
Package ‘posterior’
October 31, 2023

Title Tools for Working with Posterior Distributions

Version 1.5.0

Date 2023-10-31

Description Provides useful tools for both users and developers of packages
for fitting Bayesian models or working with output from Bayesian models.
The primary goals of the package are to:
(a) Efficiently convert between many different useful formats of
draws (samples) from posterior or prior distributions.
(b) Provide consistent methods for operations commonly performed on draws,
for example, subsetting, binding, or mutating draws.
(c) Provide various summaries of draws in convenient formats.
(d) Provide lightweight implementations of state of the art posterior
inference diagnostics. References: Vehtari et al. (2021)
<doi:10.1214/20-BA1221>.

Depends R (>= 3.2.0)

Imports methods, abind, checkmate, rlang (>= 1.0.6), stats, tibble (>=
3.1.0), vctrs (>= 0.5.0), tensorA, pillar, distributional,
parallel, matrixStats

Suggests testthat (>= 2.1.0), caret (>= 6.0.84), gbm (>= 2.1.8),
randomForest (>= 4.6.14), e1071 (>= 1.7.3), dplyr, tidyr,
knitr, ggplot2, ggdist, rmarkdown

License BSD_3_clause + file LICENSE

Encoding UTF-8

URL https://mc-stan.org/posterior/, https://discourse.mc-stan.org/

BugReports https://github.com/stan-dev/posterior/issues

RoxygenNote 7.2.3

VignetteBuilder knitr

NeedsCompilation no

Author Paul-Christian Bürkner [aut, cre],
Jonah Gabry [aut],
Matthew Kay [aut],

1

https://doi.org/10.1214/20-BA1221
https://mc-stan.org/posterior/
https://discourse.mc-stan.org/
https://github.com/stan-dev/posterior/issues

2 R topics documented:

Aki Vehtari [aut],
Måns Magnusson [ctb],
Rok Češnovar [ctb],
Ben Lambert [ctb],
Ozan Adıgüzel [ctb],
Jacob Socolar [ctb]

Maintainer Paul-Christian Bürkner <paul.buerkner@gmail.com>

Repository CRAN

Date/Publication 2023-10-31 08:30:02 UTC

R topics documented:
posterior-package . 4
as_rvar . 5
as_rvar_factor . 6
bind_draws . 8
chol.rvar . 9
diag,rvar-method . 9
diagnostics . 10
dissent . 11
draws . 12
draws-index . 13
draws_array . 15
draws_df . 16
draws_list . 18
draws_matrix . 20
draws_of . 21
draws_rvars . 23
draws_summary . 24
drop,rvar-method . 27
entropy . 27
ess_basic . 29
ess_bulk . 30
ess_mean . 32
ess_quantile . 33
ess_sd . 34
ess_tail . 35
example_draws . 37
extract_variable . 38
extract_variable_matrix . 39
for_each_draw . 40
is_rvar . 41
is_rvar_factor . 42
match . 42
mcse_mean . 43
mcse_quantile . 45
mcse_sd . 46

R topics documented: 3

merge_chains . 47
modal_category . 48
mutate_variables . 50
order_draws . 51
pareto_diags . 52
pareto_khat . 54
pareto_smooth . 55
print.draws_array . 57
print.draws_df . 58
print.draws_list . 59
print.draws_matrix . 60
print.draws_rvars . 61
print.draws_summary . 62
print.rvar . 63
quantile2 . 65
rdo . 66
rename_variables . 67
repair_draws . 68
resample_draws . 69
reserved_variables . 71
rfun . 72
rhat . 73
rhat_basic . 75
rhat_nested . 76
rstar . 77
rvar . 80
rvar-dist . 82
rvar-matmult . 83
rvar-slice . 85
rvar-summaries-over-draws . 87
rvar-summaries-within-draws . 90
rvar_apply . 92
rvar_factor . 93
rvar_ifelse . 96
rvar_is_finite . 97
rvar_rng . 98
set_variables . 99
split_chains . 100
subset_draws . 101
thin_draws . 103
weights.draws . 104
weight_draws . 105

Index 107

4 posterior-package

posterior-package Tools for working with posterior (and prior) distributions

Description

The posterior package is intended to provide useful tools for both users and developers of packages
for fitting Bayesian models or working with output from Bayesian models. The primary goals of
the package are to:

• Efficiently convert between many different useful formats of draws (samples) from posterior
or prior distributions.

• Provide consistent methods for operations commonly performed on draws, for example, sub-
setting, binding, or mutating draws.

• Provide various summaries of draws in convenient formats.
• Provide lightweight implementations of state of the art posterior inference diagnostics.

Package options

The following options are used to format and print draws objects, as in print.draws_array(),
print.draws_df(), print.draws_list(), print.draws_matrix(), and print.draws_rvars():

• posterior.max_draws: Maximum number of draws to print.
• posterior.max_iterations: Maximum number of iterations to print.
• posterior.max_chains: Maximum number of chains to print.
• posterior.max_variables: Maximum number of variables to print.

The following options are used for formatting the output of summarize_draws:

• posterior.num_args: Arguments passed to num() for pretty printing of summaries.

The following options are used to format and print rvar objects, as in print.rvar() and print.draws_rvars():

• posterior.rvar_summary: What style of summary to display: "mean_sd" displays mean ± sd,
"median_mad" displays median ± mad.

• posterior.digits: How many significant digits are displayed. This defaults to a smaller
value (2) than getOption("digits") because rvars print two numbers (point summary and
uncertainty) next to each other.

The following option is used to construct new rvar objects, as in rfun() and rdo():

• posterior.rvar_ndraws: The number of draws used to construct new random variables
when this number cannot be determined from existing arguments (e.g., other rvars passed to
a function).

The following options are used to control warning messages:

• posterior.warn_on_merge_chains: (logical) Some operations will trigger an automatic
merging of chains, for example, because chains do not match between two objects involved in
a binary operation. Whether this causes a warning can be controlled by this option.

as_rvar 5

as_rvar Coerce to a random variable

Description

Convert x to an rvar object.

Usage

as_rvar(x, dim = NULL, dimnames = NULL, nchains = NULL)

as_rvar_numeric(x, dim = NULL, dimnames = NULL, nchains = NULL)

as_rvar_integer(x, dim = NULL, dimnames = NULL, nchains = NULL)

as_rvar_logical(x, dim = NULL, dimnames = NULL, nchains = NULL)

Arguments

x (multiple options) An object that can be converted to an rvar, such as a vector,
array, or an rvar itself.

dim (integer vector) One or more integers giving the maximal indices in each dimen-
sion to override the dimensions of the rvar to be created (see dim()). If NULL
(the default), dim is determined by the input. NOTE: This argument controls
the dimensions of the rvar, not the underlying array, so you cannot change the
number of draws using this argument.

dimnames (list) Character vectors giving the names in each dimension to override the
names of the dimensions of the rvar to be created (see dimnames()). If NULL
(the default), this is determined by the input. NOTE: This argument controls
the names of the dimensions of the rvar, not the underlying array.

nchains (positive integer) The number of chains. The default is 1.

Details

For objects that are already rvars, returns them (with modified dimensions if dim is not NULL).

For numeric or logical vectors or arrays, returns an rvar with a single draw and the same dimensions
as x. This is in contrast to the rvar() constructor, which treats the first dimension of x as the draws
dimension. As a result, as_rvar() is useful for creating constants.

While as_rvar() attempts to pick the most suitable subtype of rvar based on the type of x (pos-
sibly returning an rvar_factor or rvar_ordered), as_rvar_numeric(), as_rvar_integer(),
and as_rvar_logical() always coerce the draws of the output rvar to be numeric, integer, or
logical (respectively), and always return a base rvar, never a subtype.

Value

An object of class "rvar" (or one of its subtypes) representing a random variable.

6 as_rvar_factor

See Also

rvar() to construct rvars directly. See rdo(), rfun(), and rvar_rng() for higher-level interfaces
for creating rvars.

Examples

You can use as_rvar() to create "constant" rvars (having only one draw):
x <- as_rvar(1)
x

Such constants can be of arbitrary shape:
as_rvar(1:4)
as_rvar(matrix(1:10, nrow = 5))
as_rvar(array(1:12, dim = c(2, 3, 2)))

as_rvar_numeric() coerces subtypes of rvar to the base rvar type
y <- as_rvar_factor(c("a", "b", "c"))
y
as_rvar_numeric(y)

as_rvar_factor Coerce to a factor random variable

Description

Convert x to an rvar_factor or rvar_ordered object.

Usage

as_rvar_factor(x, dim = NULL, dimnames = NULL, nchains = NULL, ...)

as_rvar_ordered(x, dim = NULL, dimnames = NULL, nchains = NULL, ...)

Arguments

x (multiple options) An object that can be converted to an rvar, such as a vector,
array, or an rvar itself.

dim (integer vector) One or more integers giving the maximal indices in each dimen-
sion to override the dimensions of the rvar to be created (see dim()). If NULL
(the default), dim is determined by the input. NOTE: This argument controls
the dimensions of the rvar, not the underlying array, so you cannot change the
number of draws using this argument.

dimnames (list) Character vectors giving the names in each dimension to override the
names of the dimensions of the rvar to be created (see dimnames()). If NULL
(the default), this is determined by the input. NOTE: This argument controls
the names of the dimensions of the rvar, not the underlying array.

as_rvar_factor 7

nchains (positive integer) The number of chains. The default is 1.

... Arguments passed on to base::factor

levels an optional vector of the unique values (as character strings) that x
might have taken. The default is the unique set of values taken by as.character(x),
sorted into increasing order of x. Note that this set can be specified as
smaller than sort(unique(x)).

labels either an optional character vector of labels for the levels (in the same
order as levels after removing those in exclude), or a character string of
length 1. Duplicated values in labels can be used to map different values
of x to the same factor level.

exclude a vector of values to be excluded when forming the set of levels. This
may be factor with the same level set as x or should be a character.

ordered logical flag to determine if the levels should be regarded as ordered
(in the order given).

nmax an upper bound on the number of levels; see ‘Details’.

Details

For objects that are already rvars, returns them (with modified dimensions if dim is not NULL),
possibly adding levels using the unique values of the draws of the rvar (if the object is not already
factor-like).

For numeric, logical, factor, or character vectors or arrays, returns an rvar_factor or rvar_ordered
with a single draw and the same dimensions as x. This is in contrast to the rvar_factor() and
rvar_ordered() constructors, which treats the first dimension of x as the draws dimension. As a
result, as_rvar_factor() and as_rvar_ordered() are useful for creating constants.

Value

An object of class "rvar_factor" or "rvar_ordered" representing a random variable.

See Also

rvar(), rvar_factor(), and rvar_ordered() to construct rvars directly. See rdo(), rfun(),
and rvar_rng() for higher-level interfaces for creating rvars.

Examples

You can use as_rvar_factor() to create "constant" rvars (having only one draw):
x <- as_rvar_factor("a")
x

Such constants can be of arbitrary shape:
as_rvar_factor(letters[1:4])
as_rvar_ordered(matrix(letters[1:10], nrow = 5))
as_rvar_factor(array(letters[1:12], dim = c(2, 3, 2)))

8 bind_draws

bind_draws Bind draws objects together

Description

Bind multiple draws objects together to form a single draws object.

Usage

bind_draws(x, ...)

S3 method for class 'draws_matrix'
bind_draws(x, ..., along = "variable")

S3 method for class 'draws_array'
bind_draws(x, ..., along = "variable")

S3 method for class 'draws_df'
bind_draws(x, ..., along = "variable")

S3 method for class 'draws_list'
bind_draws(x, ..., along = "variable")

S3 method for class 'draws_rvars'
bind_draws(x, ..., along = "variable")

Arguments

x (draws) A draws object. The draws format of x will define the format of the
returned draws object.

... (draws) Additional draws objects to bind to x.

along (string) The dimension along which draws objects should be bound together.
Possible values are "variable" (the default), "chain", "iteration", and "draw".
Not all options are supported for all input formats.

Value

A draws object of the same class as x.

Examples

x1 <- draws_matrix(alpha = rnorm(5), beta = rnorm(5))
x2 <- draws_matrix(alpha = rnorm(5), beta = rnorm(5))
ndraws(x1)
ndraws(x2)
x3 <- bind_draws(x1, x2, along = "draw")
ndraws(x3)

chol.rvar 9

x4 <- draws_matrix(theta = rexp(5))
x5 <- bind_draws(x1, x4, along = "variable")
variables(x5)

chol.rvar Cholesky decomposition of random matrix

Description

Cholesky decomposition of an rvar containing a matrix.

Usage

S3 method for class 'rvar'
chol(x, ...)

Arguments

x (rvar) A 2-dimensional rvar.
... Additional parameters passed on to chol.tensor()

Value

An rvar containing the upper triangular factor of the Cholesky decomposition, i.e., the matrix R
such that R′R = x.

diag,rvar-method Matrix diagonals (including for random variables)

Description

Extract the diagonal of a matrix or construct a matrix, including random matrices (2-dimensional
rvars). Makes base::diag() generic.

Usage

S4 method for signature 'rvar'
diag(x = 1, nrow, ncol, names = TRUE)

Arguments

x (numeric,rvar) a matrix, vector, 1D array, missing, or a 1- or 2-dimensional
rvar.

nrow, ncol optional dimensions for the result when x is not a matrix.
names (when x is a matrix) logical indicating if the resulting vector, the diagonal of x,

should inherit names from dimnames(x) if available.

10 diagnostics

Details

Makes base::diag() into a generic function. See that function’s documentation for usage with
numerics and for usage of diag<-, which is also supported by rvar.

Value

For rvars, has two modes:

1. x is a matrix-like rvar: it returns the diagonal as a vector-like rvar

2. x is a vector-like rvar: it returns a matrix-like rvar with x as the diagonal and zero for off-
diagonal entries.

See Also

base::diag()

Examples

Sigma is a 3x3 covariance matrix
Sigma <- as_draws_rvars(example_draws("multi_normal"))$Sigma
Sigma

diag(Sigma)

diag(Sigma) <- 1:3
Sigma

diag(as_rvar(1:3))

diagnostics List of available convergence diagnostics

Description

A list of available diagnostics and links to their individual help pages.

Details

Function Description
ess_basic() Basic version of effective sample size
ess_bulk() Bulk effective sample size
ess_tail() Tail effective sample size
ess_quantile() Effective sample sizes for quantiles
ess_sd() Effective sample sizes for standard deviations
mcse_mean() Monte Carlo standard error for the mean
mcse_quantile() Monte Carlo standard error for quantiles

dissent 11

mcse_sd() Monte Carlo standard error for standard deviations
rhat_basic() Basic version of Rhat
rhat() Improved, rank-based version of Rhat
rhat_nested() Rhat for use with many short chains
rstar() R* diagnostic

Value

See individual functions for a description of return types.

dissent Dissention

Description

Dissention, for measuring dispersion in draws from ordinal distributions.

Usage

dissent(x)

Default S3 method:
dissent(x)

S3 method for class 'rvar'
dissent(x)

Arguments

x (multiple options) A vector to be interpreted as draws from an ordinal distribu-
tion, such as:

• A factor
• A numeric (should be integer or integer-like)
• An rvar, rvar_factor, or rvar_ordered

Details

Calculates Tastle and Wierman’s (2007) dissention measure:

−
n∑

i=1

pi log2

(
1− |xi − E(x)|

max(x)−min(x)

)
This ranges from 0 (all probability in one category) through 0.5 (uniform) to 1 (bimodal: all proba-
bility split equally between the first and last category).

12 draws

Value

If x is a factor or numeric, returns a length-1 numeric vector with a value between 0 and 1 (inclusive)
giving the dissention of x.

If x is an rvar, returns an array of the same shape as x, where each cell is the dissention of the draws
in the corresponding cell of x.

References

William J. Tastle, Mark J. Wierman (2007). Consensus and dissention: A measure of ordinal disper-
sion. International Journal of Approximate Reasoning. 45(3), 531–545. doi:10.1016/j.ijar.2006.06.024.

Examples

set.seed(1234)

levels <- c("lowest", "low", "neutral", "high", "highest")

a bimodal distribution: high dissention
x <- ordered(

sample(levels, 4000, replace = TRUE, prob = c(0.45, 0.04, 0.02, 0.04, 0.45)),
levels = levels

)
dissent(x)

a unimodal distribution: low dissention
y <- ordered(

sample(levels, 4000, replace = TRUE, prob = c(0.95, 0.02, 0.015, 0.01, 0.005)),
levels = levels

)
dissent(y)

both together, as an rvar
xy <- c(rvar(x), rvar(y))
xy
dissent(xy)

draws Transform to draws objects

Description

Try to transform an R object to a format supported by the posterior package.

Usage

as_draws(x, ...)

is_draws(x)

https://doi.org/10.1016/j.ijar.2006.06.024

draws-index 13

Arguments

x (draws) A draws object or another R object for which the method is defined.

... Arguments passed to individual methods (if applicable).

Details

The class "draws" is the parent class of all supported formats, which also have their own subclasses
of the form "draws_{format}" (e.g. "draws_array").

Value

If possible, a draws object in the closest supported format to x. The formats are linked to in the See
Also section below.

See Also

Other formats: draws_array(), draws_df(), draws_list(), draws_matrix(), draws_rvars()

Examples

create some random draws
x <- matrix(rnorm(30), nrow = 10)
colnames(x) <- c("a", "b", "c")
str(x)

transform to a draws object
y <- as_draws(x)
str(y)

remove the draws classes from the object
class(y) <- class(y)[-(1:2)]
str(y)

draws-index Index draws objects

Description

Index variables, iterations, chains, and draws.

