or integer for the counts).

If type == "terms"” and family != "multinomial”, the output will be...

* an array of dimension c(newnobs, nterms, length(s)) if length(s) > 1

* a matrix of dimension c(newnobs, nterms) if length(s) ==1

If type == "terms” and family == "multinomial”, the output will be a list of length length(object$ylev)
where each element gives the terms for the corresponding response class.

If type == "importance” and family != "multinomial”, the output will be...
* a matrix of dimension c(nterms, length(s)) if length(s) > 1
* a vector of length nterms if length(s) ==

If type == "importance"” and family == "multinomial”, the output will be a list of length 1length(object$ylev)
where each element gives the importance for the corresponding response class. If length(s) ==1,
the output will be simplified to matrix.

If type == "coefficients”, the output will be the same as that produced by coef.grpnet.

If type == "nonzero”, the output will be a list of length 1length(s) where each element is a vector
of integers (indices).

If type == "groups”, the output will be a list of length length(s) where each element is a vector
of characters (term. labels).

If type %in% c("ncoefs"”, "ngroups”), the output will be a vector of length length(s) where
each element is an integer.

If type == "norm”, the output will be a matrix of dimension c(K, length(s)), where each cell
gives the L2 norm for the corresponding group and smoothing parameter. Note that K denotes the
number of groups.

Note

Some internal code (e.g., used for the interpolation) is borrowed from the predict. glmnet function
in the glmnet package (Friedman, Hastie, & Tibshirani, 2010).

30 predict.grpnet

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models
via coordinate descent. Journal of Statistical Software, 33(1), 1-22. doi:10.18637/jss.v033.i01

See Also

grpnet for fitting grpnet regularization paths

predict.cv.grpnet for predicting from cv.grpnet objects

Examples

HHHEHE oo AR family = "gaussian” #HEHEHEoOoHEHEHE

load data
data(auto)

fit model (formula method, response = mpg)
mod <- grpnet(mpg ~ ., data = auto)

get fitted values for regularization path (output = 392 x 100 matrix)
fit.path <- predict(mod, newdata = auto)

get fitted values at 3 particular points (output = 392 x 3 matrix)
fit.some <- predict(mod, newdata = auto, s = c(1.5, 1, 0.5))

compare rmse for solutions

rmse.path <- sqrt(colMeans((auto$mpg - fit.path)*2))
rmse.some <- sqrt(colMeans((auto$mpg - fit.some)"2))
plot(log(mod$lambda), rmse.path, cex = 0.5)
points(log(c(1.5, 1, 0.5)), rmse.some, pch = @, col = "red")

oo family = "binomial” #HHEHECxx#HHHEHE

load data
data(auto)

define response (1 = American, @ = other)

y <- ifelse(auto$origin == "American”, 1, 0)

define predictors

X <- model.matrix(~ ., data = auto[,1:71)[,-1]
define group (according to colnames(x))

g <_ C(1! 2, 2, 2’ 2’ 3’ 4’ 5, 6, 7)

https://doi.org/10.18637/jss.v033.i01

predict.grpnet

fit model (default method, response = y)
mod <- grpnet(x, y, g, family = "binomial")

get predicted classes for regularization path (output = 392 x 100 matrix)
fit.path <- predict(mod, newx = x, type = "class")

get predicted classes at 3 particular points (output = 392 x 3 matrix)
fit.some <- predict(mod, newx = x, type = "class”, s = c(.15, .1, .05))

compare misclassification rate for solutions

miss.path <- 1 - colMeans(y == fit.path)

miss.some <- 1 - colMeans(y == fit.some)
plot(log(mod$lambda), miss.path, cex = 0.5)

points(log(c(.15, .1, .05)), miss.some, pch = @, col = "red")

