
Extensions in the mistr World
Lukas Sablicaa and Kurt Hornika

aInstitute for Statistics and Mathematics, WU Wirtschaftsuniversität Wien, Austria; https://www.wu.ac.at/en/statmath

This version was compiled on February 22, 2023

The main aim of this vignette is to introduce several available options for
the package mistr. In the first place, we introduce the implementation of
a distribution that is not directly supported by the framework, followed by
a small example. Then we show how to add a new transformation and
how this new transformation can be improved if some direct and invariant
transformations are included. Note that this vignette serves as a guide-
book for extensions in the mistr framework and does not cover examples
for general purposes. These are more deeply described in the introduc-
tion vignette.

extensions | composite | mixture | R | tails | models | truncated | distributions

1. Adding new distribution

library(mistr)

While the framework provided
by the mistr package currently sup-
ports all distributions that are in-
cluded in the R stats package and
many more as well, there are and
always will be specific distributions
that are not covered in the package
code, and thus must be added by
the user.

In such case, a new distribution
can be added in a very simple way.
Under the assumption that the [pre-
fix][name] functions (d, p, q, and
r) are loaded in the search path, the only additional function that
is needed is the function that will create the object representing
this random variable. This can be best explained on a concrete
example. A function that creates an object for uniform distribution
is designed as follows:

unifdist <- function(min = 0, max = 1){
if (!is.numeric(min) || !is.numeric(max)){
stop("parameters must be a numeric")

}
if (min >= max){
stop("min must be smaller than max")

}
x <- list(parameters = list(min = min, max = max),

type = "Uniform",
support = list(from = min, to = max))

class(x) <- c("unifdist", "contdist", "standist",
"univdist", "dist")

x
}

As the source code indicates, the only arguments of the function
are the parameters. Another information that the user passes
is the distribution family, which is set according to the function
call. The rest of the information is fully determined by these two
characterizations.

The class contains the mother class dist and a class univdist,
which, unlike the class trans_univdist, expresses that the distri-
bution is not transformed. Next class is the standist class that
indicates that we are dealing with a standard distribution, and
not a mixture or composite random variable. The class of standist
is then split into continuous and discrete distributions, and this
characterization is then stored as a next class. The last class is
then the class of the distribution family. Thus, while the last three
classes are present for internal purpose, the first two classes must
be set by the user according to the new distribution.

To show also an example of a distribution that is not yet sup-
ported by mistr, we demonstrate the discrete uniform distribu-
tion. Discrete uniform distribution, also known as equally likely
outcomes distribution, is a probability distribution where a finite
number of outcomes are equally likely to be observed. Even though
the distribution itself is non-parametric, it is broadly acceptable
to represent its values by all integers in an interval [min, max].
This offers in a same way as the continuous uniform distribution a
parametric representation using the two parameters, min and max.
Using these two parameters, the cumulative distribution function
and the probability density function are equal to

F(x) =

0 x <min,
bxc−min+1
max−min+1 min≤ x ≤max,

1 max< x ,

and

f (x) =

�

1
max−min+1 x ∈ {min, min+1, . . . , max-1, max} ,

0 else,

respectively.
If these two functions together with the quantile function and

a random sample function are available in the search path as a
[prefix][name] function, e.g., ddunif(), pdunif(), qdunif(),
and rdunif(), the function that will create an object can be defined
as:

dunifdist <- function(min = 1, max = 6){
if (!is.numeric(min) || !is.numeric(max)){

stop("parameters must be a numeric")
}
if (min >= max){

stop("min must be smaller than max")
}
if (min%%1 != 0 || max%%1 != 0){

stop("min and max must be integers")
}
new_dist(name = "Discrete uniform",

from = min, to = max, by = 1)
}

In this example the distribution is created using the help func-
tion new_dist(). If new_dist() is called from within the creator
function, it takes only the name and support details of the distri-
butions. Other specifications will be filled according to the parent

https://cran.r-project.org/package=mistr mistr Vignette | February 22, 2023 | 1–3

https://www.wu.ac.at/en/statmath
https://cran.r-project.org/package=mistr

calls automatically. Note, that new_dist() can be called also di-
rectly from other functions and environments but in this case other
arguments must be filled. For more details see the help file of
new_dist(). The next important thing is that unlike the continu-
ous distributions, the support information in the case of discrete
distributions also contains the parameter by. This parameter de-
scribes the deterministic step between the support and for most
known discrete distributions is equal to one, as they have support
on the integers. It might of course differ for some distributions,
which have support only on even numbers, or some scaled distri-
butions. It is essential that this parametrization allows to perfectly
define the support of a distribution, and hence allows to do more
complicated operations and calculations. In the case the user would
like a distribution with no equally distanced outcomes, one can
perform a non-linear transformation. A final remark concerning
the [prefix][name] functions for discrete distribution is that the d
and p functions should have some rounding towards the support
to avoid rounding errors. For distributions provided by the frame-
work, this rounding is already implemented in the stats package
calls.