Usage

variables(x, ...)

variables(x) <- value

iteration_ids(x)

14 draws-index

chain_ids(x)

draw_ids(x)

nvariables(x, ...)

niterations(x)

nchains(x)

ndraws(x)

Arguments

x (draws) A draws object or another R object for which the method is defined.

... Arguments passed to individual methods (if applicable).

value (character vector) For variables(x) <- value, the new variable names to use.

Details

The methods variables(), iteration_ids(), chain_ids(), and draw_ids() return vectors of
all variables, iterations, chains, and draws, respectively. In contrast, the methods nvariables(),
niterations(), nchains(), and ndraws() return the number of variables, iterations, chains, and
draws, respectively.

variables(x) <- value allows you to modify the vector of variable names, similar to how names(x)
<- value works for vectors and lists. For renaming specific variables, set_variables() works
equivalently, but is more intuitive when using the pipe operator. rename_variables() may offer a
more convenient approach.

Value

For variables(), a character vector.

For iteration_ids(), chain_ids(), and draw_ids(), an integer vector.

For niterations(), nchains(), and ndraws(), a scalar integer.

Examples

x <- example_draws()

variables(x)
nvariables(x)
variables(x) <- letters[1:nvariables(x)]

iteration_ids(x)
niterations(x)

chain_ids(x)
nchains(x)

draws_array 15

draw_ids(x)
ndraws(x)

draws_array The draws_array format

Description

The as_draws_array() methods convert objects to the draws_array format. The draws_array()
function creates an object of the draws_array format based on a set of numeric vectors. See
Details.

Usage

as_draws_array(x, ...)

Default S3 method:
as_draws_array(x, ...)

S3 method for class 'draws_array'
as_draws_array(x, ...)

S3 method for class 'draws_matrix'
as_draws_array(x, ...)

S3 method for class 'draws_df'
as_draws_array(x, ...)

S3 method for class 'draws_list'
as_draws_array(x, ...)

S3 method for class 'draws_rvars'
as_draws_array(x, ...)

S3 method for class 'mcmc'
as_draws_array(x, ...)

S3 method for class 'mcmc.list'
as_draws_array(x, ...)

draws_array(..., .nchains = 1)

is_draws_array(x)

16 draws_df

Arguments

x An object to convert to a draws_array object.

... For as_draws_array(): Arguments passed to individual methods (if applica-
ble). For draws_array(): Named arguments containing numeric vectors each
defining a separate variable.

.nchains (positive integer) The number of chains. The default is 1.

Details

Objects of class "draws_array" are 3-D arrays with dimensions "iteration", "chain", and
"variable". See Examples.

Value

A draws_array object, which has classes c("draws_array", "draws", "array").

See Also

Other formats: draws_df(), draws_list(), draws_matrix(), draws_rvars(), draws

Examples

x1 <- as_draws_array(example_draws())
class(x1)
print(x1)
str(x1)

x2 <- draws_array(a = rnorm(10), b = rnorm(10), c = 1)
class(x2)
print(x2)
str(x2)

draws_df The draws_df format

Description

The as_draws_df() methods convert objects to the draws_df format. The draws_df() function
creates an object of the draws_df format based on a set of numeric vectors. See Details.

Usage

as_draws_df(x, ...)

Default S3 method:
as_draws_df(x, ...)

draws_df 17

S3 method for class 'data.frame'
as_draws_df(x, ...)

S3 method for class 'draws_df'
as_draws_df(x, ...)

S3 method for class 'draws_matrix'
as_draws_df(x, ...)

S3 method for class 'draws_array'
as_draws_df(x, ...)

S3 method for class 'draws_list'
as_draws_df(x, ...)

S3 method for class 'draws_rvars'
as_draws_df(x, ...)

S3 method for class 'mcmc'
as_draws_df(x, ...)

S3 method for class 'mcmc.list'
as_draws_df(x, ...)

draws_df(..., .nchains = 1)

is_draws_df(x)

Arguments

x An object to convert to a draws_df object.

... For as_draws_df(): Arguments passed to individual methods (if applicable).
For draws_df(): Named arguments containing numeric vectors each defining a
separate variable.

.nchains (positive integer) The number of chains. The default is 1.

Details

Objects of class "draws_df" are tibble data frames. They have one column per variable as well as
additional metadata columns ".iteration", ".chain", and ".draw". The difference between the
".iteration" and ".draw" columns is that the former is relative to the MCMC chain while the
latter ignores the chain information and has all unique values. See Examples.

If a data.frame-like object is supplied to as_draws_df that contains columns named ".iteration"
or ".chain", they will be treated as iteration and chain indices, respectively. See Examples.

Value

A draws_df object, which has classes c("draws_df", "draws", class(tibble::tibble())).

18 draws_list

See Also

Other formats: draws_array(), draws_list(), draws_matrix(), draws_rvars(), draws

Examples

x1 <- as_draws_df(example_draws())
class(x1)
print(x1)
str(x1)

x2 <- draws_df(a = rnorm(10), b = rnorm(10), c = 1)
class(x2)
print(x2)
str(x2)

the difference between iteration and draw is clearer when contrasting
the head and tail of the data frame
print(head(x1), reserved = TRUE, max_variables = 2)
print(tail(x1), reserved = TRUE, max_variables = 2)

manually supply chain information
xnew <- data.frame(mu = rnorm(10), .chain = rep(1:2, each = 5))
xnew <- as_draws_df(xnew)
print(xnew)

draws_list The draws_list format

Description

The as_draws_list() methods convert objects to the draws_list format. The draws_list()
function creates an object of the draws_list format based on a set of numeric vectors. See Details.

Usage

as_draws_list(x, ...)

Default S3 method:
as_draws_list(x, ...)

S3 method for class 'draws_list'
as_draws_list(x, ...)

S3 method for class 'draws_matrix'
as_draws_list(x, ...)

S3 method for class 'draws_array'

draws_list 19

as_draws_list(x, ...)

S3 method for class 'draws_df'
as_draws_list(x, ...)

S3 method for class 'draws_rvars'
as_draws_list(x, ...)

S3 method for class 'mcmc'
as_draws_list(x, ...)

S3 method for class 'mcmc.list'
as_draws_list(x, ...)

draws_list(..., .nchains = 1)

is_draws_list(x)

Arguments

x An object to convert to a draws_list object.

... For as_draws_list(): Arguments passed to individual methods (if applicable).
For draws_list(): Named arguments containing numeric vectors each defining
a separate variable.

.nchains (positive integer) The number of chains. The default is 1.

Details

Objects of class "draws_list" are lists with one element per MCMC chain. Each of these elements
is itself a named list of numeric vectors with one vector per variable. The length of each vector is
equal to the number of saved iterations per chain. See Examples.

Value

A draws_list object, which has classes c("draws_list", "draws", "list").

See Also

Other formats: draws_array(), draws_df(), draws_matrix(), draws_rvars(), draws

Examples

x1 <- as_draws_list(example_draws())
class(x1)
print(x1)
str(x1)

x2 <- draws_list(a = rnorm(10), b = rnorm(10), c = 1)
class(x2)
print(x2)

20 draws_matrix

str(x2)

draws_matrix The draws_matrix format

Description

The as_draws_matrix() methods convert objects to the draws_matrix format. The draws_matrix()
function creates an object of the draws_matrix format based on a set of numeric vectors. See De-
tails.

Usage

as_draws_matrix(x, ...)

Default S3 method:
as_draws_matrix(x, ...)

S3 method for class 'draws_matrix'
as_draws_matrix(x, ...)

S3 method for class 'draws_array'
as_draws_matrix(x, ...)

S3 method for class 'draws_df'
as_draws_matrix(x, ...)

S3 method for class 'draws_list'
as_draws_matrix(x, ...)

S3 method for class 'draws_rvars'
as_draws_matrix(x, ...)

S3 method for class 'mcmc'
as_draws_matrix(x, ...)

S3 method for class 'mcmc.list'
as_draws_matrix(x, ...)

draws_matrix(..., .nchains = 1)

is_draws_matrix(x)

Arguments

x An object to convert to a draws_matrix object.

draws_of 21

... For as_draws_matrix(): Arguments passed to individual methods (if applica-
ble). For draws_matrix(): Named arguments containing numeric vectors each
defining a separate variable.

.nchains (positive integer) The number of chains. The default is 1.

Details

Objects of class "draws_matrix" are matrices (2-D arrays) with dimensions "draw" and "variable".
See Examples.

Value

A draws_matrix object, which has classes c("draws_matrix", "draws", "matrix").

See Also

Other formats: draws_array(), draws_df(), draws_list(), draws_rvars(), draws

Examples

x1 <- as_draws_matrix(example_draws())
class(x1)
print(x1)
str(x1)

x2 <- draws_matrix(a = rnorm(10), b = rnorm(10), c = 1)
class(x2)
print(x2)
str(x2)

draws_of Get/set array of draws underlying a random variable

Description

Gets/sets the array-representation that backs an rvar. Should be used rarely.

Usage

draws_of(x, with_chains = FALSE)

draws_of(x, with_chains = FALSE) <- value

22 draws_of

Arguments

x (rvar) An rvar object.

with_chains (logical) Should the array of draws include a dimension for chains? If FALSE
(the default), chains are not included and the array has dimension c(ndraws(x),
dim(x)). If TRUE, chains are included and the array has dimension c(niterations(x),
nchains(x), dim(x)).

value (array) An array of values to use as the backing array of x.

Details

While rvars implement fast versions of basic math operations (including matrix multiplication),
sometimes you may need to bypass the rvar abstraction to do what you need to do more efficiently.
draws_of() allows you to get / set the underlying array of draws in order to do that.

rvars represent draws internally using arrays of arbitrary dimension, which is returned by draws_of(x)
and can be set using draws_of(x) <- value. The first dimension of these arrays is the index of the
draws. If with_chains = TRUE, then the dimensions of the returned array are modified so that the
first dimension is the index of the iterations and the second dimension is the index of the chains.

Value

If with_chains = FALSE, an array with dimensions c(ndraws(x), dim(x)).

If with_chains = TRUE, an array with dimensions c(niterations(x), nchains(x), dim(x)).

Examples

x <- rvar(1:10, nchains = 2)
x

draws_of() without arguments will return the array of draws without
chain information (first dimension is draw)
draws_of(x)

draws_of() with with_chains = TRUE will reshape the returned array to
include chain information in the second dimension
draws_of(x, with_chains = TRUE)

you can also set draws using draws_of(). When with_chains = FALSE the
existing chain information will be retained ...
draws_of(x) <- 2:11
x

when with_chains = TRUE the chain information will be set by the
second dimension of the assigned array
draws_of(x, with_chains = TRUE) <- array(2:11, dim = c(2,5))
x

draws_rvars 23

draws_rvars The draws_rvars format

Description

The as_draws_rvars() methods convert objects to the draws_rvars format. The draws_rvars()
function creates an object of the draws_rvars format based on a set of numeric vectors. See
Details.

Usage

as_draws_rvars(x, ...)

Default S3 method:
as_draws_rvars(x, ...)

S3 method for class 'draws_rvars'
as_draws_rvars(x, ...)

S3 method for class 'list'
as_draws_rvars(x, ...)

S3 method for class 'draws_matrix'
as_draws_rvars(x, ...)

S3 method for class 'draws_array'
as_draws_rvars(x, ...)

S3 method for class 'draws_df'
as_draws_rvars(x, ...)

S3 method for class 'draws_list'
as_draws_rvars(x, ...)

S3 method for class 'mcmc'
as_draws_rvars(x, ...)

S3 method for class 'mcmc.list'
as_draws_rvars(x, ...)

draws_rvars(..., .nchains = 1)

is_draws_rvars(x)

Arguments

x An object to convert to a draws_rvars object.

24 draws_summary

... For as_draws_rvars(): Arguments passed to individual methods (if applica-
ble). For draws_rvars(): Named arguments containing numeric vectors each
defining a separate variable.

.nchains (positive integer) The number of chains. The default is 1.

Details

Objects of class "draws_rvars" are lists of rvar objects. See Examples.

Value

A draws_rvars object, which has classes c("draws_rvars", "draws", "list").

See Also

Other formats: draws_array(), draws_df(), draws_list(), draws_matrix(), draws

Examples

x1 <- as_draws_rvars(example_draws())
class(x1)
print(x1)
str(x1)

x2 <- draws_rvars(a = rnorm(10), b = rnorm(10), c = 1)
class(x2)
print(x2)
str(x2)

draws_summary Summaries of draws objects

Description

The summarise_draws() (and summarize_draws()) methods provide a quick way to get a table
of summary statistics and diagnostics. These methods will convert an object to a draws object if it
isn’t already. For convenience, a summary() method for draws and rvar objects are also provided
as an alias for summarise_draws() if the input object is a draws or rvar object.

Usage

summarise_draws(.x, ...)

summarize_draws(.x, ...)

S3 method for class 'draws'
summarise_draws(
.x,

draws_summary 25

...,

.args = list(),

.num_args = getOption("posterior.num_args", list()),

.cores = 1
)

S3 method for class 'draws'
summary(object, ...)

S3 method for class 'rvar'
summarise_draws(.x, ...)

S3 method for class 'rvar'
summary(object, ...)

default_summary_measures()

default_convergence_measures()

default_mcse_measures()

Arguments

.x, object (draws) A draws object or one coercible to a draws object.

... Name-value pairs of summary or diagnostic functions. The provided names will
be used as the names of the columns in the result unless the function returns a
named vector, in which case the latter names are used. The functions can be
specified in any format supported by as_function(). See Examples.

.args (named list) Optional arguments passed to the summary functions.

.num_args (named list) Optional arguments passed to num() for pretty printing of sum-
maries. Can be controlled globally via the posterior.num_args option.

.cores (positive integer) The number of cores to use for computing summaries for dif-
ferent variables in parallel. Coerced to integer if possible, otherwise errors. The
default is .cores = 1, in which case no parallelization is implemented. By de-
fault, a socket cluster is used on Windows and forks otherwise.

Details

The default summary functions used are the ones specified by default_summary_measures() and
default_convergence_measures():

default_summary_measures()

• mean()

• median()

• sd()

• mad()

• quantile2()

26 draws_summary

default_convergence_measures()

• rhat()

• ess_bulk()

• ess_tail()

The var() function should not be used to compute variances due to its inconsistent behavior with
matrices. Instead, please use distributional::variance().

Value

The summarise_draws() methods return a tibble data frame. The first column ("variable") con-
tains the variable names and the remaining columns contain summary statistics and diagnostics.

The functions default_summary_measures(), default_convergence_measures(), and default_mcse_measures()
return character vectors of names of the default measures.

See Also

diagnostics for a list of available diagnostics and links to their individual help pages.

Examples

x <- example_draws("eight_schools")
class(x)
str(x)

summarise_draws(x)
summarise_draws(x, "mean", "median")
summarise_draws(x, mean, mcse = mcse_mean)
summarise_draws(x, ~quantile(.x, probs = c(0.4, 0.6)))

using default_*_meaures()
summarise_draws(x, default_summary_measures())
summarise_draws(x, default_convergence_measures())
summarise_draws(x, default_mcse_measures())

compute variance of variables
summarise_draws(x, var = distributional::variance)

illustrate use of '.args'
ws <- rexp(ndraws(x))
summarise_draws(x, weighted.mean, .args = list(w = ws))

adjust how numerical summaries are printed
summarise_draws(x, .num_args = list(sigfig = 2, notation = "dec"))

drop,rvar-method 27

drop,rvar-method Drop redundant dimensions

Description

Delete the dimensions of an rvar which are of size one. See base::drop()

Usage

S4 method for signature 'rvar'
drop(x)

Arguments

x (rvar) an rvar.

Value

An rvar with the same length as x, but where any entry equal to 1 in dim(x) has been removed.
The exception is if dim(x) == 1, in which case dim(drop(x)) == 1 as well (this is because rvars,
unlike numerics, never have NULL dimensions).

Examples

Sigma is a 3x3 covariance matrix
Sigma <- as_draws_rvars(example_draws("multi_normal"))$Sigma
Sigma

Sigma[1,]

drop(Sigma[1,])

equivalently ...
Sigma[1, drop = TRUE]

entropy Normalized entropy

Description

Normalized entropy, for measuring dispersion in draws from categorical distributions.

28 entropy

Usage

entropy(x)

Default S3 method:
entropy(x)

S3 method for class 'rvar'
entropy(x)

Arguments

x (multiple options) A vector to be interpreted as draws from a categorical distri-
bution, such as:

• A factor
• A numeric (should be integer or integer-like)
• An rvar, rvar_factor, or rvar_ordered

Details

Calculates the normalized Shannon entropy of the draws in x. This value is the entropy of x divided
by the maximum entropy of a distribution with n categories, where n is length(unique(x)) for
numeric vectors and length(levels(x)) for factors:

−
∑n

i=1 pi log(pi)

log(n)

This scales the output to be between 0 (all probability in one category) and 1 (uniform). This form
of normalized entropy is referred to as HREL in Wilcox (1967).

Value

If x is a factor or numeric, returns a length-1 numeric vector with a value between 0 and 1 (inclusive)
giving the normalized Shannon entropy of x.

If x is an rvar, returns an array of the same shape as x, where each cell is the normalized Shannon
entropy of the draws in the corresponding cell of x.

References

Allen R. Wilcox (1967). Indices of Qualitative Variation (No. ORNL-TM-1919). Oak Ridge
National Lab., Tenn.