HHHHH oA family = "poisson” ##HHHHE KA

load data
data(auto)

fit model (formula method, response = horsepower)
mod <- grpnet(horsepower ~ ., data = auto, family = "poisson”)

get fitted values for regularization path (output = 392 x 100 matrix)
fit.path <- predict(mod, newdata = auto, type = "response"”)

get fitted values at 3 particular points (output = 392 x 3 matrix)
fit.some <- predict(mod, newdata = auto, type = "response”, s = c(15, 10, 5))

compare rmse for solutions

rmse.path <- sqrt(colMeans((auto$horsepower - fit.path)*2))
rmse.some <- sqrt(colMeans((auto$horsepower - fit.some)*2))
plot(log(mod$lambda), rmse.path, cex = 0.5)
points(log(c(15, 10, 5)), rmse.some, pch = @, col = "red")

oo family = "negative.binomial” ###HEHExx

load data
data(auto)

fit model (formula method, response = horsepower)
mod <- grpnet(horsepower ~ ., data = auto, family = "negative.binomial”, theta = 100)

get fitted values for regularization path (output = 392 x 100 matrix)
fit.path <- predict(mod, newdata = auto, type = "response”)

get fitted values at 3 particular points (output = 392 x 3 matrix)
fit.some <- predict(mod, newdata = auto, type = "response”, s = c(15, 10, 5))

predict.grpnet

compare rmse for solutions

rmse.path <- sqgrt(colMeans((auto$horsepower - fit.path)*2))
rmse.some <- sqrt(colMeans((auto$horsepower - fit.some)*2))
plot(log(mod$lambda), rmse.path, cex = 0.5)
points(log(c(15, 10, 5)), rmse.some, pch = @, col = "red")

oA family = "multinomial” #HHHHE K # A

load data
data(auto)

fit model (formula method, response = origin)
mod <- grpnet(origin ~ ., data = auto, family = "multinomial")

get predicted classes for regularization path (output = 392 x 100 matrix)
fit.path <- predict(mod, newdata = auto, type = "class")

get predicted classes at 3 particular points (output = 392 x 3 matrix)
fit.some <- predict(mod, newdata = auto, type = "class”, s = c(.1, .01, .001))

compare misclassification rate for solutions

miss.path <- 1 - colMeans(auto$origin == fit.path)

miss.some <- 1 - colMeans(auto$origin == fit.some)
plot(log(mod$lambda), miss.path, cex = 0.5)

points(log(c(.1, .01, .001)), miss.some, pch = @, col = "red")

A oo AR family = "Gamma” ##HHHHP o

load data
data(auto)

fit model (formula method, response = mpg)
mod <- grpnet(mpg ~ ., data = auto, family = "Gamma")

get fitted values for regularization path (output = 392 x 100 matrix)
fit.path <- predict(mod, newdata = auto, type = "response”)

get fitted values at 3 particular points (output = 392 x 3 matrix)
fit.some <- predict(mod, newdata = auto, type = "response”, s = c(0.2, 0.1, 0.05))

compare rmse for solutions

rmse.path <- sqgrt(colMeans((auto$mpg - fit.path)*2))

rmse.some <- sqrt(colMeans((auto$mpg - fit.some)"2))
plot(log(mod$lambda), rmse.path, cex = 0.5)

points(log(c(@.2, @.1, 0.05)), rmse.some, pch = @, col = "red")

oA family = "inverse.gaussian” ##HEHEER oo

print 33

load data
data(auto)

fit model (formula method, response = mpg)
mod <- grpnet(mpg ~ ., data = auto, family = "inverse.gaussian")

get fitted values for regularization path (output = 392 x 100 matrix)
fit.path <- predict(mod, newdata = auto, type = "response")

get fitted values at 3 particular points (output = 392 x 3 matrix)
fit.some <- predict(mod, newdata = auto, type = "response”, s = c(0.2, 0.1, 0.05))

compare rmse for solutions

rmse.path <- sqrt(colMeans((auto$mpg - fit.path)*2))

rmse.some <- sqrt(colMeans((auto$mpg - fit.some)*2))
plot(log(mod$lambda), rmse.path, cex = 0.5)

points(log(c(0.2, @.1, 0.05)), rmse.some, pch = @, col = "red"”)

print S3 ’print’ Methods for grpnet

Description
Prints some basic information about the coefficients (for coef.grpnet objects), observed cross-
validation error (for cv.grpnet objects), or the computed regularization path (for grpnet objects).
Usage

S3 method for class 'coef.grpnet'
print(x, ...)

S3 method for class 'cv.grpnet'
print(x, digits = max(3, getOption("digits"”) - 3), ...)

S3 method for class 'grpnet'

print(x, ...)