Thus if the d p, q and r functions are reachable either from
another package namespace or from the global environment

pdunif <- function(q, min = 0, max = 1,
lower.tail = TRUE,
log.p = FALSE){

q <- round(q, 7)
z <- ifelse(q < min, 0,

ifelse(q >= max, 1,
(floor(q) - min + 1)/(max - min + 1)))

if(!lower.tail) z <- 1 - z
if(log.p) log(z) else z

}

the distribution can be created and evaluated as:

D <- dunifdist(1, 6)
p(D, 4)

[1] 0.6666667

plim(D, 4)

[1] 0.5

2. Adding new transformations

The ability to perform transformations was already presented in
the Introduction vignette. In this section we will cover how a
new transformation can be added. The whole procedure will be
described on an example, where an arcus tangent transformation
will be implemented.

Arcus tangent, also known as atan, is a monotonic function
on the whole support of the real numbers. Its inverse function is
tangent (tan) and thanks to the nice one-to-one relationship from
atan to tan and then back, atan can be easily implemented into
current framework.

For each transformation, there is usually a need to create two
new functions. One that performs transformations on yet untrans-
formed distributions, and hence initializes the process (dispatches

on class univdist). Second that dispatches on class trans_univdist
and is designed to add new transformation or upgrade or delete
the previous one. Clearly, it is possible to add just one function that
dispatches on class dist and hence works for both types, however,
such approach does not contain enough flexibility for operations
like inverse transformation of the previous one and is not rec-
ommended. The main function that is designed to make the life
with the new transformation easier is the trafo() function. The
function takes the object on which new manipulations will be per-
formed, a specified type of manipulation and expressions that are
used for this change. Thus, an atan() function that dispatches on
untransformed distributions can be designed as follows.

atan.univdist <- function(x){
trafo(x, type = "init",

trans = quote(atan(X)),
invtrans = quote(tan(X)),
print = quote(atan(X)),
deriv = quote(1+tan(X)ˆ2),
operation = "atan")

}

While the argument type in the trafo() call can be assigned
with 4 different string values (“init”, “new”, “update”, “go_back”),
for the function that dispatches on univdist only type= “init” should
be used. This initializes the history list that stores the information
about the old transformations and assigns the first transformations
according to the next four arguments. These (trans, invtrans, print
and deriv) should be attached to the expressions that correspond
to the transformation, inverse transformation, transformation that
is used in print and the derivative of the inverse transformation,
respectively. The last two arguments specify the name of the opera-
tion and (if any) additional value that was used in the transforma-
tion. In this example, function atan() is used for transformation,
tan() as the inverse of atan(), again atan() for the print and
since d tan(x)

dx = 1+ tan(x)2, for the deriv argument such an expres-
sion is used. Additionally, name of the operation is added to be
able to track and recognize it later. Furthermore, the argument
value (not used here) can be assigned to a numeric if the function
of a transformation contains two inputs such as multiplication or
addition. This information can be later used for updating the trans-
formation (i.e., 3+(2+X) = 5 + X). Note that all expressions must
use X as a placeholder to indicate the object in the transformation.

With this function we can now easily transform any distribution.
An example of arctan() transformed standard normal distribution
follows.

ataNorm <- atan(normdist())
library(ggplot2)
autoplot(ataNorm)

0.00

0.25

0.50

0.75

1.00

−1.0−0.5 0.0 0.5 1.0

CDF

0.0

0.1

0.2

0.3

0.4

0.5

−1.0−0.5 0.0 0.5 1.0

PDF

2 | https://cran.r-project.org/package=mistr Sablica and Hornik

https://cran.r-project.org/package=mistr

ataNorm

Trafo Distribution Parameters
atan(X) Normal mean = 0, sd = 1

This transformation is then fully able to cooperate with others.

log(2+ataNorm)

Trafo Distribution Parameters
log(atan(X) + 2) Normal mean = 0, sd = 1

Once the function for untransformed distributions is imple-
mented, we can add also one for the transformed case. This
function should offer more possibilities and it depends only on
the creator how smart he wants the framework to be. For this
particular case with atan(), we will assume that also tan() trans-
formation is implemented. Even though tan() is not monotonic
transformation, using the sudo_support() and modulus one can
easily check if the transformation is performed only on the mono-
tonic part of the support. Thus, if tan() is implemented also for
the distribution, atan.trans_univdist() can be written as:

atan.trans_univdist <- function(x){
if (last_history(x, "operation") == "tan") {

return(trafo(x, type = "go_back"))
} else {

return(trafo(x, type = "new",
trans = quote(atan(X)),
invtrans = quote(tan(X)),
print = quote(atan(X)),
deriv = quote(1+tan(X)ˆ2),
operation = "atan"))

}
}

Here, the types “go_back” and “new” are used. The “go_back”
is used when the code recognizes that the previous operation was
the inverse and so rather cancels out both transformations. On
the other hand, if there is no another way to eliminate or update
a transformation, type = “new” adds a new transformation to the
previous ones. This call again needs the expressions and operation
name as in the example before. The last type, which was not used
here is the “update” type, which can be used for updating previous
transformations. For more details see the help file of trafo() or
the source code of different transformations.