Examples

set.seed(1234)

levels <- c("a", "b", "c", "d", "e")

a uniform distribution: high normalized entropy
x <- factor(

ess_basic 29

sample(levels, 4000, replace = TRUE, prob = c(0.2, 0.2, 0.2, 0.2, 0.2)),
levels = levels

)
entropy(x)

a unimodal distribution: low normalized entropy
y <- factor(

sample(levels, 4000, replace = TRUE, prob = c(0.95, 0.02, 0.015, 0.01, 0.005)),
levels = levels

)
entropy(y)

both together, as an rvar
xy <- c(rvar(x), rvar(y))
xy
entropy(xy)

ess_basic Basic version of the effective sample size

Description

Compute the basic effective sample size (ESS) estimate for a single variable as described in Gelman
et al. (2013) with some changes according to Vehtari et al. (2021). For practical applications, we
strongly recommend the improved ESS convergence diagnostics implemented in ess_bulk() and
ess_tail(). See Vehtari (2021) for an in-depth comparison of different effective sample size
estimators.

Usage

ess_basic(x, ...)

Default S3 method:
ess_basic(x, split = TRUE, ...)

S3 method for class 'rvar'
ess_basic(x, split = TRUE, ...)

Arguments

x (multiple options) One of:

• A matrix of draws for a single variable (iterations x chains). See extract_variable_matrix().
• An rvar.

... Arguments passed to individual methods (if applicable).

split (logical) Should the estimate be computed on split chains? The default is TRUE.

30 ess_bulk

Value

If the input is an array, returns a single numeric value. If any of the draws is non-finite, that is, NA,
NaN, Inf, or -Inf, the returned output will be (numeric) NA. Also, if all draws within any of the
chains of a variable are the same (constant), the returned output will be (numeric) NA as well. The
reason for the latter is that, for constant draws, we cannot distinguish between variables that are
supposed to be constant (e.g., a diagonal element of a correlation matrix is always 1) or variables
that just happened to be constant because of a failure of convergence or other problems in the
sampling process.

If the input is an rvar, returns an array of the same dimensions as the rvar, where each element is
equal to the value that would be returned by passing the draws array for that element of the rvar to
this function.

References

Andrew Gelman, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari and Donald B. Rubin
(2013). Bayesian Data Analysis, Third Edition. Chapman and Hall/CRC.

Aki Vehtari, Andrew Gelman, Daniel Simpson, Bob Carpenter, and Paul-Christian Bürkner (2021).
Rank-normalization, folding, and localization: An improved R-hat for assessing convergence of
MCMC (with discussion). Bayesian Data Analysis. 16(2), 667-–718. doi:10.1214/20-BA1221

Aki Vehtari (2021). Comparison of MCMC effective sample size estimators. Retrieved from
https://avehtari.github.io/rhat_ess/ess_comparison.html

See Also

Other diagnostics: ess_bulk(), ess_quantile(), ess_sd(), ess_tail(), mcse_mean(), mcse_quantile(),
mcse_sd(), rhat_basic(), rhat_nested(), rhat(), rstar()

Examples

mu <- extract_variable_matrix(example_draws(), "mu")
ess_basic(mu)

d <- as_draws_rvars(example_draws("multi_normal"))
ess_basic(d$Sigma)

ess_bulk Bulk effective sample size (bulk-ESS)

Description

Compute a bulk effective sample size estimate (bulk-ESS) for a single variable. Bulk-ESS is useful
as a diagnostic for the sampling efficiency in the bulk of the posterior. It is defined as the effective
sample size for rank normalized values using split chains. For the tail effective sample size see
ess_tail(). See Vehtari (2021) for an in-depth comparison of different effective sample size
estimators.

ess_bulk 31

Usage

ess_bulk(x, ...)

Default S3 method:
ess_bulk(x, ...)

S3 method for class 'rvar'
ess_bulk(x, ...)

Arguments

x (multiple options) One of:

• A matrix of draws for a single variable (iterations x chains). See extract_variable_matrix().
• An rvar.

... Arguments passed to individual methods (if applicable).

Value

If the input is an array, returns a single numeric value. If any of the draws is non-finite, that is, NA,
NaN, Inf, or -Inf, the returned output will be (numeric) NA. Also, if all draws within any of the
chains of a variable are the same (constant), the returned output will be (numeric) NA as well. The
reason for the latter is that, for constant draws, we cannot distinguish between variables that are
supposed to be constant (e.g., a diagonal element of a correlation matrix is always 1) or variables
that just happened to be constant because of a failure of convergence or other problems in the
sampling process.

If the input is an rvar, returns an array of the same dimensions as the rvar, where each element is
equal to the value that would be returned by passing the draws array for that element of the rvar to
this function.

References

Aki Vehtari, Andrew Gelman, Daniel Simpson, Bob Carpenter, and Paul-Christian Bürkner (2021).
Rank-normalization, folding, and localization: An improved R-hat for assessing convergence of
MCMC (with discussion). Bayesian Data Analysis. 16(2), 667-–718. doi:10.1214/20-BA1221

Aki Vehtari (2021). Comparison of MCMC effective sample size estimators. Retrieved from
https://avehtari.github.io/rhat_ess/ess_comparison.html

See Also

Other diagnostics: ess_basic(), ess_quantile(), ess_sd(), ess_tail(), mcse_mean(), mcse_quantile(),
mcse_sd(), rhat_basic(), rhat_nested(), rhat(), rstar()

Examples

mu <- extract_variable_matrix(example_draws(), "mu")
ess_bulk(mu)

d <- as_draws_rvars(example_draws("multi_normal"))

32 ess_mean

ess_bulk(d$Sigma)

ess_mean Effective sample size for the mean

Description

Compute an effective sample size estimate for a mean (expectation) estimate of a single variable.

Usage

ess_mean(x, ...)

S3 method for class 'rvar'
ess_mean(x, ...)

Arguments

x (multiple options) One of:

• A matrix of draws for a single variable (iterations x chains). See extract_variable_matrix().
• An rvar.

... Arguments passed to individual methods (if applicable).

Value

If the input is an array, returns a single numeric value. If any of the draws is non-finite, that is, NA,
NaN, Inf, or -Inf, the returned output will be (numeric) NA. Also, if all draws within any of the
chains of a variable are the same (constant), the returned output will be (numeric) NA as well. The
reason for the latter is that, for constant draws, we cannot distinguish between variables that are
supposed to be constant (e.g., a diagonal element of a correlation matrix is always 1) or variables
that just happened to be constant because of a failure of convergence or other problems in the
sampling process.

If the input is an rvar, returns an array of the same dimensions as the rvar, where each element is
equal to the value that would be returned by passing the draws array for that element of the rvar to
this function.

References

Andrew Gelman, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari and Donald B. Rubin
(2013). Bayesian Data Analysis, Third Edition. Chapman and Hall/CRC.

ess_quantile 33

Examples

mu <- extract_variable_matrix(example_draws(), "mu")
ess_mean(mu)

d <- as_draws_rvars(example_draws("multi_normal"))
ess_mean(d$Sigma)

ess_quantile Effective sample sizes for quantiles

Description

Compute effective sample size estimates for quantile estimates of a single variable.

Usage

ess_quantile(x, probs = c(0.05, 0.95), ...)

Default S3 method:
ess_quantile(x, probs = c(0.05, 0.95), names = TRUE, ...)

S3 method for class 'rvar'
ess_quantile(x, probs = c(0.05, 0.95), names = TRUE, ...)

ess_median(x, ...)

Default S3 method:
ess_mean(x, ...)

Arguments

x (multiple options) One of:

• A matrix of draws for a single variable (iterations x chains). See extract_variable_matrix().
• An rvar.

probs (numeric vector) Probabilities in [0, 1].

... Arguments passed to individual methods (if applicable).

names (logical) Should the result have a names attribute? The default is TRUE, but use
FALSE for improved speed if there are many values in probs.

Value

If the input is an array, returns a numeric vector with one element per quantile. If any of the
draws is non-finite, that is, NA, NaN, Inf, or -Inf, the returned output will be a vector of (numeric)
NA values. Also, if all draws of a variable are the same (constant), the returned output will be a
vector of (numeric) NA values as well. The reason for the latter is that, for constant draws, we

34 ess_sd

cannot distinguish between variables that are supposed to be constant (e.g., a diagonal element of a
correlation matrix is always 1) or variables that just happened to be constant because of a failure of
convergence or other problems in the sampling process.

If the input is an rvar and length(probs) == 1, returns an array of the same dimensions as the
rvar, where each element is equal to the value that would be returned by passing the draws array
for that element of the rvar to this function. If length(probs) > 1, the first dimension of the result
indexes the input probabilities; i.e. the result has dimension c(length(probs), dim(x)).

References

Aki Vehtari, Andrew Gelman, Daniel Simpson, Bob Carpenter, and Paul-Christian Bürkner (2021).
Rank-normalization, folding, and localization: An improved R-hat for assessing convergence of
MCMC (with discussion). Bayesian Data Analysis. 16(2), 667-–718. doi:10.1214/20-BA1221

See Also

Other diagnostics: ess_basic(), ess_bulk(), ess_sd(), ess_tail(), mcse_mean(), mcse_quantile(),
mcse_sd(), rhat_basic(), rhat_nested(), rhat(), rstar()

Examples

mu <- extract_variable_matrix(example_draws(), "mu")
ess_quantile(mu, probs = c(0.1, 0.9))

d <- as_draws_rvars(example_draws("multi_normal"))
ess_quantile(d$mu, probs = c(0.1, 0.9))

ess_sd Effective sample size for the standard deviation

Description

Compute an effective sample size estimate for the standard deviation (SD) estimate of a single
variable. This is defined as the effective sample size estimate for the absolute deviation from mean.

Usage

ess_sd(x, ...)

Default S3 method:
ess_sd(x, ...)

S3 method for class 'rvar'
ess_sd(x, ...)

ess_tail 35

Arguments

x (multiple options) One of:

• A matrix of draws for a single variable (iterations x chains). See extract_variable_matrix().
• An rvar.

... Arguments passed to individual methods (if applicable).

Value

If the input is an array, returns a single numeric value. If any of the draws is non-finite, that is, NA,
NaN, Inf, or -Inf, the returned output will be (numeric) NA. Also, if all draws within any of the
chains of a variable are the same (constant), the returned output will be (numeric) NA as well. The
reason for the latter is that, for constant draws, we cannot distinguish between variables that are
supposed to be constant (e.g., a diagonal element of a correlation matrix is always 1) or variables
that just happened to be constant because of a failure of convergence or other problems in the
sampling process.

If the input is an rvar, returns an array of the same dimensions as the rvar, where each element is
equal to the value that would be returned by passing the draws array for that element of the rvar to
this function.

References

Aki Vehtari, Andrew Gelman, Daniel Simpson, Bob Carpenter, and Paul-Christian Bürkner (2021).
Rank-normalization, folding, and localization: An improved R-hat for assessing convergence of
MCMC (with discussion). Bayesian Data Analysis. 16(2), 667-–718. doi:10.1214/20-BA1221

See Also

Other diagnostics: ess_basic(), ess_bulk(), ess_quantile(), ess_tail(), mcse_mean(), mcse_quantile(),
mcse_sd(), rhat_basic(), rhat_nested(), rhat(), rstar()

Examples

mu <- extract_variable_matrix(example_draws(), "mu")
ess_sd(mu)

d <- as_draws_rvars(example_draws("multi_normal"))
ess_sd(d$Sigma)

ess_tail Tail effective sample size (tail-ESS)

36 ess_tail

Description

Compute a tail effective sample size estimate (tail-ESS) for a single variable. Tail-ESS is useful as
a diagnostic for the sampling efficiency in the tails of the posterior. It is defined as the minimum
of the effective sample sizes for 5% and 95% quantiles. For the bulk effective sample size see
ess_bulk(). See Vehtari (2021) for an in-depth comparison of different effective sample size
estimators.

Usage

ess_tail(x, ...)

Default S3 method:
ess_tail(x, ...)

S3 method for class 'rvar'
ess_tail(x, ...)

Arguments

x (multiple options) One of:

• A matrix of draws for a single variable (iterations x chains). See extract_variable_matrix().

• An rvar.

... Arguments passed to individual methods (if applicable).

Value

If the input is an array, returns a single numeric value. If any of the draws is non-finite, that is, NA,
NaN, Inf, or -Inf, the returned output will be (numeric) NA. Also, if all draws within any of the
chains of a variable are the same (constant), the returned output will be (numeric) NA as well. The
reason for the latter is that, for constant draws, we cannot distinguish between variables that are
supposed to be constant (e.g., a diagonal element of a correlation matrix is always 1) or variables
that just happened to be constant because of a failure of convergence or other problems in the
sampling process.

If the input is an rvar, returns an array of the same dimensions as the rvar, where each element is
equal to the value that would be returned by passing the draws array for that element of the rvar to
this function.

References

Aki Vehtari, Andrew Gelman, Daniel Simpson, Bob Carpenter, and Paul-Christian Bürkner (2021).
Rank-normalization, folding, and localization: An improved R-hat for assessing convergence of
MCMC (with discussion). Bayesian Data Analysis. 16(2), 667-–718. doi:10.1214/20-BA1221

Aki Vehtari (2021). Comparison of MCMC effective sample size estimators. Retrieved from
https://avehtari.github.io/rhat_ess/ess_comparison.html

example_draws 37

See Also

Other diagnostics: ess_basic(), ess_bulk(), ess_quantile(), ess_sd(), mcse_mean(), mcse_quantile(),
mcse_sd(), rhat_basic(), rhat_nested(), rhat(), rstar()

Examples

mu <- extract_variable_matrix(example_draws(), "mu")
ess_tail(mu)

d <- as_draws_rvars(example_draws("multi_normal"))
ess_tail(d$Sigma)

example_draws Example draws objects

Description

Objects for use in examples, vignettes, and tests.

Usage

example_draws(example = "eight_schools")

Arguments

example (string) The name of the example draws object. See Details for available op-
tions.

Details

The following example draws objects are available.

eight_schools: A draws_array object with 100 iterations from each of 4 Markov chains obtained
by fitting the eight schools model described in Gelman et al. (2013) with Stan. The variables are:

• mu: Overall mean of the eight schools

• tau: Standard deviation between schools

• theta: Individual means of each of the eight schools

multi_normal: A draws_array object with 100 iterations from each of the 4 Markov chains ob-
tained by fitting a 3-dimensional multivariate normal model to 100 simulated observations. The
variables are:

• mu: Mean parameter vector of length 3

• Sigma: Covariance matrix of dimension 3 x 3

https://mc-stan.org

38 extract_variable

Value

A draws object.

Note

These objects are only intended to be used in demonstrations and tests. They contain fewer iterations
and chains than recommended for performing actual inference.

References

Andrew Gelman, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari and Donald B. Rubin
(2013). Bayesian Data Analysis, Third Edition. Chapman and Hall/CRC.

Examples

draws_eight_schools <- example_draws("eight_schools")
summarise_draws(draws_eight_schools)

draws_multi_normal <- example_draws("multi_normal")
summarise_draws(draws_multi_normal)

extract_variable Extract draws of a single variable

Description

Extract a vector of draws of a single variable.

Usage

extract_variable(x, variable, ...)

Default S3 method:
extract_variable(x, variable, ...)

S3 method for class 'draws'
extract_variable(x, variable, ...)

S3 method for class 'draws_rvars'
extract_variable(x, variable, ...)

Arguments

x (draws) A draws object or another R object for which the method is defined.

variable (string) The name of the variable to extract.

... Arguments passed to individual methods (if applicable).

extract_variable_matrix 39

Value

A numeric vector of length equal to the number of draws.

Examples

x <- example_draws()
mu <- extract_variable(x, variable = "mu")
str(mu)

extract_variable_matrix

Extract matrix of a single variable

Description

Extract an iterations x chains matrix of draws of a single variable. This is primarily used for con-
vergence diagnostic functions such as rhat().

Usage

extract_variable_matrix(x, variable, ...)

Default S3 method:
extract_variable_matrix(x, variable, ...)

S3 method for class 'draws'
extract_variable_matrix(x, variable, ...)

S3 method for class 'draws_rvars'
extract_variable_matrix(x, variable, ...)

Arguments

x (draws) A draws object or another R object for which the method is defined.
variable (string) The name of the variable to extract.
... Arguments passed to individual methods (if applicable).

Value

A matrix with dimension iterations x chains.

Examples

x <- example_draws()
mu <- extract_variable_matrix(x, variable = "mu")
dim(mu)
rhat(mu)

40 for_each_draw

for_each_draw Loop over draws

Description

Executes an expression once for every draw in a draws object. Used primarily for its side effects
and returns the input x invisibly.

Usage

for_each_draw(x, expr)

Arguments

x (draws) A draws object or another R object for which the method is defined.

expr (expression) A bare expression that can contain references to variables in x by
name. This expression will be executed once per draw of x, where references to
variables in x resolve to the value of that variable in that draw. The expression
supports quasiquotation.

Details

If x is not in the draws_rvars format, it is first converted to that format. This allows the variables
in x to include their dimensions (i.e, to act as R vectors and arrays) when being referred to in expr.

Within expr, use .draw to refer to the draw index, which will be a value between 1 and ndraws(x).
expr is executed in the calling environment of for_each_draw(), so it can use variables in that
environment (however, due to the use of data masking, to modify variables in that environment, one
must use <<-.)

Value

As for_each_draw() is used primarily for its side effects (the expression executed for each draw
of x), it returns the input x invisibly.