Arguments
X an object of class coef.grpnet, cv.grpnet, or grpnet
digits the number of digits to print (must be a positive integer)

additional arguments for print (currently ignored)

34 print

Details

For coef.grpnet objects, prints the non-zero coefficients and uses "." for coefficients shrunk to
Zero.

For cv. grpnet objects, prints the function call, the cross-validation type.measure, and a two-row
table with information about the min and 1se solutions.

For grpnet objects, prints a data frame with columns

* nGrp: number of non-zero groups for each lambda

* Df: effective degrees of freedom for each 1ambda

* 9%Dev: percentage of null deviance explained for each 1ambda
* Lambda: the values of lambda

Value

No return value (produces a printout)

Note
Some syntax and functionality were modeled after the print functions in the glmnet package
(Friedman, Hastie, & Tibshirani, 2010).

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References
Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models
via coordinate descent. Journal of Statistical Software, 33(1), 1-22. doi:10.18637/jss.v033.i01

See Also

coef.grpnet for extracting coefficients
cv.grpnet for k-fold cross-validation of 1ambda

grpnet for fitting grpnet regularization paths

Examples

see 'coef.grpnet' for coefficient printing examples
?coef.grpnet

see 'cv.grpnet' for cross-validation error printing examples
?cv.grpnet

see 'grpnet' for regularization path printing examples
?grpnet

https://doi.org/10.18637/jss.v033.i01

rk 35

rk Reproducing Kernel Basis

Description

Generate a reproducing kernel basis matrix for a nominal, ordinal, or polynomial smoothing spline.

Usage

rk(x, df = NULL, knots = NULL, m = NULL, intercept = FALSE,
Boundary.knots = NULL, warn.outside = TRUE,
periodic = FALSE, xlev = levels(x))

Arguments

X the predictor vector of length n. Can be a factor, integer, or numeric, see Note.

df the degrees of freedom, i.e., number of knots to place at quantiles of x. Defaults
to 5 but ignored if knots are provided.

knots the breakpoints (knots) defining the spline. If knots are provided, the df is
defined as length(unique(c(knots, Boundary.knots))).

m the derivative penalty order: 0 = ordinal spline, 1 = linear spline, 2 = cubic
spline, 3 = quintic spline

intercept should an intercept be included in the basis?

Boundary.knots the boundary points for spline basis. Defaults to range(x).

warn.outside if TRUE, a warning is provided when x values are outside of the Boundary . knots

periodic should the spline basis functions be constrained to be periodic with respect to
the Boundary.knots?
xlev levels of x (only applicable if x is a factor)
Details

Given a vector of function realizations f, suppose that f = X3, where X is the (unregularized)
spline basis and [is the coefficient vector. Let () denote the postive semi-definite penalty matrix,
such that 3T Q23 defines the roughness penalty for the spline. See Helwig (2017) for the form of X
and (@ for the various types of splines.

Consider the spectral parameterization of the form f = Z« where
Z=XxQ'?

is the regularized spline basis (that is returned by this function), and o = Q'/23 are the reparam-
eterized coefficients. Note that X3 = Za and 3TQB = a' «, so the spectral parameterization
absorbs the penalty into the coefficients (see Helwig, 2021, 2024).

Syntax of this function is designed to mimic the syntax of the bs function.

36 rk

Value

Returns a basis function matrix of dimension n by df (plus 1 if an intercept is included) with the
following attributes:

df degrees of freedom

knots knots for spline basis

m derivative penalty order
intercept was an intercept included?

Boundary.knots
boundary points of x

periodic is the basis periodic?
xlev factor levels (if applicable)
Note

The (default) type of spline basis depends on the class of the input x object:
* If x is an unordered factor, then a nominal spline basis is used

* If x is an ordered factor (and m = NULL), then an ordinal spline basis is used
* If x is an integer or numeric (and m = NULL), then a cubic spline basis is used

Note that you can override the default behavior by specifying the m argument.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

References

Helwig, N. E. (2017). Regression with ordered predictors via ordinal smoothing splines. Frontiers
in Applied Mathematics and Statistics, 3(15), 1-13. doi:10.3389/fams.2017.00015

Helwig, N. E. (2021). Spectrally sparse nonparametric regression via elastic net regularized smoothers.
Journal of Computational and Graphical Statistics, 30(1), 182-191. doi:10.1080/10618600.2020.1806855

