Package 'nasapower'

February 2, 2024

Type Package
Title NASA POWER API Client
Version 4.2.0

URL https://docs.ropensci.org/nasapower/

BugReports https://github.com/ropensci/nasapower/issues

Description An API client for NASA POWER global meteorology, surface solar energy and climatology data API. POWER (Prediction Of Worldwide Energy Resources) data are freely available for download with varying spatial resolutions dependent on the original data and with several temporal resolutions depending on the POWER parameter and community. This work is funded through the NASA Earth Science Directorate Applied Science Program. For more on the data themselves, the methodologies used in creating, a webbased data viewer and web access, please see https://power.larc.nasa.gov/.

Depends R (>= 3.5.0)

License MIT + file LICENSE

Imports cli, crul, lubridate, jsonlite, readr, rlang, tibble (>= 3.0.2)

Suggests knitr, purrr, rmarkdown, spelling, testthat (>= 3.0.0), vcr (>= 0.6.0)

RoxygenNote 7.3.1

Encoding UTF-8

Language en-US

NeedsCompilation no

Repository CRAN

VignetteBuilder knitr

X-schema.org-applicationCategory Tools

X-schema.org-keywords NASA, meteorological-data, weather, global, weather, weather-data, meteorology, NASA-POWER, agroclimatology, earth-science, data-access, climate-data

X-schema.org-isPartOf https://ropensci.org

Config/testthat/edition 3

Config/testthat/parallel true

```
Author Adam H. Sparks [aut, cre] (<a href="https://orcid.org/0000-0002-0061-8359">https://orcid.org/0000-0002-0061-8359</a>),
      Scott Chamberlain [rev] (<a href="https://orcid.org/0000-0003-1444-9135">https://orcid.org/0000-0003-1444-9135</a>, Scott
       Chamberlain reviewed nasapower for rOpenSci, see
        <https://github.com/ropensci/software-review/issues/155>.),
      Hazel Kavili [rev] (Hazel Kavili reviewed nasapower for rOpenSci, see
        <https://github.com/ropensci/software-review/issues/155>.),
      Alison Boyer [rev] (Alison Boyer reviewed nasapower for rOpenSci, see
        <https://github.com/ropensci/software-review/issues/155>.),
      Fernando Miguez [ctb] (<a href="https://orcid.org/0000-0002-4627-8329">https://orcid.org/0000-0002-4627-8329</a>,
       Fernando Miguez provided assistance in identifying improper missing
        value handling in the POWER data, see
        <https://github.com/femiguez/apsimx/pull/26>.),
      Maëlle Salmon [ctb] (<a href="https://orcid.org/0000-0002-2815-0399">https://orcid.org/0000-0002-2815-0399</a>, Maëlle
       Salmon contributed a patch to fix issues with using the R package,
        'vcr', for testing the API queries, see
        <https://github.com/ropensci/nasapower/pull/64>.),
      Phillip D. Alderman [ctb] (<a href="https://orcid.org/0000-0003-1467-2337">https://orcid.org/0000-0003-1467-2337</a>,
        Phillip Alderman contributed a patch to fix an issue with, 'The
        `file` argument of `vroom()` must use `I()` for literal data as of
        vroom 1.5.0.', see
        <https://github.com/ropensci/nasapower/pull/67>.),
      Aleksandar Blagotić [ctb] (Author of the CRAN package 'rapportools',
       from which the '.is_boolean()' was taken.),
      Gergely Daróczi [ctb] (Author of the CRAN package 'rapportools', from
        which the '.is_boolean()' was taken.),
      Curtin University [cph] (Supported the development of 'nasapower'
        through Adam H. Sparks' time.)
```

Maintainer Adam H. Sparks <adamhsparks@gmail.com>

Date/Publication 2024-02-02 05:20:02 UTC

R topics documented:

get_power				 							 							2
query_groupings				 														7
query_parameters				 							 							8
query_surfaces .				 														9
																		11

Index 11

get_power

Get NASA POWER Data From the POWER API

Description

Get POWER global meteorology and surface solar energy climatology data and return a tidy data frame tibble::tibble() object. All options offered by the official POWER API are supported. Requests are formed to submit one request per point. There is no need to make synchronous requests for multiple parameters for a single point or regional request. See section on "Rate Limiting" for more.