Examples

eight_schools <- as_draws_rvars(example_draws())

1. A simple example --- looping over draws and printing each draw
NOTE: You probably don't want to do this in practice! This example is
just intended to show what for_each_draw() is doing. If you just want to
print the draws of an rvar, it is probably better to use draws_of()
for_each_draw(eight_schools, {

print(mu)
})

is_rvar 41

2. A more complex example --- building a parallel coordinates plot
First, construct the plot bounds
plot(1, type = "n",

xlim = c(1, length(eight_schools$theta)),
ylim = range(range(eight_schools$theta)),
xlab = "school", ylab = "theta"

)

Then, use for_each_draw() to make a parallel coordinates plot of all draws
of eight_schools$theta. Use resample_draws(eight_schools, n = ...)
in place of eight_schools if a smaller sample is desired for the plot.
for_each_draw(eight_schools, {

lines(seq_along(theta), theta, col = rgb(1, 0, 0, 0.05))
})

Finally, add means and 90% intervals
lines(seq_along(eight_schools$theta), mean(eight_schools$theta))
with(summarise_draws(eight_schools$theta),

segments(seq_along(eight_schools$theta), y0 = q5, y1 = q95)
)

is_rvar Is x a random variable?

Description

Test if x is an rvar.

Usage

is_rvar(x)

Arguments

x (any object) An object to test.

Value

TRUE if x is an rvar, FALSE otherwise.

See Also

as_rvar() to convert objects to rvars.

42 match

is_rvar_factor Is x a factor random variable?

Description

Test if x is an rvar_factor or rvar_ordered.

Usage

is_rvar_factor(x)

is_rvar_ordered(x)

Arguments

x (any object) An object to test.

Value

TRUE if x is an rvar_factor or rvar_ordered, FALSE otherwise.

See Also

as_rvar_factor() and as_rvar_ordered() to convert objects to rvar_factors and rvar_ordereds.

match Value Matching

Description

Generic version of base::match(). For base vectors, returns a vector of the positions of (first)
matches of its first argument in its second. For rvars, returns an rvar of the matches.

Usage

match(x, table, ...)

Default S3 method:
match(x, ...)

S3 method for class 'rvar'
match(x, ...)

x %in% table

mcse_mean 43

Arguments

x (multiple options) the values to be matched. Can be:

• A base vector: see base::match()

• An rvar

table (vector) the values to be matched against.

... Arguments passed on to base::match

nomatch the value to be returned in the case when no match is found. Note that
it is coerced to integer.

incomparables a vector of values that cannot be matched. Any value in x
matching a value in this vector is assigned the nomatch value. For historical
reasons, FALSE is equivalent to NULL.

Details

For more information on how match behaves with base vectors, see base::match().

When x is an rvar, the draws of x are matched against table using base::match(), and the result
is returned as an rvar.

The implementation of %in% here is identical to base::%in%, except it uses the generic version of
match() so that non-base vectors (such as rvars) are supported.

Value

When x is a base vector, a vector of the same length as x.

When x is an rvar, an rvar the same shape as x.

Examples

x <- rvar(c("a","b","b","c","d"))
x %in% c("b","d")

for additional examples, see base::match()

mcse_mean Monte Carlo standard error for the mean

Description

Compute the Monte Carlo standard error for the mean (expectation) of a single variable.

44 mcse_mean

Usage

mcse_mean(x, ...)

Default S3 method:
mcse_mean(x, ...)

S3 method for class 'rvar'
mcse_mean(x, ...)

Arguments

x (multiple options) One of:

• A matrix of draws for a single variable (iterations x chains). See extract_variable_matrix().
• An rvar.

... Arguments passed to individual methods (if applicable).

Value

If the input is an array, returns a single numeric value. If any of the draws is non-finite, that is, NA,
NaN, Inf, or -Inf, the returned output will be (numeric) NA. Also, if all draws within any of the
chains of a variable are the same (constant), the returned output will be (numeric) NA as well. The
reason for the latter is that, for constant draws, we cannot distinguish between variables that are
supposed to be constant (e.g., a diagonal element of a correlation matrix is always 1) or variables
that just happened to be constant because of a failure of convergence or other problems in the
sampling process.

If the input is an rvar, returns an array of the same dimensions as the rvar, where each element is
equal to the value that would be returned by passing the draws array for that element of the rvar to
this function.

References

Andrew Gelman, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari and Donald B. Rubin
(2013). Bayesian Data Analysis, Third Edition. Chapman and Hall/CRC.

See Also

Other diagnostics: ess_basic(), ess_bulk(), ess_quantile(), ess_sd(), ess_tail(), mcse_quantile(),
mcse_sd(), rhat_basic(), rhat_nested(), rhat(), rstar()

Examples

mu <- extract_variable_matrix(example_draws(), "mu")
mcse_mean(mu)

d <- as_draws_rvars(example_draws("multi_normal"))
mcse_mean(d$Sigma)

mcse_quantile 45

mcse_quantile Monte Carlo standard error for quantiles

Description

Compute Monte Carlo standard errors for quantile estimates of a single variable.

Usage

mcse_quantile(x, probs = c(0.05, 0.95), ...)

Default S3 method:
mcse_quantile(x, probs = c(0.05, 0.95), names = TRUE, ...)

S3 method for class 'rvar'
mcse_quantile(x, probs = c(0.05, 0.95), names = TRUE, ...)

mcse_median(x, ...)

Arguments

x (multiple options) One of:

• A matrix of draws for a single variable (iterations x chains). See extract_variable_matrix().
• An rvar.

probs (numeric vector) Probabilities in [0, 1].

... Arguments passed to individual methods (if applicable).

names (logical) Should the result have a names attribute? The default is TRUE, but use
FALSE for improved speed if there are many values in probs.

Value

If the input is an array, returns a numeric vector with one element per quantile. If any of the
draws is non-finite, that is, NA, NaN, Inf, or -Inf, the returned output will be a vector of (numeric)
NA values. Also, if all draws of a variable are the same (constant), the returned output will be a
vector of (numeric) NA values as well. The reason for the latter is that, for constant draws, we
cannot distinguish between variables that are supposed to be constant (e.g., a diagonal element of a
correlation matrix is always 1) or variables that just happened to be constant because of a failure of
convergence or other problems in the sampling process.

If the input is an rvar and length(probs) == 1, returns an array of the same dimensions as the
rvar, where each element is equal to the value that would be returned by passing the draws array
for that element of the rvar to this function. If length(probs) > 1, the first dimension of the result
indexes the input probabilities; i.e. the result has dimension c(length(probs), dim(x)).

46 mcse_sd

References

Aki Vehtari, Andrew Gelman, Daniel Simpson, Bob Carpenter, and Paul-Christian Bürkner (2021).
Rank-normalization, folding, and localization: An improved R-hat for assessing convergence of
MCMC (with discussion). Bayesian Data Analysis. 16(2), 667-–718. doi:10.1214/20-BA1221

See Also

Other diagnostics: ess_basic(), ess_bulk(), ess_quantile(), ess_sd(), ess_tail(), mcse_mean(),
mcse_sd(), rhat_basic(), rhat_nested(), rhat(), rstar()

Examples

mu <- extract_variable_matrix(example_draws(), "mu")
mcse_quantile(mu, probs = c(0.1, 0.9))

d <- as_draws_rvars(example_draws("multi_normal"))
mcse_quantile(d$mu)

mcse_sd Monte Carlo standard error for the standard deviation

Description

Compute the Monte Carlo standard error for the standard deviation (SD) of a single variable without
assuming normality using moments of moments and first order Taylor series approximation (Kenney
and Keeping, 1951, p. 141).

Usage

mcse_sd(x, ...)

Default S3 method:
mcse_sd(x, ...)

S3 method for class 'rvar'
mcse_sd(x, ...)

Arguments

x (multiple options) One of:

• A matrix of draws for a single variable (iterations x chains). See extract_variable_matrix().
• An rvar.

... Arguments passed to individual methods (if applicable).

merge_chains 47

Value

If the input is an array, returns a single numeric value. If any of the draws is non-finite, that is, NA,
NaN, Inf, or -Inf, the returned output will be (numeric) NA. Also, if all draws within any of the
chains of a variable are the same (constant), the returned output will be (numeric) NA as well. The
reason for the latter is that, for constant draws, we cannot distinguish between variables that are
supposed to be constant (e.g., a diagonal element of a correlation matrix is always 1) or variables
that just happened to be constant because of a failure of convergence or other problems in the
sampling process.

If the input is an rvar, returns an array of the same dimensions as the rvar, where each element is
equal to the value that would be returned by passing the draws array for that element of the rvar to
this function.

References

Aki Vehtari, Andrew Gelman, Daniel Simpson, Bob Carpenter, and Paul-Christian Bürkner (2021).
Rank-normalization, folding, and localization: An improved R-hat for assessing convergence of
MCMC (with discussion). Bayesian Data Analysis. 16(2), 667-–718. doi:10.1214/20-BA1221

J. F. Kenney & E. S. Keeping (1951). Mathematics of Statistics, Vol. II.

See Also

Other diagnostics: ess_basic(), ess_bulk(), ess_quantile(), ess_sd(), ess_tail(), mcse_mean(),
mcse_quantile(), rhat_basic(), rhat_nested(), rhat(), rstar()

Examples

mu <- extract_variable_matrix(example_draws(), "mu")
mcse_sd(mu)

d <- as_draws_rvars(example_draws("multi_normal"))
mcse_sd(d$Sigma)

merge_chains Merge chains of draws objects

Description

Merge chains of draws objects into a single chain. Some operations will trigger an automatic
merging of chains, for example, because chains do not match between two objects involved in a
binary operation. By default, no warning will be issued when this happens but you can activate one
via options(posterior.warn_on_merge_chains = TRUE).

48 modal_category

Usage

merge_chains(x, ...)

S3 method for class 'draws_matrix'
merge_chains(x, ...)

S3 method for class 'draws_array'
merge_chains(x, ...)

S3 method for class 'draws_df'
merge_chains(x, ...)

S3 method for class 'draws_list'
merge_chains(x, ...)

S3 method for class 'rvar'
merge_chains(x, ...)

S3 method for class 'draws_rvars'
merge_chains(x, ...)

Arguments

x (draws) A draws object or another R object for which the method is defined.

... Arguments passed to individual methods (if applicable).

Value

A draws object of the same class as x.

Examples

x <- example_draws()

draws_array with 4 chains, 100 iters each
str(x)

draws_array with 1 chain of 400 iterations
str(merge_chains(x))

modal_category Modal category

Description

Modal category of a vector.

modal_category 49

Usage

modal_category(x)

Default S3 method:
modal_category(x)

S3 method for class 'rvar'
modal_category(x)

Arguments

x (multiple options) A vector to be interpreted as draws from a categorical distri-
bution, such as:

• A factor

• A numeric (should be integer or integer-like)

• An rvar, rvar_factor, or rvar_ordered

Details

Finds the modal category (i.e., most frequent value) in x. In the case of ties, returns the first tie.

Value

If x is a factor or numeric, returns a length-1 vector containing the modal value.

If x is an rvar, returns an array of the same shape as x, where each cell is the modal value of the
draws in the corresponding cell of x.

Examples

x <- factor(c("a","b","b","c","d"))
modal_category(x)

in the case of ties, the first tie is returned
y <- factor(c("a","c","c","d","d"))
modal_category(y)

both together, as an rvar
xy <- c(rvar(x), rvar(y))
xy
modal_category(xy)

50 mutate_variables

mutate_variables Mutate variables in draws objects

Description

Mutate variables in a draws object.

Usage

mutate_variables(.x, ...)

S3 method for class 'draws_matrix'
mutate_variables(.x, ...)

S3 method for class 'draws_array'
mutate_variables(.x, ...)

S3 method for class 'draws_df'
mutate_variables(.x, ...)

S3 method for class 'draws_list'
mutate_variables(.x, ...)

S3 method for class 'draws_rvars'
mutate_variables(.x, ...)

Arguments

.x (draws) A draws object.

... Name-value pairs of expressions, each with either length 1 or the same length
as in the entire input (i.e., number of iterations or draws). The name of each
argument will be the name of a new variable, and the value will be its corre-
sponding value. Use a NULL value in mutate_variables to drop a variable.
New variables overwrite existing variables of the same name.

Details

In order to mutate variables in draws_matrix and draws_array objects, they are transformed to
draws_df objects first and then transformed back after mutation. As those transformations are quite
expensive for larger number of draws, we recommend using mutate_variables on draws_df and
draws_list objects if speed is an issue.

In draws_rvars objects, the output of each expression in ... is coerced to an rvar object if it is
not already one using as_rvar().

Value

Returns a draws object of the same format as .x, with variables mutated according to the expres-
sions provided in

order_draws 51

See Also

variables, rename_variables

Examples

x <- as_draws_df(example_draws())
x <- subset(x, variable = c("mu", "tau"))

mutate_variables(x, tau2 = tau^2)
mutate_variables(x, scale = 1.96 * tau, lower = mu - scale)

order_draws Order draws objects

Description

Order draws objects according to iteration and chain number. By default, draws objects are ordered
but subsetting or extracting parts of them may leave them in an unordered state.

Usage

order_draws(x, ...)

S3 method for class 'draws_matrix'
order_draws(x, ...)

S3 method for class 'draws_array'
order_draws(x, ...)

S3 method for class 'draws_df'
order_draws(x, ...)

S3 method for class 'draws_list'
order_draws(x, ...)

S3 method for class 'draws_rvars'
order_draws(x, ...)

S3 method for class 'rvar'
order_draws(x, ...)

Arguments

x (draws) A draws object or another R object for which the method is defined.

... Arguments passed to individual methods (if applicable).

52 pareto_diags

Value

A draws object of the same class as x.

See Also

repair_draws()

Examples

x <- as_draws_array(example_draws())
dimnames(x[10:5, 4:3,])
dimnames(order_draws(x[10:5, 4:3,]))

pareto_diags Pareto smoothing diagnostics

Description

Compute diagnostics for Pareto smoothing the tail draws of x by replacing tail draws by order
statistics of a generalized Pareto distribution fit to the tail(s).

Usage

pareto_diags(x, ...)

Default S3 method:
pareto_diags(

x,
tail = c("both", "right", "left"),
r_eff = NULL,
ndraws_tail = NULL,
verbose = FALSE,
...

)

S3 method for class 'rvar'
pareto_diags(x, ...)

Arguments

x (multiple options) One of:

• A matrix of draws for a single variable (iterations x chains). See extract_variable_matrix().
• An rvar.

... Arguments passed to individual methods (if applicable).

tail (string) The tail to diagnose/smooth:

pareto_diags 53

• "right": diagnose/smooth only the right (upper) tail
• "left": diagnose/smooth only the left (lower) tail
• "both": diagnose/smooth both tails and return the maximum k-hat value

The default is "both".

r_eff (numeric) relative effective sample size estimate. If r_eff is omitted, it will be
calculated assuming the draws are from MCMC.

ndraws_tail (numeric) number of draws for the tail. If ndraws_tail is not specified, it
will be calculated as ceiling(3 * sqrt(length(x) / r_eff)) if length(x) > 225 and
length(x) / 5 otherwise (see Appendix H in Vehtari et al. (2022)).

verbose (logical) Should diagnostic messages be printed? If TRUE, messages related to
Pareto diagnostics will be printed. Default is FALSE.

Details

When the fitted Generalized Pareto Distribution is used to smooth the tail values and these smoothed
values are used to compute expectations, the following diagnostics can give further information
about the reliability of these estimates.

• min_ss: Minimum sample size for reliable Pareto smoothed estimate. If the actual sample
size is greater than min_ss, then Pareto smoothed estimates can be considered reliable. If
the actual sample size is lower than min_ss, increasing the sample size might result in more
reliable estimates. For further details, see Section 3.2.3, Equation 11 in Vehtari et al. (2022).

• khat_threshold: Threshold below which k-hat values result in reliable Pareto smoothed
estimates. The threshold is lower for smaller effective sample sizes. If k-hat is larger than the
threshold, increasing the total sample size may improve reliability of estimates. For further
details, see Section 3.2.4, Equation 13 in Vehtari et al. (2022).

• convergence_rate: Relative convergence rate compared to the central limit theorem. Appli-
cable only if the actual sample size is sufficiently large (greater than min_ss). The conver-
gence rate tells the rate at which the variance of an estimate reduces when the sample size is
increased, compared to the central limit theorem convergence rate. See Appendix B in Vehtari
et al. (2022).

Value

List of Pareto smoothing diagnostics:

• khat: estimated Pareto k shape parameter,

• min_ss: minimum sample size for reliable Pareto smoothed estimate,

• khat_threshold: khat-threshold for reliable Pareto smoothed estimate,

• convergence_rate: Pareto smoothed estimate RMSE convergence rate.

References

Aki Vehtari, Daniel Simpson, Andrew Gelman, Yuling Yao and Jonah Gabry (2022). Pareto Smoothed
Importance Sampling. arxiv:arXiv:1507.02646

54 pareto_khat

Examples

mu <- extract_variable_matrix(example_draws(), "mu")
pareto_diags(mu)

d <- as_draws_rvars(example_draws("multi_normal"))
pareto_diags(d$Sigma)

pareto_khat Pareto khat diagnostic

Description

Estimate Pareto k value by fitting a Generalized Pareto Distribution to one or two tails of x. This
can be used to estimate the number of fractional moments that is useful for convergence diagnostics.
For further details see Vehtari et al. (2022).

Usage

pareto_khat(x, ...)

Default S3 method:
pareto_khat(

x,
tail = c("both", "right", "left"),
r_eff = NULL,
ndraws_tail = NULL,
verbose = FALSE,
...