Helwig, N. E. (2024). Precise tensor product smoothing via spectral splines. Stats, 7(1), 34-53.
doi:10.3390/stats7010003

Examples

b oA NOMINAL SPLINE BASIS #HHHHHb o~

x <- as.factor(LETTERS[1:5])
basis <- rk(x)
plot(1:5, basis[,1], t = "1", ylim = extendrange(basis))
for(j in 2:ncol(basis)){
lines(1:5, basis[,j], col = j)
3

https://doi.org/10.3389/fams.2017.00015
https://doi.org/10.1080/10618600.2020.1806855
https://doi.org/10.3390/stats7010003

rk.model. matrix 37

H#HHHAE oA ORDINAL SPLINE BASIS #HHHHHE o« ~#HHHH

X <- as.ordered(LETTERS[1:5])
basis <- rk(x)
plot(1:5, basis[,1], t = "1", ylim = extendrange(basis))
for(j in 2:ncol(basis)){
lines(1:5, basis[,j], col = j)
3

A oOOSHHAE LINEAR SPLINE BASIS #HHHHb o -

x <- seq(@, 1, length.out = 101)

basis <- rk(x, m = 1)

plot(x, basis[,1], t = "1", ylim = extendrange(basis))

for(j in 2:ncol(basis)){
lines(x, basis[,j], col

}

»

i oo CUBIC SPLINE BASIS #tHHHE~xx

x <- seq(@, 1, length.out = 101)
basis <- rk(x)
basis <- scale(basis) # for visualization only!
plot(x, basis[,1], t = "1", ylim = extendrange(basis))
for(j in 2:ncol(basis)){

lines(x, basis[,j], col = j)

3

Ao QUINTIC SPLINE BASIS #HHHHHb oK

x <- seq(@, 1, length.out = 101)
basis <- rk(x, m = 3)
basis <- scale(basis) # for visualization only!
plot(x, basis[,1], t = "1", ylim = extendrange(basis))
for(j in 2:ncol(basis)){

lines(x, basis[,j], col = j)

}

rk.model.matrix Construct Design Matrices via Reproducing Kernels

Description

Creates a design (or model) matrix using the rk function to expand variables via a reproducing
kernel basis.

38 rk.model. matrix

Usage
rk.model.matrix(object, data = environment(object), ...)
Arguments
object a formula or terms object describing the fit model
data a data frame containing the variables referenced in object
additional arguments passed to the rk function, e.g., df, knots, m, etc. Argu-
ments must be passed as a named list, see Examples.
Details

Designed to be a more flexible alternative to the model.matrix function. The rk function is used
to construct a marginal basis for each variable that appears in the input object. Tensor product
interactions are formed by taking a row. kronecker product of marginal basis matrices. Interactions
of any order are supported using standard formulaic conventions, see Note.

Value

The design matrix corresponding to the input formula and data, which has the following attributes:

assign an integer vector with an entry for each column in the matrix giving the term in
the formula which gave rise to the column

term.labels a character vector containing the labels for each of the terms in the model

knots a named list giving the knots used for each variable in the formula

m a named list giving the penalty order used for each variable in the formula

periodic a named list giving the periodicity used for each variable in the formula

xlev a named list giving the factor levels used for each variable in the formula
Note

For formulas of the form y ~ x + z, the constructed model matrix has the form cbind(rk(x),
rk(z)), which simply concatenates the two marginal basis matrices. For formulas of the form y ~ x

: z, the constructed model matrix has the form row. kronecker (rk(x), rk(z)), where row.kronecker
denotes the row-wise kronecker product. The formula y ~ x * z is a shorthand fory ~x + z + x : z,
which concatenates the two previous results. Unless it is suppressed (using @+), the first column of

the basis will be a column of ones named (Intercept).