Finally, there is a possibility to add an invariant or direct trans-
formation. This procedure is trivial and one only needs to create
a call that dispatches on the distribution family rather than on
the class univdist. For the discrete uniform distribution, which is
invariant under linear transformation, this means that we can write
the plus transformation as:

`+.dunifdist` <- function(e1, e2){
if (is.dist(e1)) {

O <- e1
x <- e2

} else {
O <- e2
x <- e1

}
dunifdist(min = parameters(O)["min"] + x,

max = parameters(O)["max"] + x)
}

To summarize, we can perform two transformations on our
new distribution, where one is invariant and the second one is the
atan() transformation.

D2 <- atan(D+5)
D2

Trafo Distribution Parameters
atan(X) Discrete uniform min = 6, max = 11

p(D2, c(1.41, 1.43, 1.45, 1.47))

[1] 0.1666667 0.3333333 0.5000000 0.6666667

References

Bakar S, Nadarajah S, Kamarul Adzhar Z, Mohamed I (2016). “Gendist: An R
Package for Generated Probability Distribution Models.” P L o S One, 11(6).
ISSN 1932-6203. doi:10.1371/journal.pone.0156537.

Bolker B, Team RDC (2017). bbmle: Tools for General Maximum Likelihood
Estimation. R package version 1.0.20, URL https://CRAN.R-project.org/
package=bbmle.

Cooray K, Ananda MM (2005). “Modeling actuarial data with a composite
lognormal-Pareto model.” Scandinavian Actuarial Journal, 2005(5), 321–
334. doi:10.1080/03461230510009763. https://www.tandfonline.com/
doi/pdf/10.1080/03461230510009763, URL https://www.tandfonline.com/doi/
abs/10.1080/03461230510009763.

Kohl M, Ruckdeschel P (2010). “R Package distrMod: S4 Classes and Methods
for Probability Models.” Journal of Statistical Software, Articles, 35(10), 1–27.
ISSN 1548-7660. doi:10.18637/jss.v035.i10.

Nadarajah S, Bakar S (2014). “New composite models for the Danish fire in-
surance data.” Scandinavian Actuarial Journal, 2014(2), 180–187. doi:
10.1080/03461238.2012.695748. https://doi.org/10.1080/03461238.
2012.695748, URL https://doi.org/10.1080/03461238.2012.695748.

Nadarajah S, Bakar SAA (2013). “CompLognormal: An R Package for Composite
Lognormal Distributions.” The R Journal, 5(2), 97–103. URL https://journal.
r-project.org/archive/2013/RJ-2013-030/index.html.

Ryan JA, Ulrich JM (2018). quantmod: Quantitative Financial Modelling Frame-
work. R package version 0.4-13, URL https://CRAN.R-project.org/package=
quantmod.

Scollnik DPM (2007). “On composite lognormal-Pareto models.” Scandinavian
Actuarial Journal, 2007(1), 20–33. doi:10.1080/03461230601110447.
https://doi.org/10.1080/03461230601110447, URL https://doi.org/10.1080/
03461230601110447.

Wickham H (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag
New York. ISBN 978-3-319-24277-4. URL http://ggplot2.org.

Sablica and Hornik mistr Vignette | February 22, 2023 | 3

http://dx.doi.org/10.1371/journal.pone.0156537
https://CRAN.R-project.org/package=bbmle
https://CRAN.R-project.org/package=bbmle
http://dx.doi.org/10.1080/03461230510009763
https://www.tandfonline.com/doi/pdf/10.1080/03461230510009763
https://www.tandfonline.com/doi/pdf/10.1080/03461230510009763
https://www.tandfonline.com/doi/abs/10.1080/03461230510009763
https://www.tandfonline.com/doi/abs/10.1080/03461230510009763
http://dx.doi.org/10.18637/jss.v035.i10
http://dx.doi.org/10.1080/03461238.2012.695748
http://dx.doi.org/10.1080/03461238.2012.695748
https://doi.org/10.1080/03461238.2012.695748
https://doi.org/10.1080/03461238.2012.695748
https://doi.org/10.1080/03461238.2012.695748
https://journal.r-project.org/archive/2013/RJ-2013-030/index.html
https://journal.r-project.org/archive/2013/RJ-2013-030/index.html
https://CRAN.R-project.org/package=quantmod
https://CRAN.R-project.org/package=quantmod
http://dx.doi.org/10.1080/03461230601110447
https://doi.org/10.1080/03461230601110447
https://doi.org/10.1080/03461230601110447
https://doi.org/10.1080/03461230601110447
http://ggplot2.org

	Adding new distribution
	Adding new transformations