)

S3 method for class 'rvar'
pareto_khat(x, ...)

Arguments

x (multiple options) One of:

• A matrix of draws for a single variable (iterations x chains). See extract_variable_matrix().
• An rvar.

... Arguments passed to individual methods (if applicable).

tail (string) The tail to diagnose/smooth:

• "right": diagnose/smooth only the right (upper) tail
• "left": diagnose/smooth only the left (lower) tail
• "both": diagnose/smooth both tails and return the maximum k-hat value

The default is "both".

pareto_smooth 55

r_eff (numeric) relative effective sample size estimate. If r_eff is omitted, it will be
calculated assuming the draws are from MCMC.

ndraws_tail (numeric) number of draws for the tail. If ndraws_tail is not specified, it
will be calculated as ceiling(3 * sqrt(length(x) / r_eff)) if length(x) > 225 and
length(x) / 5 otherwise (see Appendix H in Vehtari et al. (2022)).

verbose (logical) Should diagnostic messages be printed? If TRUE, messages related to
Pareto diagnostics will be printed. Default is FALSE.

Value

khat estimated Generalized Pareto Distribution shape parameter k

References

Aki Vehtari, Daniel Simpson, Andrew Gelman, Yuling Yao and Jonah Gabry (2022). Pareto Smoothed
Importance Sampling. arxiv:arXiv:1507.02646

Examples

mu <- extract_variable_matrix(example_draws(), "mu")
pareto_khat(mu)

d <- as_draws_rvars(example_draws("multi_normal"))
pareto_khat(d$Sigma)

pareto_smooth Pareto smoothing

Description

Smooth the tail draws of x by replacing tail draws by order statistics of a generalized Pareto distri-
bution fit to the tail(s). For further details see Vehtari et al. (2022).

Usage

pareto_smooth(x, ...)

S3 method for class 'rvar'
pareto_smooth(x, return_k = TRUE, extra_diags = FALSE, ...)

Default S3 method:
pareto_smooth(
x,
tail = c("both", "right", "left"),
r_eff = NULL,
ndraws_tail = NULL,
return_k = TRUE,

56 pareto_smooth

extra_diags = FALSE,
verbose = FALSE,
...

)

Arguments

x (multiple options) One of:

• A matrix of draws for a single variable (iterations x chains). See extract_variable_matrix().
• An rvar.

... Arguments passed to individual methods (if applicable).

return_k (logical) Should the Pareto khat be included in output? If TRUE, output will be a
list containing of smoothed draws and diagnostics. Default is TRUE.

extra_diags (logical) Should extra Pareto khat diagnostics be included in output? If TRUE,
min_ss, khat_threshold and convergence_rate for the estimated k value
will be returned. Default is FALSE.

tail (string) The tail to diagnose/smooth:

• "right": diagnose/smooth only the right (upper) tail
• "left": diagnose/smooth only the left (lower) tail
• "both": diagnose/smooth both tails and return the maximum k-hat value

The default is "both".

r_eff (numeric) relative effective sample size estimate. If r_eff is omitted, it will be
calculated assuming the draws are from MCMC.

ndraws_tail (numeric) number of draws for the tail. If ndraws_tail is not specified, it
will be calculated as ceiling(3 * sqrt(length(x) / r_eff)) if length(x) > 225 and
length(x) / 5 otherwise (see Appendix H in Vehtari et al. (2022)).

verbose (logical) Should diagnostic messages be printed? If TRUE, messages related to
Pareto diagnostics will be printed. Default is FALSE.

Value

Either a vector x of smoothed values or a named list containing the vector x and a named list
diagnostics containing Pareto smoothing diagnostics:

• khat: estimated Pareto k shape parameter, and optionally

• min_ss: minimum sample size for reliable Pareto smoothed estimate

• khat_threshold: khat-threshold for reliable Pareto smoothed estimates

• convergence_rate: Relative convergence rate for Pareto smoothed estimates

References

Aki Vehtari, Daniel Simpson, Andrew Gelman, Yuling Yao and Jonah Gabry (2022). Pareto Smoothed
Importance Sampling. arxiv:arXiv:1507.02646

print.draws_array 57

Examples

mu <- extract_variable_matrix(example_draws(), "mu")
pareto_smooth(mu)

d <- as_draws_rvars(example_draws("multi_normal"))
pareto_smooth(d$Sigma)

print.draws_array Print draws_array objects

Description

Pretty printing for draws_array objects.

Usage

S3 method for class 'draws_array'
print(
x,
digits = 2,
max_iterations = getOption("posterior.max_iterations", 5),
max_chains = getOption("posterior.max_chains", 8),
max_variables = getOption("posterior.max_variables", 4),
reserved = FALSE,
...

)

Arguments

x (draws) A draws object or another R object for which the method is defined.

digits (nonnegative integer) The minimum number of significant digits to print. If
NULL, defaults to getOption("posterior.digits", 2).

max_iterations (positive integer) The maximum number of iterations to print. Can be controlled
globally via the "posterior.max_iterations" option.

max_chains (positive integer) The maximum number of chains to print. Can be controlled
globally via the "posterior.max_chains" option.

max_variables (positive integer) The maximum number of variables to print. Can be controlled
globally via the "posterior.max_variables" option.

reserved (logical) Should reserved variables be included in the output? Defaults to FALSE.
See reserved_variables for an overview of currently reserved variable names.

... Further arguments passed to the underlying print() methods.

Value

A draws object of the same class as x.

58 print.draws_df

Examples

x <- as_draws_array(example_draws())
print(x)

print.draws_df Print draws_df objects

Description

Pretty printing for draws_df objects.

Usage

S3 method for class 'draws_df'
print(
x,
digits = 2,
max_draws = getOption("posterior.max_draws", 10),
max_variables = getOption("posterior.max_variables", 8),
reserved = FALSE,
...

)

Arguments

x (draws) A draws object or another R object for which the method is defined.

digits (nonnegative integer) The minimum number of significant digits to print. If
NULL, defaults to getOption("posterior.digits", 2).

max_draws (positive integer) The maximum number of draws to print. Can be controlled
globally via the "posterior.max_draws" option.

max_variables (positive integer) The maximum number of variables to print. Can be controlled
globally via the "posterior.max_variables" option.

reserved (logical) Should reserved variables be included in the output? Defaults to FALSE.
See reserved_variables for an overview of currently reserved variable names.

... Further arguments passed to the underlying print() methods.

Value

A draws object of the same class as x.

Examples

x <- as_draws_df(example_draws())
print(x)

print.draws_list 59

print.draws_list Print draws_list objects

Description

Pretty printing for draws_list objects.

Usage

S3 method for class 'draws_list'
print(
x,
digits = 2,
max_iterations = getOption("posterior.max_iterations", 10),
max_chains = getOption("posterior.max_chains", 2),
max_variables = getOption("posterior.max_variables", 4),
reserved = FALSE,
...

)

Arguments

x (draws) A draws object or another R object for which the method is defined.

digits (nonnegative integer) The minimum number of significant digits to print. If
NULL, defaults to getOption("posterior.digits", 2).

max_iterations (positive integer) The maximum number of iterations to print. Can be controlled
globally via the "posterior.max_iterations" option.

max_chains (positive integer) The maximum number of chains to print. Can be controlled
globally via the "posterior.max_chains" option.

max_variables (positive integer) The maximum number of variables to print. Can be controlled
globally via the "posterior.max_variables" option.

reserved (logical) Should reserved variables be included in the output? Defaults to FALSE.
See reserved_variables for an overview of currently reserved variable names.

... Further arguments passed to the underlying print() methods.

Value

A draws object of the same class as x.

Examples

x <- as_draws_list(example_draws())
print(x)

60 print.draws_matrix

print.draws_matrix Print draws_matrix objects

Description

Pretty printing for draws_matrix objects.

Usage

S3 method for class 'draws_matrix'
print(
x,
digits = 2,
max_draws = getOption("posterior.max_draws", 10),
max_variables = getOption("posterior.max_variables", 8),
reserved = FALSE,
...

)

Arguments

x (draws) A draws object or another R object for which the method is defined.

digits (nonnegative integer) The minimum number of significant digits to print. If
NULL, defaults to getOption("posterior.digits", 2).

max_draws (positive integer) The maximum number of draws to print. Can be controlled
globally via the "posterior.max_draws" option.

max_variables (positive integer) The maximum number of variables to print. Can be controlled
globally via the "posterior.max_variables" option.

reserved (logical) Should reserved variables be included in the output? Defaults to FALSE.
See reserved_variables for an overview of currently reserved variable names.

... Further arguments passed to the underlying print() methods.

Value

A draws object of the same class as x.

Examples

x <- as_draws_matrix(example_draws())
print(x)

print.draws_rvars 61

print.draws_rvars Print draws_rvars objects

Description

Pretty printing for draws_rvars objects.

Usage

S3 method for class 'draws_rvars'
print(
x,
digits = 2,
max_variables = getOption("posterior.max_variables", 8),
summary = getOption("posterior.rvar_summary", "mean_sd"),
reserved = FALSE,
...

)

Arguments

x (draws) A draws object or another R object for which the method is defined.

digits (nonnegative integer) The minimum number of significant digits to print. If
NULL, defaults to getOption("posterior.digits", 2).

max_variables (positive integer) The maximum number of variables to print. Can be controlled
globally via the "posterior.max_variables" option.

summary (string) The style of summary to display:

• "mean_sd" displays mean ± sd

• "median_mad" displays median ± mad

• "mode_entropy" displays mode <entropy>, and is used automatically for
rvar_factors. It shows normalized entropy, which ranges from 0 (all
probability in one category) to 1 (uniform). See entropy().

• "mode_dissent" displays mode <dissent>, and is used automatically for
rvar_ordereds. It shows Tastle and Wierman’s (2007) dissention measure,
which ranges from 0 (all probability in one category) through 0.5 (uniform)
to 1 (bimodal: all probability split equally between the first and last cate-
gory). See dissent().

• NULL uses getOption("posterior.rvar_summary") (default "mean_sd)

reserved (logical) Should reserved variables be included in the output? Defaults to FALSE.
See reserved_variables for an overview of currently reserved variable names.

... Further arguments passed to the underlying print() methods.

Value

A draws object of the same class as x.

62 print.draws_summary

Examples

x <- as_draws_rvars(example_draws())
print(x)

print.draws_summary Print summaries of draws objects

Description

Print output from summarise_draws().

Usage

S3 method for class 'draws_summary'
print(x, ..., num_args = NULL)

Arguments

x (draws_summary) A "draws_summary" object as output by summarise_draws().

... Additional arguments passed to tibble::print.tbl_df()

num_args (named list) Optional arguments passed to num() for pretty printing of sum-
maries. If NULL (the default), uses the arguments stored in the "num_args"
attribute of x, as set by the .num_args argument of summarise_draws(), which
itself can be controlled globally via the posterior.num_args option.

Value

An invisible version of the input object.

Examples

x <- example_draws("eight_schools")

adjust how summaries are printed when calling summarise_draws()...
summarise_draws(x, .num_args = list(sigfig = 2, notation = "dec"))

... or when printing
s <- summarise_draws(x)
print(s, num_args = list(sigfig = 2, notation = "dec"))
print(s, num_args = list(digits = 3))

print.rvar 63

print.rvar Print or format a random variable

Description

Printing and formatting methods for rvars.

Usage

S3 method for class 'rvar'
print(
x,
...,
summary = NULL,
digits = NULL,
color = TRUE,
width = getOption("width")

)

S3 method for class 'rvar'
format(x, ..., summary = NULL, digits = NULL, color = FALSE)

S3 method for class 'rvar'
str(
object,
...,
summary = NULL,
vec.len = NULL,
indent.str = paste(rep.int(" ", max(0, nest.lev + 1)), collapse = ".."),
nest.lev = 0,
give.attr = TRUE

)

Arguments

x, object (rvar) The rvar to print.

... Further arguments passed to the underlying print() methods.

summary (string) The style of summary to display:

• "mean_sd" displays mean ± sd

• "median_mad" displays median ± mad

• "mode_entropy" displays mode <entropy>, and is used automatically for
rvar_factors. It shows normalized entropy, which ranges from 0 (all
probability in one category) to 1 (uniform). See entropy().

• "mode_dissent" displays mode <dissent>, and is used automatically for
rvar_ordereds. It shows Tastle and Wierman’s (2007) dissention measure,
which ranges from 0 (all probability in one category) through 0.5 (uniform)

64 print.rvar

to 1 (bimodal: all probability split equally between the first and last cate-
gory). See dissent().

• NULL uses getOption("posterior.rvar_summary") (default "mean_sd)

digits (nonnegative integer) The minimum number of significant digits to print. If
NULL, defaults to getOption("posterior.digits", 2).

color (logical) Whether or not to use color when formatting the output. If TRUE, the
pillar::style_num() functions may be used to produce strings containing
control sequences to produce colored output on the terminal.

width The maxmimum width used to print out lists of factor levels for rvar_factors.
See format().

vec.len (nonnegative integer) How many ’first few’ elements are displayed of each vec-
tor. If NULL, defaults to getOption("str")$vec.len, which defaults to 4.

indent.str (string) The indentation string to use.

nest.lev (nonnegative integer) Current nesting level in the recursive calls to str().

give.attr (logical) If TRUE (default), show attributes as sub structures.

Details

print() and str() print out rvar objects by summarizing each element in the random variable
with either its mean±sd or median±mad, depending on the value of summary. Both functions use
the format() implementation for rvar objects under the hood, which returns a character vector in
the mean±sd or median±mad form.

Value

For print(), an invisible version of the input object.

For str(), nothing; i.e. invisible(NULL).

For format(), a character vector of the same dimensions as x where each entry is of the form
"mean±sd" or "median±mad", depending on the value of summary.

References

William J. Tastle, Mark J. Wierman (2007). Consensus and dissention: A measure of ordinal disper-
sion. International Journal of Approximate Reasoning. 45(3), 531–545. doi:10.1016/j.ijar.2006.06.024.

Examples

set.seed(5678)
x = rbind(

cbind(rvar(rnorm(1000, 1)), rvar(rnorm(1000, 2))),
cbind(rvar(rnorm(1000, 3)), rvar(rnorm(1000, 4)))

)

print(x)
print(x, summary = "median_mad")

https://doi.org/10.1016/j.ijar.2006.06.024

quantile2 65

str(x)

format(x)

quantile2 Compute Quantiles

Description

Compute quantiles of a sample and return them in a format consistent with other summary functions
in the posterior package.

Usage

quantile2(x, probs = c(0.05, 0.95), na.rm = FALSE, ...)

Default S3 method:
quantile2(x, probs = c(0.05, 0.95), na.rm = FALSE, names = TRUE, ...)

S3 method for class 'rvar'
quantile2(x, probs = c(0.05, 0.95), na.rm = FALSE, names = TRUE, ...)

Arguments

x (multiple options) One of:

• A matrix of draws for a single variable (iterations x chains). See extract_variable_matrix().
• An rvar.

probs (numeric vector) Probabilities in [0, 1].

na.rm (logical) Should NA and NaN values be removed from x prior to computing quan-
tiles? The default is FALSE.

... Arguments passed to individual methods (if applicable) and then on to stats::quantile().

names (logical) Should the result have a names attribute? The default is TRUE, but use
FALSE for improved speed if there are many values in probs.

Value

A numeric vector of length length(probs). If names = TRUE, it has a names attribute with names
like "q5", "q95", etc, based on the values of probs.

Examples

mu <- extract_variable_matrix(example_draws(), "mu")
quantile2(mu)

66 rdo

rdo Execute expressions of random variables

Description

Execute (nearly) arbitrary R expressions that may include rvars, producing a new rvar.

Usage

rdo(expr, dim = NULL, ndraws = NULL)

Arguments

expr (expression) A bare expression that can (optionally) contain rvars. The expres-
sion supports quasiquotation.

dim (integer vector) One or more integers giving the maximal indices in each dimen-
sion to override the dimensions of the rvar to be created (see dim()). If NULL
(the default), dim is determined by the input. NOTE: This argument controls
the dimensions of the rvar, not the underlying array, so you cannot change the
number of draws using this argument.

ndraws (positive integer) The number of draws used to construct new random variables
if no rvars are supplied in expr. If NULL, getOption("posterior.rvar_ndraws")
is used (default 4000). If expr contains rvars, the number of draws in the pro-
vided rvars is used instead of the value of this argument.

Details

This function evaluates expr possibly multiple times, once for each draw of the rvars it contains,
then returns a new rvar representing the output of those expressions. To identify rvars, rdo()
searches the calling environment for any variables named in expr for which is_rvar() evaluates
to TRUE. If expr contains no rvars, then it will be executed ndraws times and an rvar with that
many draws returned.

rdo() is not necessarily fast (in fact in some cases it may be very slow), but it has the advantage of
allowing a nearly arbitrary R expression to be executed against rvars simply by wrapping it with
rdo(...). This makes it especially useful as a prototyping tool. If you create code with rdo()
and it is unacceptably slow for your application, consider rewriting it using math operations directly
on rvars (which should be fast), using rvar_rng(), and/or using operations directly on the arrays
that back the rvars (via draws_of()).

Value

An rvar.

See Also

Other rfun: rfun(), rvar_rng()

rename_variables 67

Examples

mu <- rdo(rnorm(10, mean = 1:10, sd = 1))
sigma <- rdo(rgamma(1, shape = 1, rate = 1))
x <- rdo(rnorm(10, mu, sigma))
x

rename_variables Rename variables in draws objects

Description

Rename variables in a draws object.