Usage

```
get_power(
  community = c("ag", "re", "sb"),
  pars,
  temporal_api = c("daily", "monthly", "hourly", "climatology"),
  lonlat,
  dates = NULL,
  site_elevation = NULL,
  wind_elevation = NULL,
  wind_surface = NULL,
  time_standard = c("LST", "UTC")
)
```

Arguments

community A case-intensive character vector providing community name: "AG", "RE" or

"SB". See argument details for more.

pars case-intensive character vector of solar, meteorological or climatology parame-

ters to download. When requesting a single point of x, y coordinates, a maximum of twenty (20) pars can be specified at one time, for "DAILY", "MONTHLY" and "climatology" temporal_apis. If the temporal_api is specified as "hourly" only 15 pars can be specified in a single query. See temporal_api for more. These values are checked internally for validity before sending the query to the

POWER API.

temporal_api A case-intensive character vector providing the temporal API end-point for data

being queried, supported values are "hourly", "DAILY", "MONTHLY" or "cli-

matology". Defaults to "DAILY". See argument details for more.

lonlat A numeric vector of geographic coordinates for a cell or region entered as x, y

(longitude, latitude) coordinates. See argument details for more.

dates A character vector of start and end dates in that order,

e.g., dates = c("1983-01-01", "2017-12-31"). Not used when temporal_api is set to "climatology". See argument details for more.

site_elevation A user-supplied value for elevation at a single point in metres. If provided this

will return a corrected atmospheric pressure value adjusted to the elevation provided. Only used with lonlat as a single point of x, y coordinates, not for use

with "global" or with a regional request.

wind_elevation A user-supplied value for elevation at a single point in metres. Wind Elevation values in Meters are required to be between 10m and 300m. Only used

with lonlat as a single point of x, y coordinates, not for use with "global" or

with a regional request. If this parameter is provided, the wind-surface parameter is required with the request, see https://power.larc.nasa.gov/docs/methodology/meteorology/wind/.

wind_surface

A user-supplied wind surface for which the corrected wind-speed is to be supplied. See wind-surface section for more detail.

time_standard

POWER provides two different time standards:

- Universal Time Coordinated (UTC): is the standard time measure that used by the world.
- Local Solar Time (LST): A 15 degree swath that represents solar noon at the middle longitude of the swath. Defaults to LST.

Value

A data frame as a POWER. Info class, an extension of the tibble::tibble, object of POWER data including location, dates (not including "climatology") and requested parameters. A decorative header of metadata is included in this object.

Argument details for "community"

There are three valid values, one must be supplied. This will affect the units of the parameter and the temporal display of time series data.

- **ag** Provides access to the Agroclimatology Archive, which contains industry-friendly parameters formatted for input to crop models.
- **sb** Provides access to the Sustainable Buildings Archive, which contains industry-friendly parameters for the buildings community to include parameters in multi-year monthly averages.
- **re** Provides access to the Renewable Energy Archive, which contains parameters specifically tailored to assist in the design of solar and wind powered renewable energy systems.

Argument details for temporal_api

There are four valid values.

hourly The hourly average of pars by hour, day, month and year, the time zone is LST by default.

daily The daily average of pars by day, month and year.

monthly The monthly average of pars by month and year.

climatology Provide parameters as 22-year climatologies (solar) and 30-year climatologies (meteorology); the period climatology and monthly average, maximum, and/or minimum values.

Argument details for lonlat

For a single point To get a specific cell, $1/2 \times 1/2$ degree, supply a length-two numeric vector giving the decimal degree longitude and latitude in that order for data to download, e.g., lonlat = c(-179.5, -89.5).

For regional coverage To get a region, supply a length-four numeric vector as lower left (lon, lat) and upper right (lon, lat) coordinates, *e.g.*, lonlat = c(xmin, ymin, xmax, ymax) in that order for a given region, *e.g.*, a bounding box for the south western corner of Australia: lonlat = c(112.5, -55.5, 115.5, -50.5). *Maximum area processed is 4.5 x 4.5 degrees (100 points).

For global coverage To get global coverage for "climatology", supply "global" while also specifying "climatology" for the temporal_api.

Argument details for dates

if one date only is provided, it will be treated as both the start date and the end date and only a single day's values will be returned, *e.g.*, dates = "1983-01-01". When temporal_api is set to "MONTHLY", use only two year values (YYYY), *e.g.* dates = c(1983, 2010). This argument should not be used when temporal_api is set to "climatology" and will be ignored if set.

wind_surface

There are 17 surfaces that may be used for corrected wind-speed values using the following equation:

$$WSC_hgt = WS_10m \times (\frac{hgt}{WS_50m})^{\alpha}$$

Valid surface types are described here.

vegtype_1 35-m broadleaf-evergreen trees (70% coverage)

vegtype_2 20-m broadleaf-deciduous trees (75% coverage)

vegtype_3 20-m broadleaf and needleleaf trees (75% coverage)

vegtype_4 17-m needleleaf-evergreen trees (75% coverage)

vegtype_5 14-m needleleaf-deciduous trees (50% coverage)

vegtype_6 Savanna:18-m broadleaf trees (30%) & groundcover

vegtype 7 0.6-m perennial groundcover (100%)

vegtype 8 0.5-m broadleaf shrubs (variable %) & groundcover

vegtype_9 0.5-m broadleaf shrubs (10%) with bare soil

vegtype_10 Tundra: 0.6-m trees/shrubs (variable %) & groundcover

vegtype_11 Rough bare soil

vegtype 12 Crop: 20-m broadleaf-deciduous trees (10%) & wheat

vegtype_20 Rough glacial snow/ice

seaice Smooth sea ice

openwater Open water

airportice Airport: flat ice/snow

airportgrass Airport: flat rough grass

Rate limiting

The POWER API endpoints limit queries to prevent server overloads due to repetitive and rapid requests. If you find that the API is throttling your queries, I suggest that you investigate the use of limit_rate() from ratelimitr to create self-limiting functions that will respect the rate limits that the API has in place. It is considered best practice to check the POWER website for the latest rate limits as they differ between temporal APIs and may change over time as the project matures.