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

row.kronecker 39

References

Helwig, N. E. (2017). Regression with ordered predictors via ordinal smoothing splines. Frontiers
in Applied Mathematics and Statistics, 3(15), 1-13. doi:10.3389/fams.2017.00015

Helwig, N. E. (2021). Spectrally sparse nonparametric regression via elastic net regularized smoothers.
Journal of Computational and Graphical Statistics, 30(1), 182-191. doi:10.1080/10618600.2020.1806855

Helwig, N. E. (2024). Precise tensor product smoothing via spectral splines. Stats, 7(1), 34-53.
doi:10.3390/stats7010003

See Also

See rk for details on the reproducing kernel basis

Examples

load auto data
data(auto)

additive effects

x <- rk.model.matrix(mpg ~ ., data = auto)

dim(x) # check dimensions
attr(x, "assign") # check group assignments
attr(x, "term.labels") # check term labels

two-way interactions

x <- rk.model.matrix(mpg ~ . * ., data = auto)

dim(x) # check dimensions
attr(x, "assign") # check group assignments
attr(x, "term.labels") # check term labels

specify df for horsepower, weight, and acceleration

note: default df = 5 is used for displacement and model.year
df <- list(horsepower = 6, weight = 7, acceleration = 8)

x <- rk.model.matrix(mpg ~ ., data = auto, df = df)
sapply(attr(x, "knots"), length) # check df

specify knots for model.year

note: default knots are selected for other variables
knots <- list(model.year = c(1970, 1974, 1978, 1982))

x <- rk.model.matrix(mpg ~ ., data = auto, knots = knots)
sapply(attr(x, "knots"), length) # check df

row.kronecker Row-Wise Kronecker Product

Description

Calculates the row-wise Kronecker product between two matrices with the same number of rows.

https://doi.org/10.3389/fams.2017.00015
https://doi.org/10.1080/10618600.2020.1806855
https://doi.org/10.3390/stats7010003

40 StartupMessage

Usage

row.kronecker (X, Y)

Arguments
X matrix of dimension n X p
Y matrix of dimension n X ¢
Details

Given X of dimension c(n, p) and Y of dimension c(n, q), this function returns
cbind(x[,11*Y, x[,21*Y, ..., x[,pl xY)

which is a matrix of dimension c(n, p*q)

Value

Matrix of dimension n X pg where each row contains the Kronecker product between the corre-
sponding rows of X and Y.

Author(s)

Nathaniel E. Helwig <helwig@umn.edu>

See Also

Used by the rk.model.matrix to construct basis functions for interaction terms

See kronecker for the regular kronecker product

Examples

X <- matrix(c(1, 1, 2, 2), nrow = 2, ncol = 2)

Y <- matrix(1:6, nrow = 2, ncol = 3)
row.kronecker (X, Y)
StartupMessage Startup Message for grpnet

Description

Prints the startup message when grpnet is loaded. Not intended to be called by the user.

Details

The ‘grpnet’ ascii start-up message was created using the taag software.

References

https://patorjk.com/software/taag/

Index

x algebra grpnetStartupMessage (StartupMessage),
row.kronecker, 39 40
* array
row.kronecker, 39 I 16
x datasets
auto, 2 kronecker, 40
* graphs 1m, 6, 12
plot.cv.grpnet, 19 >
plot.grpnet, 21 model.matrix, 6, 12, 38
* print
print, 33 plot, 20, 21
* regression plot.cv.grpnet, 8, 19, 22
coef, 3 plot.grpnet, 17, 20, 21
cv.grpnet, 5 poly, 15
grpnet, 11 predict.cv.grpnet, 4, 8, 22, 30
predict.cv.grpnet, 22 predict.grpnet, 4, 17,23, 24,27
predict.grpnet, 27 print, 33, 33
rk, 35 print.coef.grpnet, 4
rk.model .matrix, 37
* smooth rk, 35, 37-39
cv.grpnet, 5 rk.model.matrix, 6, 12, 13, 37, 40
grpnet, 11 row.kronecker, 38, 39
rk, 35
rk.model.matrix, 37 StartupMessage, 40
auto, 2 terms, 38
bs, 35
class, 36
coef, 3

coef.grpnet, 4, 29, 33, 34
cv.grpnet, 4,5,8, 17, 20, 22, 24, 30, 33, 34

factor, 35
family, 16
formula, 38

glm, 6, 12, 16
grpnet, 4-8, 11, 16, 17, 22-24, 30, 33, 34

41

	auto
	coef
	cv.grpnet
	grpnet
	plot.cv.grpnet
	plot.grpnet
	predict.cv.grpnet
	predict.grpnet
	print
	rk
	rk.model.matrix
	row.kronecker
	StartupMessage
	Index