Usage

rename_variables(.x, ...)

S3 method for class 'draws'
rename_variables(.x, ...)

Arguments

.x (draws) A draws object.

... One or more expressions, separated by commas, indicating the variables to re-
name. The variable names can be unquoted (new_name = old_name) or quoted
("new_name" = "old_name"). For non-scalar variables, all elements can be re-
named together ("new_name" = "old_name") or they can be renamed individu-
ally ("new_name[1]" = "old_name[1]").

Value

Returns a draws object of the same format as .x, with variables renamed according to the expres-
sions provided in

See Also

variables, mutate_variables

Examples

x <- as_draws_df(example_draws())
variables(x)

x <- rename_variables(x, mean = mu, sigma = tau)
variables(x)

68 repair_draws

x <- rename_variables(x, b = `theta[1]`) # or b = "theta[1]"
variables(x)

rename all elements of 'theta' at once
x <- rename_variables(x, alpha = theta)
variables(x)

repair_draws Repair indices of draws objects

Description

Repair indices of draws objects so that iterations, chains, and draws are continuously and consis-
tently numbered.

Usage

repair_draws(x, order = TRUE, ...)

S3 method for class 'draws_matrix'
repair_draws(x, order = TRUE, ...)

S3 method for class 'draws_array'
repair_draws(x, order = TRUE, ...)

S3 method for class 'draws_df'
repair_draws(x, order = TRUE, ...)

S3 method for class 'draws_list'
repair_draws(x, order = TRUE, ...)

S3 method for class 'draws_rvars'
repair_draws(x, order = TRUE, ...)

S3 method for class 'rvar'
repair_draws(x, order = TRUE, ...)

Arguments

x (draws) A draws object or another R object for which the method is defined.

order (logical) Should draws be ordered (via order_draws()) before repairing in-
dices? Defaults to TRUE.

... Arguments passed to individual methods (if applicable).

Value

A draws object of the same class as x.

resample_draws 69

See Also

order_draws()

Examples

x <- as_draws_array(example_draws())
(x <- x[10:5, 3:4,])
repair_draws(x)

resample_draws Resample draws objects

Description

Resample draws objects according to provided weights, for example weights obtained through
importance sampling.

Usage

resample_draws(x, ...)

S3 method for class 'draws'
resample_draws(x, weights = NULL, method = "stratified", ndraws = NULL, ...)

S3 method for class 'rvar'
resample_draws(x, ...)

Arguments

x (draws) A draws object or another R object for which the method is defined.

... Arguments passed to individual methods (if applicable).

weights (numeric vector) A vector of positive weights of length ndraws(x). The weights
will be internally normalized. If weights is not specified, an attempt will be
made to extract any weights already stored in the draws object (via weight_draws()).
If no weights are stored in the draws object, equal weight is supplied to each
draw. How exactly the weights influence the resampling depends on the method
argument.

method (string) The resampling method to use:

• "simple": simple random resampling with replacement
• "simple_no_replace": simple random resampling without replacement
• "stratified": stratified resampling with replacement
• "deterministic": deterministic resampling with replacement

70 resample_draws

Currently, "stratified" is the default as it has comparably low variance and
bias with respect to ideal resampling. The latter would sample perfectly propor-
tional to the weights, but this is not possible in practice due to the finite number
of draws available. For more details about resampling methods, see Kitagawa
(1996).

ndraws (positive integer) The number of draws to be returned. By default ndraws is set
internally to the total number of draws in x if sensible.

Details

Upon usage of resample_draws(), chains will automatically be merged due to subsetting of in-
dividual draws (see subset_draws for details). Also, weights stored in the draws object will be
removed in the process, as resampling invalidates existing weights.

Value

A draws object of the same class as x.

References

Kitagawa, G., Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear ’ State Space Models,
Journal of Computational and Graphical Statistics, 5(1):1-25, 1996.

See Also

resample_draws()

Examples

x <- as_draws_df(example_draws())

random weights for justr for demonstration
w <- runif(ndraws(x), 0, 10)

use default stratified sampling
x_rs <- resample_draws(x, weights = w)
summarise_draws(x_rs, default_summary_measures())

use simple random sampling
x_rs <- resample_draws(x, weights = w, method = "simple")
summarise_draws(x_rs, default_summary_measures())

reserved_variables 71

reserved_variables Reserved variables

Description

Get names of reserved variables from objects in the posterior package.

Usage

reserved_variables(x, ...)

Default S3 method:
reserved_variables(x, ...)

S3 method for class 'draws_matrix'
reserved_variables(x, ...)

S3 method for class 'draws_array'
reserved_variables(x, ...)

S3 method for class 'draws_df'
reserved_variables(x, ...)

S3 method for class 'draws_list'
reserved_variables(x, ...)

S3 method for class 'draws_rvars'
reserved_variables(x, ...)

Arguments

x (draws) A draws object or another R object for which the method is defined.

... Arguments passed to individual methods (if applicable).

Details

reserved_variables() returns the names of reserved variables in use by an object.

The following variables names are currently reserved for special use cases in all draws formats:

• .log_weight: Log weights per draw (see weight_draws).

Further, specific for the draws_df format, there are three additional reserved variables:

• .chain: Chain index per draw

• .iteration: Iteration index within each chain

• .draw: Draw index across chains

More reserved variables may be added in the future.

72 rfun

Value

A character vector of reserved variables used in x.

Examples

x <- example_draws()
reserved_variables(x)

if we add weights, the `.log_weight` reserved variable is used
x <- weight_draws(x, rexp(ndraws(x)))
reserved_variables(x)

rfun Create functions of random variables

Description

Function that create functions that can accept and/or produce rvars.

Usage

rfun(.f, rvar_args = NULL, rvar_dots = TRUE, ndraws = NULL)

Arguments

.f (multiple options) A function to turn into a function that accepts and/or produces
random variables:

• A function
• A one-sided formula that can be parsed by rlang::as_function()

rvar_args (character vector) The names of the arguments of .f that should be allowed
to accept rvars as arguments. If NULL (the default), all arguments to .f are
turned into arguments that accept rvars, including arguments passed via ... (if
rvar_dots is TRUE).

rvar_dots (logical) Should dots (...) arguments also be converted? Only applies if rvar_args
is NULL (i.e., all arguments are allowed to be rvars).

ndraws (positive integer). The number of draws used to construct new random vari-
ables if no rvars are supplied as arguments to the returned function. If NULL,
getOption("posterior.rvar_ndraws") is used (default 4000). If any argu-
ments to the returned function contain rvars, the number of draws in the pro-
vided rvars is used instead of the value of this argument.

rhat 73

Details

This function wraps an existing function (.f) such that it returns rvars containing whatever type of
data .f would normally return.

The returned function, when called, executes .f possibly multiple times, once for each draw of the
rvars passed to it, then returns a new rvar representing the output of those function evaluations.
If the arguments contain no rvars, then .f will be executed ndraws times and an rvar with that
many draws returned.

Functions created by rfun() are not necessarily fast (in fact in some cases they may be very slow),
but they have the advantage of allowing a nearly arbitrary R functions to be executed against rvars
simply by wrapping them with rfun(). This makes it especially useful as a prototyping tool. If
you create code with rfun() and it is unacceptably slow for your application, consider rewriting
it using math operations directly on rvars (which should be fast), using rvar_rng(), and/or using
operations directly on the arrays that back the rvars (via draws_of()).

Value

A function with the same argument specification as .f, but which can accept and return rvars.

See Also

Other rfun: rdo(), rvar_rng()

Examples

rvar_norm <- rfun(rnorm)
rvar_gamma <- rfun(rgamma)

mu <- rvar_norm(10, mean = 1:10, sd = 1)
sigma <- rvar_gamma(1, shape = 1, rate = 1)
x <- rvar_norm(10, mu, sigma)
x

rhat Rhat convergence diagnostic

Description

Compute the Rhat convergence diagnostic for a single variable as the maximum of rank normalized
split-Rhat and rank normalized folded-split-Rhat as proposed in Vehtari et al. (2021).

74 rhat

Usage

rhat(x, ...)

Default S3 method:
rhat(x, ...)

S3 method for class 'rvar'
rhat(x, ...)

Arguments

x (multiple options) One of:

• A matrix of draws for a single variable (iterations x chains). See extract_variable_matrix().
• An rvar.

... Arguments passed to individual methods (if applicable).

Value

If the input is an array, returns a single numeric value. If any of the draws is non-finite, that is, NA,
NaN, Inf, or -Inf, the returned output will be (numeric) NA. Also, if all draws within any of the
chains of a variable are the same (constant), the returned output will be (numeric) NA as well. The
reason for the latter is that, for constant draws, we cannot distinguish between variables that are
supposed to be constant (e.g., a diagonal element of a correlation matrix is always 1) or variables
that just happened to be constant because of a failure of convergence or other problems in the
sampling process.

If the input is an rvar, returns an array of the same dimensions as the rvar, where each element is
equal to the value that would be returned by passing the draws array for that element of the rvar to
this function.

References

Aki Vehtari, Andrew Gelman, Daniel Simpson, Bob Carpenter, and Paul-Christian Bürkner (2021).
Rank-normalization, folding, and localization: An improved R-hat for assessing convergence of
MCMC (with discussion). Bayesian Data Analysis. 16(2), 667-–718. doi:10.1214/20-BA1221

See Also

Other diagnostics: ess_basic(), ess_bulk(), ess_quantile(), ess_sd(), ess_tail(), mcse_mean(),
mcse_quantile(), mcse_sd(), rhat_basic(), rhat_nested(), rstar()

Examples

mu <- extract_variable_matrix(example_draws(), "mu")
rhat(mu)

d <- as_draws_rvars(example_draws("multi_normal"))
rhat(d$Sigma)

rhat_basic 75

rhat_basic Basic version of the Rhat convergence diagnostic

Description

Compute the basic Rhat convergence diagnostic for a single variable as described in Gelman et al.
(2013) with some changes according to Vehtari et al. (2021). For practical applications, we strongly
recommend the improved Rhat convergence diagnostic implemented in rhat().

Usage

rhat_basic(x, ...)

Default S3 method:
rhat_basic(x, split = TRUE, ...)

S3 method for class 'rvar'
rhat_basic(x, split = TRUE, ...)

Arguments

x (multiple options) One of:
• A matrix of draws for a single variable (iterations x chains). See extract_variable_matrix().
• An rvar.

... Arguments passed to individual methods (if applicable).
split (logical) Should the estimate be computed on split chains? The default is TRUE.

Value

If the input is an array, returns a single numeric value. If any of the draws is non-finite, that is, NA,
NaN, Inf, or -Inf, the returned output will be (numeric) NA. Also, if all draws within any of the
chains of a variable are the same (constant), the returned output will be (numeric) NA as well. The
reason for the latter is that, for constant draws, we cannot distinguish between variables that are
supposed to be constant (e.g., a diagonal element of a correlation matrix is always 1) or variables
that just happened to be constant because of a failure of convergence or other problems in the
sampling process.

If the input is an rvar, returns an array of the same dimensions as the rvar, where each element is
equal to the value that would be returned by passing the draws array for that element of the rvar to
this function.

References

Andrew Gelman, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari and Donald B. Rubin
(2013). Bayesian Data Analysis, Third Edition. Chapman and Hall/CRC.

Aki Vehtari, Andrew Gelman, Daniel Simpson, Bob Carpenter, and Paul-Christian Bürkner (2021).
Rank-normalization, folding, and localization: An improved R-hat for assessing convergence of
MCMC (with discussion). Bayesian Data Analysis. 16(2), 667-–718. doi:10.1214/20-BA1221

76 rhat_nested

See Also

Other diagnostics: ess_basic(), ess_bulk(), ess_quantile(), ess_sd(), ess_tail(), mcse_mean(),
mcse_quantile(), mcse_sd(), rhat_nested(), rhat(), rstar()

Examples

mu <- extract_variable_matrix(example_draws(), "mu")
rhat_basic(mu)

d <- as_draws_rvars(example_draws("multi_normal"))
rhat_basic(d$Sigma)

rhat_nested Nested Rhat convergence diagnostic

Description

Compute the nested Rhat convergence diagnostic for a single variable as proposed in Margossian et
al. (2023).

Usage

rhat_nested(x, ...)

Default S3 method:
rhat_nested(x, superchain_ids, ...)

S3 method for class 'rvar'
rhat_nested(x, superchain_ids, ...)

Arguments

x (multiple options) One of:

• A matrix of draws for a single variable (iterations x chains). See extract_variable_matrix().

• An rvar.

... Arguments passed to individual methods (if applicable).

superchain_ids (numeric) Vector of length nchains specifying which superchain each chain be-
longs to. There should be equal numbers of chains in each superchain. All
chains within the same superchain are assumed to have been initialized at the
same point.

rstar 77

Details

Nested Rhat is a convergence diagnostic useful when running many short chains. It is calculated on
superchains, which are groups of chains that have been initialized at the same point.

Note that there is a slight difference in the calculation of Rhat and nested Rhat, as nested Rhat is
lower bounded by 1. This means that nested Rhat with one chain per superchain will not be exactly
equal to basic Rhat (see Footnote 1 in Margossian et al. (2023)).

Value

If the input is an array, returns a single numeric value. If any of the draws is non-finite, that is, NA,
NaN, Inf, or -Inf, the returned output will be (numeric) NA. Also, if all draws within any of the
chains of a variable are the same (constant), the returned output will be (numeric) NA as well. The
reason for the latter is that, for constant draws, we cannot distinguish between variables that are
supposed to be constant (e.g., a diagonal element of a correlation matrix is always 1) or variables
that just happened to be constant because of a failure of convergence or other problems in the
sampling process.

If the input is an rvar, returns an array of the same dimensions as the rvar, where each element is
equal to the value that would be returned by passing the draws array for that element of the rvar to
this function.

References

Charles C. Margossian, Matthew D. Hoffman, Pavel Sountsov, Lionel Riou-Durand, Aki Vehtari
and Andrew Gelman (2023). Nested R-hat: Assessing the convergence of Markov chain Monte
Carlo when running many short chains. arxiv:arXiv:2110.13017 (version 4)

See Also

Other diagnostics: ess_basic(), ess_bulk(), ess_quantile(), ess_sd(), ess_tail(), mcse_mean(),
mcse_quantile(), mcse_sd(), rhat_basic(), rhat(), rstar()

Examples

mu <- extract_variable_matrix(example_draws(), "mu")
rhat_nested(mu, superchain_ids = c(1, 1, 2, 2))

d <- as_draws_rvars(example_draws("multi_normal"))
rhat_nested(d$Sigma, superchain_ids = c(1, 1, 2, 2))

rstar Calculate R* convergence diagnostic

78 rstar

Description

The rstar() function generates a measure of convergence for MCMC draws based on whether it is
possible to determine the Markov chain that generated a draw with probability greater than chance.
To do so, it fits a machine learning classifier to a training set of MCMC draws and evaluates its
predictive accuracy on a testing set: giving the ratio of accuracy to predicting a chain uniformly at
random.

Usage

rstar(
x,
split = TRUE,
uncertainty = FALSE,
method = "rf",
hyperparameters = NULL,
training_proportion = 0.7,
nsimulations = 1000,
...

)

Arguments

x (draws) A draws_df object or one coercible to a draws_df object.

split (logical) Should the estimate be computed on split chains? The default is TRUE.

uncertainty (logical). Indicates whether to provide a vector of R* values representing uncer-
tainty in the calculated value (if TRUE) or a single value (if FALSE). The default
is TRUE.

method (string) The machine learning classifier to use (must be available in the caret
package). The default is "rf", which calls the random forest classifier.

hyperparameters

(named list) Hyperparameter settings passed to the classifier. The default for the
random forest classifier (method = "rf") is list(mtry = floor(sqt(nvariables(x)))).
The default for the gradient-based model (method = "gbm") is list(interaction.depth
= 3, n.trees = 50, shrinkage = 0.1, n.minobsinnode = 10).

training_proportion

(positive real) The proportion (in (0,1)) of iterations in used to train the classi-
fier. The default is 0.7.

nsimulations (positive integer) The number of R* values in the returned vector if uncertainty
is TRUE. The default is 1000.

... Other arguments passed to caret::train().

Details

The rstar() function provides a measure of MCMC convergence based on whether it is possible
to determine the chain that generated a particular draw with a probability greater than chance. To
do so, it fits a machine learning classifier to a subset of the original MCMC draws (the training set)
and evaluates its predictive accuracy on the remaining draws (the testing set). If predictive accuracy

rstar 79

exceeds chance (i.e. predicting the chain that generated a draw uniformly at random), the diagnostic
measure R* will be above 1, indicating that convergence has yet to occur. This statistic is recently
developed, and it is currently unclear what is a reasonable threshold for diagnosing convergence.

The statistic, R*, is stochastic, meaning that each time the test is run, unless the random seed is
fixed, it will generally produce a different result. To minimize the implications of this stochasticity,
it is recommended to repeatedly run this function to calculate a distribution of R*; alternatively, an
approximation to this distribution can be obtained by setting uncertainty = TRUE, although this
approximation of uncertainty will generally have a lower mean.

By default, a random forest classifier is used (method = "rf"), which tends to perform best for
target distributions of around 4 dimensions and above. For lower dimensional targets, gradient
boosted models (called via method = "gbm") tend to have a higher classification accuracy. On a
given MCMC sample, it is recommended to try both of these classifiers.

Value

A numeric vector of length 1 (by default) or length nsimulations (if uncertainty = TRUE).