Note

The associated metadata shown in the decorative header are not saved if the data are exported to a file format other than a native R data format, e.g., .Rdata, .rda or .rds.

Author(s)

Adam H. Sparks <adamhsparks@gmail.com>

References

https://power.larc.nasa.gov/docs/methodology/https://power.larc.nasa.gov

Examples

```
# Fetch daily "AG" community temperature, relative humidity and
# precipitation for January 1 1985 at Kingsthorpe, Queensland, Australia
ag_d <- get_power(</pre>
 community = "AG",
 lonlat = c(151.81, -27.48),
 pars = c("RH2M", "T2M", "PRECTOTCORR"),
 dates = "1985-01-01",
 temporal_api = "DAILY"
ag_d
# Fetch single point climatology for air temperature
ag_c_point <- get_power(</pre>
 community = "AG",
 pars = T2M,
 c(151.81, -27.48),
 temporal_api = "climatology"
)
ag_c_point
# Fetch interannual solar cooking parameters for a given region
sse_i <- get_power(</pre>
 community = "RE",
 lonlat = c(112.5, -55.5, 115.5, -50.5),
 dates = c("1984", "1985"),
```

query_groupings 7

```
temporal_api = "MOHTHLY",
  pars = c("CLRSKY_SFC_SW_DWN", "ALLSKY_SFC_SW_DWN")
)
sse_i
```

query_groupings

Query the POWER API for Detailed Information on Available Parameter Groupings

Description

Queries the POWER API returning detailed information on available parameter groupings grouped by community followed by temporal API or if global = TRUE, grouped by climatology, then by the available types of parameters.

Usage

```
query_groupings(global = FALSE)
```

Arguments

global

Boolean; should the query return global parameter groupings and attribute information? Defaults to FALSE returning details for point data.

Value

A list object of information on parameter groupings in the POWER API.

Author(s)

```
Adam H. Sparks, <adamhsparks@gmail.com>
```

Examples

```
# fetch groupings for parameters
query_groupings()
# fetch groupings for global parameters
query_groupings(global = TRUE)
```

8 query_parameters

eters	query_parameters	Query the POWER API for Detailed Information on Available Parameters
-------	------------------	--

Description

Queries the POWER API returning detailed information on available parameters. For a list of all available parameters, use parameters

Usage

```
query_parameters(community = NULL, pars, temporal_api = NULL, metadata = FALSE)
```

Arguments

An optional character vector providing community name: "ag", "sb" or "re".

A required character string of a single solar, meteorological or climatology parameter to query.

temporal_api
An optional character vector indicating the temporal API end-point for data being queried, supported values are "hourly", "daily", "monthly" or "climatology".

metadata
Boolean; retrieve extra parameter metadata? This is only applicable if you supply the community and temporal_api, if these values are not provided it will

be ignored. Defaults to FALSE.

Value

A list object of information for the requested parameter(s) (if requested), community(ies) and temporal API(s).

Argument details for temporal_api

There are four valid values.

hourly The hourly average of pars by hour, day, month and year.

daily The daily average of pars by day, month and year.

monthly The monthly average of pars by month and year.

climatology Provide parameters as 22-year climatologies (solar) and 30-year climatologies (meteorology); the period climatology and monthly average, maximum, and/or minimum values.

Author(s)

Adam H. Sparks, <adamhsparks@gmail.com>

query_surfaces 9

Examples

query_surfaces

Query the POWER API for Detailed Information on Wind Type Surfaces

Description

Queries the POWER API returning detailed information on all (or just one) wind elevation surface alias and attribute information.

Usage

```
query_surfaces(surface_alias = NULL)
```

Arguments

surface_alias An optional character vector providing a wind surface alias available from the POWER API. All values are returned if this value is not provided.

Value

A list object of information for the requested wind surface(s).

Author(s)

```
Adam H. Sparks, <adamhsparks@gmail.com>
```

10 query_surfaces

Examples

```
# fetch all wind surface information
query_surfaces()
# fetch surface information for `airportgrass`
query_surfaces(surface_alias = "airportgrass")
```

Index

```
get_power, 2
list, 7-9
query_groupings, 7
query_parameters, 8
query_surfaces, 9
tibble::tibble, 4
tibble::tibble(), 3
```