References

Ben Lambert, Aki Vehtari (2020) R*: A robust MCMC convergence diagnostic with uncertainty
using gradient-boosted machines. arXiv preprint arXiv:2003.07900.

See Also

Other diagnostics: ess_basic(), ess_bulk(), ess_quantile(), ess_sd(), ess_tail(), mcse_mean(),
mcse_quantile(), mcse_sd(), rhat_basic(), rhat_nested(), rhat()

Examples

if (require("caret", quietly = TRUE) && require("randomForest", quietly = TRUE)) {
x <- example_draws("eight_schools")
print(rstar(x))
print(rstar(x, split = FALSE))
print(rstar(x, method = "gbm"))
can pass additional arguments to methods
print(rstar(x, method = "gbm", verbose = FALSE))

with uncertainty, returns a vector of R* values
hist(rstar(x, uncertainty = TRUE))
hist(rstar(x, uncertainty = TRUE, nsimulations = 100))

can use other classification methods in caret library
print(rstar(x, method = "knn"))

}

80 rvar

rvar Random variables of arbitrary dimension

Description

Random variables backed by arrays of arbitrary dimension

Usage

rvar(
x = double(),
dim = NULL,
dimnames = NULL,
nchains = NULL,
with_chains = FALSE

)

Arguments

x (multiple options) The object to convert to an rvar:

• A vector of draws from a distribution.
• An array where the first dimension represents draws from a distribution.

The resulting rvar will have dimension dim(x)[-1]; that is, everything
except the first dimension is used for the shape of the variable, and the first
dimension is used to index draws from the distribution (see Examples). Op-
tionally, if with_chains == TRUE, the first dimension indexes the iteration
and the second dimension indexes the chain (see with_chains).

• An rvar.

dim (integer vector) One or more integers giving the maximal indices in each dimen-
sion to override the dimensions of the rvar to be created (see dim()). If NULL
(the default), dim is determined by the input. NOTE: This argument controls
the dimensions of the rvar, not the underlying array, so you cannot change the
number of draws using this argument.

dimnames (list) Character vectors giving the names in each dimension to override the
names of the dimensions of the rvar to be created (see dimnames()). If NULL
(the default), this is determined by the input. NOTE: This argument controls
the names of the dimensions of the rvar, not the underlying array.

nchains (positive integer) The number of chains. The if NULL (the default), 1 is used
unless x is already an rvar, in which case the number of chains it has is used.

with_chains (logical) Does x include a dimension for chains? If FALSE (the default), chains
are not included, the first dimension of the input array should index draws, and
the nchains argument can be used to determine the number of chains. If TRUE,
the nchains argument is ignored and the second dimension of x is used to index
chains. Internally, the array will be converted to a format without the chain
index. Ignored when x is already an rvar.

rvar 81

Details

The "rvar" class internally represents random variables as arrays of arbitrary dimension, where
the first dimension is used to index draws from the distribution. Most mathematical operators
and functions are supported, including efficient matrix multiplication and vector and array-style
indexing. The intent is that an rvar works as closely as possible to how a base vector/matrix/array
does, with a few differences:

• The default behavior when subsetting is not to drop extra dimensions (i.e. the default drop
argument for [is FALSE, not TRUE).

• Rather than base R-style recycling, rvars use a limited form of broadcasting: if an operation is
being performed on two vectors with different size of the same dimension, the smaller vector
will be recycled up to the size of the larger one along that dimension so long as it has size 1.

For functions that expect base numeric arrays and for which rvars cannot be used directly as ar-
guments, you can use rfun() or rdo() to translate your code into code that executes across draws
from one or more random variables and returns a random variable as output. Typically rdo() offers
the most straightforward translation.

As rfun() and rdo() incur some performance cost, you can also operate directly on the underlying
array using the draws_of() function. To re-use existing random number generator functions to
efficiently create rvars, use rvar_rng().

Value

An object of class "rvar" representing a random variable.

See Also

as_rvar() to convert objects to rvars. See rdo(), rfun(), and rvar_rng() for higher-level
interfaces for creating rvars.

Examples

set.seed(1234)

To create a "scalar" `rvar`, pass a one-dimensional array or a vector
whose length (here `4000`) is the desired number of draws:
x <- rvar(rnorm(4000, mean = 1, sd = 1))
x

Create random vectors by adding an additional dimension:
n <- 4 # length of output vector
x <- rvar(array(rnorm(4000 * n, mean = rep(1:n, each = 4000), sd = 1), dim = c(4000, n)))
x

Create a random matrix:
rows <- 4
cols <- 3
x <- rvar(array(rnorm(4000 * rows * cols, mean = 1, sd = 1), dim = c(4000, rows, cols)))
x

82 rvar-dist

If the input sample comes from multiple chains, we can indicate that using the
nchains argument (here, 1000 draws each from 4 chains):
x <- rvar(rnorm(4000, mean = 1, sd = 1), nchains = 4)
x

Or if the input sample has chain information as its second dimension, we can
use with_chains to create the rvar
x <- rvar(array(rnorm(4000, mean = 1, sd = 1), dim = c(1000, 4)), with_chains = TRUE)
x

rvar-dist Density, CDF, and quantile functions of random variables

Description

The probability density function (density()), cumulative distribution function (cdf()), and quan-
tile function / inverse CDF (quantile()) of an rvar.

Usage

S3 method for class 'rvar'
density(x, at, ...)

S3 method for class 'rvar_factor'
density(x, at, ...)

S3 method for class 'rvar'
cdf(x, q, ...)

S3 method for class 'rvar_factor'
cdf(x, q, ...)

S3 method for class 'rvar_ordered'
cdf(x, q, ...)

S3 method for class 'rvar'
quantile(x, probs, ...)

S3 method for class 'rvar_factor'
quantile(x, probs, ...)

S3 method for class 'rvar_ordered'
quantile(x, probs, ...)

rvar-matmult 83

Arguments

x (rvar) An rvar object.

... Additional arguments passed onto underlying methods:

• For density(), these are passed to stats::density().
• For cdf(), these are ignored.
• For quantile(), these are passed to stats::quantile().

q, at (numeric vector) One or more quantiles.

probs (numeric vector) One or more probabilities in [0,1].

Value

If x is a scalar rvar, returns a vector of the same length as the input (q, at, or probs) containing
values from the corresponding function of the given rvar.

If x has length greater than 1, returns an array with dimensions c(length(y), dim(x)) where y is
q, at, or probs, where each result[i,...] is the value of the corresponding function,f(y[i]),
for the corresponding cell in the input array, x[...].

Examples

set.seed(1234)
x = rvar(rnorm(100))

density(x, seq(-2, 2, length.out = 10))
cdf(x, seq(-2, 2, length.out = 10))
quantile(x, ppoints(10))

x2 = c(rvar(rnorm(100, mean = -0.5)), rvar(rnorm(100, mean = 0.5)))
density(x2, seq(-2, 2, length.out = 10))
cdf(x2, seq(-2, 2, length.out = 10))
quantile(x2, ppoints(10))

rvar-matmult Matrix multiplication of random variables

Description

Matrix multiplication of random variables.

Usage

x %**% y

84 rvar-matmult

Arguments

x (multiple options) The object to be postmultiplied by y:

• An rvar

• A numeric vector or matrix

• A logical vector or matrix

If a vector is used, it is treated as a row vector.

y (multiple options) The object to be premultiplied by x:

• An rvar

• A numeric vector or matrix

• A logical vector or matrix

If a vector is used, it is treated as a column vector.

Details

If x or y are vectors, they are converted into matrices prior to multiplication, with x converted to
a row vector and y to a column vector. Numerics and logicals can be multiplied by rvars and
are broadcasted across all draws of the rvar argument. Tensor multiplication is used to efficiently
multiply matrices across draws, so if either x or y is an rvar, x %**% y will be much faster than
rdo(x %*% y).

Because rvar is an S3 class and S3 classes cannot properly override %*%, rvars use %**% for matrix
multiplication.

Value

An rvar representing the matrix product of x and y.

Examples

d has mu (mean vector of length 3) and Sigma (3x3 covariance matrix)
d <- as_draws_rvars(example_draws("multi_normal"))
d$Sigma

trivial example: multiplication by a non-random matrix
d$Sigma %**% diag(1:3)

Decompose Sigma into R s.t. R'R = Sigma ...
R <- chol(d$Sigma)
... and recreate Sigma using matrix multiplication
t(R) %**% R

rvar-slice 85

rvar-slice Random variable slicing

Description

Operations for slicing rvars and replacing parts of rvars.

Usage

S3 method for class 'rvar'
x[[i, ...]]

S3 replacement method for class 'rvar'
x[[i, ...]] <- value

S3 method for class 'rvar'
x[..., drop = FALSE]

S3 replacement method for class 'rvar'
x[i, ...] <- value

Arguments

x an rvar.

i, ... indices; see Details.

value (rvar or coercable to rvar) Value to insert into x at the location determined by
the indices.

drop (logical) Should singular dimensions be dropped when slicing array rvars? Un-
like base array slicing operations, defaults to FALSE.

Details

The rvar slicing operators ([and [[) attempt to implement the same semantics as the base array
slicing operators. There are some exceptions; most notably, rvar slicing defaults to drop = FALSE
instead of drop = TRUE.

Extracting or replacing single elements with [[

The [[operator extracts (or replaces) single elements. It always returns (or replaces) a scalar
(length-1) rvar.

The x[[i,...]] operator can be used as follows:

• x[[<numeric>]] for scalar numeric i: gives the ith element of x. If x is multidimensional
(i.e. length(dim(x)) > 1), extra dimensions are ignored when indexing. For example, if x is
a 6 × 2 rvar array, the 7th element, x[[7]], will be the first element of the second column,
x[1,2].

86 rvar-slice

• x[[<numeric rvar>]] for scalar numeric rvar i: a generalization of indexing when i is a
scalar numeric. Within each draw of x, selects the element corresponding to the value of i
within that same draw.

• x[[<character>]] for scalar character i: gives the element of x with name equal to i. Unlike
with base arrays, does not work with multidimensional rvars.

• x[[i_1,i_2,...,i_n]] for scalar numeric or character i_1, i_2, etc. Must provide exactly
the same number of indices as dimensions in x. Selects the element at the corresponding
position in the rvar by number and/or dimname (as a string).

Extracting or replacing multiple elements with [

The [operator extracts (or replaces) multiple elements. It always returns (or replaces) a possibly-
multidimensional rvar.

The x[i,...] operator can be used as follows:

• x[<logical>] for vector logical i: i is recycled to the same length as x, ignoring multiple
dimensions in x, then an rvar vector is returned containing the elements in x where i is TRUE.

• x[<logical rvar>] for scalar logical rvar i: returns an rvar the same shape as x containing
only those draws where i is TRUE.

• x[<numeric>] for vector numeric i: an rvar vector is returned containing the ith elements
of x, ignoring dimensions.

• x[<matrix>] for numeric matrix i, where ncol(i) == length(dim(x)): each row of i
should give the multidimensional index for a single element in x. The result is an rvar vector
of length nrow(i) containing elements of x selected by each row of i.

• x[i_1,i_2,...,i_n] for vector numeric, character, or logical i_1, i_2, etc. Returns a slice
of x containing all elements from the dimensions specified in i_1, i_2, etc. If an argument is
left empty, all elements from that dimension are included. Unlike base arrays, trailing dimen-
sions can be omitted entirely and will still be selected; for example, if x has three dimensions,
both x[1,,] and x[1,] can be used to create a slice that includes all elements from the last
two dimensions. Unlike base arrays, [defaults to drop = FALSE, so results retain the same
number of dimensions as x.

Examples

x <- rvar(array(1:24, dim = c(4,2,3)))
dimnames(x) <- list(c("a","b"), c("d","e","f"))
x

Slicing single elements
x[[<numeric>]]
x[[2]]

x[[<numeric rvar>]]
notice the draws of x[1:4]...
draws_of(x[1:4])
x[[rvar(c(1,3,4,4))]]
... x[[rvar(c(1,3,4,4))]] creates a mixures of those draws
draws_of(x[[rvar(c(1,3,4,4))]])

rvar-summaries-over-draws 87

x[[i_1,i_2,...]]
x[[2,"e"]]

Slicing multiple elements
x[<logical>]
x[c(TRUE,TRUE,FALSE)]

x[<logical rvar>]
select every other draw
x[rvar(c(TRUE,FALSE,TRUE,FALSE))]

x[<numeric>]
x[1:3]

x[<matrix>]
x[rbind(

c(1,2),
c(1,3),
c(2,2)

)]

x[i_1,i_2,...,i_n]
x[1,]
x[1,2:3]
x[,2:3]

rvar-summaries-over-draws

Summaries of random variables within array elements, over draws

Description

Compute summaries within elements of an rvar and over draws of each element, producing an
array of the same shape as the input random variable (except in the case of range(), see Details).

Usage

E(x, ...)

S3 method for class 'rvar'
mean(x, ...)

Pr(x, ...)

Default S3 method:
Pr(x, ...)

S3 method for class 'logical'

88 rvar-summaries-over-draws

Pr(x, ...)

S3 method for class 'rvar'
Pr(x, ...)

S3 method for class 'rvar'
median(x, ...)

S3 method for class 'rvar'
min(x, ...)

S3 method for class 'rvar'
max(x, ...)

S3 method for class 'rvar'
sum(x, ...)

S3 method for class 'rvar'
prod(x, ...)

S3 method for class 'rvar'
all(x, ...)

S3 method for class 'rvar'
any(x, ...)

S3 method for class 'rvar'
Summary(...)

S3 method for class 'rvar'
variance(x, ...)

var(x, ...)

Default S3 method:
var(x, ...)

S3 method for class 'rvar'
var(x, ...)

sd(x, ...)

Default S3 method:
sd(x, ...)

S3 method for class 'rvar'
sd(x, ...)

rvar-summaries-over-draws 89

mad(x, ...)

Default S3 method:
mad(x, ...)

S3 method for class 'rvar'
mad(x, ...)

S3 method for class 'rvar_ordered'
mad(x, ...)

S3 method for class 'rvar'
range(x, ...)

S3 method for class 'rvar'
is.finite(x)

S3 method for class 'rvar'
is.infinite(x)

S3 method for class 'rvar'
is.nan(x)

S3 method for class 'rvar'
is.na(x)

Arguments

x (rvar) An rvar.

... Further arguments passed to underlying functions (e.g., base::mean() or base::median()),
such as na.rm.

Details

Summaries include expectations (E() or mean()), probabilities (Pr()), medians (median()), spread
(var(), variance(), sd(), mad()), sums and products (sum(), prod()), extrema and ranges
(min(), max(), range()), logical summaries (all(), any()), and special value predicates (is.finite(),
is.infinite(), is.nan(), is.na()).

Unless otherwise stated, these functions return a numeric array with the same shape (same dimen-
sions) as the input rvar, x.

range(x) returns an array with dimensions c(2, dim(x)), where the last dimension contains the
minimum and maximum values.

is.infinite(x), is.nan(x), and is.na(x) return logical arrays, where each element is TRUE if
any draws in its corresponding element in x match the predicate. Each elements in the result of
is.finite(x) is TRUE if all draws in the corresponding element in x are finite.

Both E(), mean(), and Pr() return the means of each element in the input. Pr() additionally checks
that the provided rvar is a logical variable (hence, taking its expectation results in a probability).

90 rvar-summaries-within-draws

For consistency, E() and Pr() are also defined for base arrays so that they can be used as summary
functions in summarise_draws().

Value

A numeric or logical vector with the same dimensions as the given random variable, where each
entry in the vector is the mean, median, or variance of the corresponding entry in x.

See Also

rvar-summaries-within-draws for summary functions within draws. rvar-dist for density, CDF, and
quantile functions of random variables.

Other rvar-summaries: rvar-summaries-within-draws, rvar_is_finite()

Examples

set.seed(5678)
x = rvar_rng(rnorm, 4, mean = 1:4, sd = 2)

These should all be ~= c(1, 2, 3, 4)
E(x)
mean(x)
median(x)

This ...
Pr(x < 1.5)
... should be about the same as this:
pnorm(1.5, mean = 1:4, sd = 2)

rvar-summaries-within-draws

Summaries of random variables over array elements, within draws

Description

Compute summaries of random variables over array elements and within draws, producing a new
random variable of length 1 (except in the case of rvar_range(), see Details).

Usage

rvar_mean(..., na.rm = FALSE)

rvar_median(..., na.rm = FALSE)

rvar_sum(..., na.rm = FALSE)

rvar-summaries-within-draws 91

rvar_prod(..., na.rm = FALSE)

rvar_min(..., na.rm = FALSE)

rvar_max(..., na.rm = FALSE)

rvar_sd(..., na.rm = FALSE)

rvar_var(..., na.rm = FALSE)

rvar_mad(..., constant = 1.4826, na.rm = FALSE)

rvar_range(..., na.rm = FALSE)

rvar_quantile(..., probs, names = FALSE, na.rm = FALSE)

rvar_all(..., na.rm = FALSE)

rvar_any(..., na.rm = FALSE)

Arguments

... (rvar) One or more rvars.

na.rm (logical) Should NAs be removed from the input before summaries are com-
puted? The default is FALSE.

constant (scalar real) For rvar_mad(), a scale factor for computing the median absolute
deviation. See the details of stats::mad() for the justification for the default
value.

probs (numeric vector) For rvar_quantile(), probabilities in [0, 1].

names (logical) For rvar_quantile(), if TRUE, the result has a names attribute.

Details

These functions compute statistics within each draw of the random variable. For summaries over
draws (such as expectations), see rvar-summaries-over-draws.

Each function defined here corresponds to the base function of the same name without the rvar_
prefix (e.g., rvar_mean() calls mean() under the hood, etc).

Value

An rvar of length 1 (for range(), length 2; for quantile(), length equal to length(probs)) with
the same number of draws as the input rvar(s) containing the summary statistic computed within
each draw of the input rvar(s).

See Also

rvar-summaries-over-draws for summary functions across draws (e.g. expectations). rvar-dist for
density, CDF, and quantile functions of random variables.

92 rvar_apply

Other rvar-summaries: rvar-summaries-over-draws, rvar_is_finite()

Examples

set.seed(5678)
x = rvar_rng(rnorm, 4, mean = 1:4, sd = 2)

These will give similar results to mean(1:4),
median(1:4), sum(1:4), prod(1:4), etc
rvar_mean(x)
rvar_median(x)
rvar_sum(x)
rvar_prod(x)
rvar_range(x)
rvar_quantile(x, probs = c(0.25, 0.5, 0.75), names = TRUE)

rvar_apply Random variable resulting from a function applied over margins of an
array or random variable

Description

Returns an rvar obtained by applying a function to margins of an array or rvar. Acts like apply(),
except that the function supplied (.f) should return an rvar, and the final result is always an rvar.

Usage

rvar_apply(.x, .margin, .f, ...)

Arguments

.x An array or an rvar.

.margin (multiple options) The subscripts which the function will be applied over:

• An integer vector. E.g., for a matrix 1 indicates rows, 2 indicates columns,
c(1, 2) indicates rows and columns.

• A character vector of dimension names if .x has named dimensions.

.f (function) The function to be applied. The function .f must return an rvar and
the dimensions of the result of .f applied to each margin of .x must be able
to be broadcasted to a common shape (otherwise the resulting rvar cannot be
simplified). See Details.

... Optional arguments passed to .f.

rvar_factor 93

Details

This function acts much like apply(), except that the function passed to it (.f) must return rvars,
and the result is simplified into an rvar. Unlike apply(), it also keeps the dimensions of the
returned values along each margin, rather than simplifying each margin to a vector, and if the
results of .f do not all have the same dimensions, it applies the rvar broadcasting rules to bind
results together rather than using vector recycling.

If you wish to apply functions over rvars where the result is not intended to be simplified into an
rvar, you can use the standard apply(), lapply(), sapply(), or vapply() functions.

Value

An rvar.

If the result of each call to .f returns an rvar of dimension d after being broadcast to a common
shape, then rvar_apply() returns an rvar of dimension c(d, dim(.x)[.margin]). If the last
dimension of the result would be 1, it is dropped (other dimensions equal to 1 are retained). If d is
0, the result has length 0 but not necessarily the ’correct’ dimension.

See Also

as_rvar() to convert objects to rvars. See rdo(), rfun(), and rvar_rng() for higher-level
interfaces for creating rvars.

Examples

set.seed(3456)
x <- rvar_rng(rnorm, 24, mean = 1:24)
dim(x) <- c(2,3,4)

we can find the distributions of marginal means of the above array
using rvar_mean along with rvar_apply
rvar_apply(x, 1, rvar_mean)
rvar_apply(x, 2:3, rvar_mean)

rvar_factor Factor random variables of arbitrary dimension

Description

Random variables backed by factor-like arrays of arbitrary dimension.

94 rvar_factor

Usage

rvar_factor(
x = factor(),
dim = NULL,
dimnames = NULL,
nchains = NULL,
with_chains = FALSE,
...

)

rvar_ordered(
x = ordered(NULL),
dim = NULL,
dimnames = NULL,
nchains = NULL,
with_chains = FALSE,
...

)

Arguments

x (multiple options) The object to convert to an rvar:

• A vector of draws from a distribution.
• An array where the first dimension represents draws from a distribution.

The resulting rvar will have dimension dim(x)[-1]; that is, everything
except the first dimension is used for the shape of the variable, and the first
dimension is used to index draws from the distribution (see Examples). Op-
tionally, if with_chains == TRUE, the first dimension indexes the iteration
and the second dimension indexes the chain (see with_chains).

• An rvar.

dim (integer vector) One or more integers giving the maximal indices in each dimen-
sion to override the dimensions of the rvar to be created (see dim()). If NULL
(the default), dim is determined by the input. NOTE: This argument controls
the dimensions of the rvar, not the underlying array, so you cannot change the
number of draws using this argument.

dimnames (list) Character vectors giving the names in each dimension to override the
names of the dimensions of the rvar to be created (see dimnames()). If NULL
(the default), this is determined by the input. NOTE: This argument controls
the names of the dimensions of the rvar, not the underlying array.

nchains (positive integer) The number of chains. The if NULL (the default), 1 is used
unless x is already an rvar, in which case the number of chains it has is used.

with_chains (logical) Does x include a dimension for chains? If FALSE (the default), chains
are not included, the first dimension of the input array should index draws, and
the nchains argument can be used to determine the number of chains. If TRUE,
the nchains argument is ignored and the second dimension of x is used to index
chains. Internally, the array will be converted to a format without the chain
index. Ignored when x is already an rvar.

rvar_factor 95

... Arguments passed on to base::factor

levels an optional vector of the unique values (as character strings) that x
might have taken. The default is the unique set of values taken by as.character(x),
sorted into increasing order of x. Note that this set can be specified as
smaller than sort(unique(x)).

labels either an optional character vector of labels for the levels (in the same
order as levels after removing those in exclude), or a character string of
length 1. Duplicated values in labels can be used to map different values
of x to the same factor level.

exclude a vector of values to be excluded when forming the set of levels. This
may be factor with the same level set as x or should be a character.

ordered logical flag to determine if the levels should be regarded as ordered
(in the order given).

nmax an upper bound on the number of levels; see ‘Details’.

Details

A subtype of rvar() that represents a (possibly multidimensional) sample of a factor or an ordered
factor. It is otherwise very similar to the basic rvar(): it is backed by a multidimensional array with
draws as the first dimension. The primary difference is that the backing array has class "factor"
(for rvar_factor()) or c("ordered", "factor") (for rvar_ordered()). If you pass a factor or
ordered factor to rvar() it will automatically return an object with the classes "rvar_factor" or
c("rvar_ordered", "rvar_factor").

See rvar() for more details on the internals of the random variable datatype.

Value

An object of class "rvar_factor" representing a factor-like random variable.

See Also

as_rvar_factor() to convert objects to rvar_factors. See rdo(), rfun(), and rvar_rng() for
higher-level interfaces for creating rvars.

Examples

set.seed(1234)

To create a "scalar" `rvar_factor`, pass a one-dimensional array or a vector
whose length (here `4000`) is the desired number of draws:
x <- rvar(sample(c("a","a","a","b","c"), 4000, replace = TRUE))
x

Create random vectors by adding an additional dimension:
x_array <- array(c(

sample(c("a","a","a","b","c"), 4000, replace = TRUE),
sample(c("a","a","b","c","c"), 4000, replace = TRUE),
sample(c("b","b","b","b","c"), 4000, replace = TRUE),
sample(c("d","d","b","b","c"), 4000, replace = TRUE)

96 rvar_ifelse

), dim = c(4000, 4))
rvar_factor(x_array)

You can also create ordered factors
rvar_ordered(x_array)

arguments of factor() and ordered() are passed down by the constructor
e.g. we can reorder levels of an ordered factor:
rvar_ordered(x_array, levels = c("d","c","b","a"))

Unlike base factors, rvar factors can be matrices or arrays:
rvar_factor(x_array, dim = c(2, 2))

If the input to rvar_factor() is an array with a `"levels"` attribute, it
will use those as the levels of the factor
y_array <- t(array(rbinom(3000, 1, c(0.1, 0.5, 0.9)) + 1, dim = c(3, 1000)))
rvar(y_array)
with levels
attr(y_array, "levels") = c("a", "b")
rvar_factor(y_array)

rvar_ifelse Random variable ifelse

Description

A version of ifelse() that returns an rvar.

Usage

rvar_ifelse(test, yes, no)

Arguments

test (logical rvar, or castable to one) logical test determining whether the value in
yes or no is assigned in the corresponding position of the result.

yes (rvar, or castable to one) corresponding values assigned for entries in test that
are TRUE.

no (rvar, or castable to one) corresponding values assigned for entries in test that
are FALSE.

Value

An rvar with the common type of yes and no (as determined by vctrs::vec_cast_common())
and a shape determined by broadcasting test, yes, and no to a common shape (see the section on
broadcasting rules in vignette("rvar")). For every element of draws_of(test), the correspond-
ing element of draws_of(yes) or draws_of(no) is placed into the result, depending on whether
the element of test is TRUE or FALSE.

rvar_is_finite 97

Examples

x <- rvar(1:4)
y <- rvar(5:8)

i <- rvar(c(TRUE,FALSE,TRUE,FALSE))
z <- rvar_ifelse(i, x, y)
z
draws_of(z)

rvar_is_finite Special value predicates for random variables

Description

Compute special value predicates (checking for finite / infinite values, NaN, and NA) on all draws
within a random variable, returning a random variable.

Usage

rvar_is_finite(x)

rvar_is_infinite(x)

rvar_is_nan(x)

rvar_is_na(x)

Arguments

x (rvar) An rvar.

Details

These functions return a new rvar that is the result of applying is.finite(), is.infinite(),
is.nan(), or is.na() to every draw in the input random variable.

Value

A logical rvar of the same length as the input.

See Also

rvar-summaries-over-draws for summary functions across draws, including implementations of
is.finite(), is.infinite(), is.nan(), and is.na() for rvars.

Other rvar-summaries: rvar-summaries-over-draws, rvar-summaries-within-draws

98 rvar_rng

Examples

x <- rvar(c(1, Inf, -Inf, NaN, NA))
x

rvar_is_finite(x)
rvar_is_infinite(x)
rvar_is_nan(x)
rvar_is_na(x)

rvar_rng Create random variables from existing random number generators

Description

Specialized alternative to rdo() or rfun() for creating rvars from existing random-number gener-
ator functions (such as rnorm(), rbinom(), etc).

Usage

rvar_rng(.f, n, ..., ndraws = NULL)

Arguments

.f (function) A function (or string naming a function) representing a random-number
generating function that follows the pattern of base random number generators
(like rnorm(), rbinom(), etc). It must:

• Have a first argument, n, giving the number of draws to take from the dis-
tribution

• Have vectorized parameter arguments

• Return a single vector of length n

n (positive integer) The length of the output rvar vector (not the number of
draws).

... Arguments passed to .f. These arguments may include rvars, so long as they
are vectors only (no multidimensional rvars are allowed).

ndraws (positive integer) The number of draws used to construct the returned random
variable if no rvars are supplied in If NULL, getOption("posterior.rvar_ndraws")
is used (default 4000). If ... contains rvars, the number of draws in the pro-
vided rvars is used instead of the value of this argument.

set_variables 99

Details

This function unwraps the arrays underlying the input rvars in ... and then passes them to .f,
relying on the vectorization of .f to evaluate it across draws from the input rvars. This is why the
arguments of .f must be vectorized. It asks for n times the number of draws in the input rvars (or
ndraws if none are given) draws from the random number generator .f, then reshapes the output
from .f into an rvar with length n.

rvar_rng() is a fast alternative to rdo() or rfun(), but you must ensure that .f satisfies the
preconditions described above for the result to be correct. Most base random number generators
satisfy these conditions. It is advisable to test against rdo() or rfun() (which should be correct,
but slower) if you are uncertain.

Value

A single-dimensional rvar of length n.

See Also

Other rfun: rdo(), rfun()

Examples

mu <- rvar_rng(rnorm, 10, mean = 1:10, sd = 1)
sigma <- rvar_rng(rgamma, 1, shape = 1, rate = 1)
x <- rvar_rng(rnorm, 10, mu, sigma)
x

set_variables Set variable names in draws objects

Description

Set variable names for all variables in a draws object. Useful when using pipe operators.

Usage

set_variables(x, variables, ...)

Arguments

x (draws) A draws object.

variables (character) new variable names.

... Arguments passed to individual methods (if applicable).

Value

Returns a draws object of the same format as x, with variables named as specified.

100 split_chains

See Also

variables

Examples

x <- as_draws(matrix(rnorm(100), ncol = 2))
variables(x)

x <- set_variables(x, c("theta[1]", "theta[2]"))
variables(x)

this is equivalent to
variables(x) <- c("theta[1]", "theta[2]")
variables(x)

split_chains Split Chains

Description

Split chains by halving the number of iterations per chain and doubling the number of chains.

Usage

split_chains(x, ...)

Arguments

x (draws) A draws object or another R object for which the method is defined.

... Arguments passed to individual methods (if applicable).

Value

A draws object of the same class as x.

Examples

x <- example_draws()
niterations(x)
nchains(x)

x <- split_chains(x)
niterations(x)
nchains(x)

subset_draws 101

subset_draws Subset draws objects

Description

Subset draws objects by variables, iterations, chains, and draws indices.

Usage

subset_draws(x, ...)

S3 method for class 'draws_matrix'
subset_draws(
x,
variable = NULL,
iteration = NULL,
chain = NULL,
draw = NULL,
regex = FALSE,
unique = TRUE,
...

)

S3 method for class 'draws_array'
subset_draws(
x,
variable = NULL,
iteration = NULL,
chain = NULL,
draw = NULL,
regex = FALSE,
unique = TRUE,
...

)

S3 method for class 'draws_df'
subset_draws(
x,
variable = NULL,
iteration = NULL,
chain = NULL,
draw = NULL,
regex = FALSE,
unique = TRUE,
...

)

102 subset_draws

S3 method for class 'draws_list'
subset_draws(
x,
variable = NULL,
iteration = NULL,
chain = NULL,
draw = NULL,
regex = FALSE,
unique = TRUE,
...

)

S3 method for class 'draws_rvars'
subset_draws(
x,
variable = NULL,
iteration = NULL,
chain = NULL,
draw = NULL,
regex = FALSE,
unique = TRUE,
...

)

S3 method for class 'rvar'
subset_draws(x, variable = NULL, ...)

S3 method for class 'draws'
subset(x, ...)

Arguments

x (draws) A draws object or another R object for which the method is defined.

... Arguments passed to individual methods (if applicable).

variable (character vector) The variables to select. All elements of non-scalar variables
can be selected at once.

iteration (integer vector) The iteration indices to select.

chain (integer vector) The chain indices to select.

draw (integer vector) The draw indices to be select. Subsetting draw indices will lead
to an automatic merging of chains via merge_chains.

regex (logical) Should variable should be treated as a (vector of) regular expres-
sions? Any variable in x matching at least one of the regular expressions will be
selected. Defaults to FALSE.

unique (logical) Should duplicated selection of chains, iterations, or draws be allowed?
If TRUE (the default) only unique chains, iterations, and draws are selected re-
gardless of how often they appear in the respective selecting arguments.

thin_draws 103

Details

To ensure that multiple consecutive subsetting operations work correctly, subset() repairs the
draws object before and after subsetting.

Value

A draws object of the same class as x.

Examples

x <- example_draws()
subset_draws(x, variable = c("mu", "tau"))
subset_draws(x, chain = 2)
subset_draws(x, iteration = 5:10, chain = 3:4)

extract the first chain twice
subset_draws(x, chain = c(1, 1), unique = FALSE)

extract all elements of 'theta'
subset_draws(x, variable = "theta")

thin_draws Thin draws objects

Description

Thin draws objects to reduce their size and autocorrelation in the chains.

Usage

thin_draws(x, thin, ...)

S3 method for class 'draws'
thin_draws(x, thin, ...)

S3 method for class 'rvar'
thin_draws(x, thin, ...)

Arguments

x (draws) A draws object or another R object for which the method is defined.

thin (positive integer) The period for selecting draws.

... Arguments passed to individual methods (if applicable).

Value

A draws object of the same class as x.

104 weights.draws

Examples

x <- example_draws()
niterations(x)

x <- thin_draws(x, thin = 5)
niterations(x)

weights.draws Extract Weights from Draws Objects

Description

Extract weights from draws objects, with one weight per draw. See weight_draws for details how
to add weights to draws objects.

Usage

S3 method for class 'draws'
weights(object, log = FALSE, normalize = TRUE, ...)

Arguments

object (draws) A draws object.

log (logical) Should the weights be returned on the log scale? Defaults to FALSE.

normalize (logical) Should the weights be normalized to sum to 1 on the standard scale?
Defaults to TRUE.

... Arguments passed to individual methods (if applicable).

Value

A vector of weights, with one weight per draw.

See Also

weight_draws, resample_draws

Examples

x <- example_draws()

sample some random weights for illustration
wts <- rexp(ndraws(x))
head(wts)

add weights
x <- weight_draws(x, weights = wts)

weight_draws 105

extract weights
head(weights(x)) # defaults to normalized weights
head(weights(x, normalize=FALSE)) # recover original weights
head(weights(x, log=TRUE)) # get normalized log-weights

add weights which are already on the log scale
log_wts <- log(wts)
head(log_wts)

x <- weight_draws(x, weights = log_wts, log = TRUE)
extract weights
head(weights(x))
head(weights(x, log=TRUE, normalize = FALSE)) # recover original log_wts

weight_draws Weight draws objects

Description

Add weights to draws objects, with one weight per draw, for use in subsequent weighting oper-
ations. For reasons of numerical accuracy, weights are stored in the form of unnormalized log-
weights (in a variable called .log_weight). See weights.draws() for details how to extract
weights from draws objects.

Usage

weight_draws(x, weights, ...)

S3 method for class 'draws_matrix'
weight_draws(x, weights, log = FALSE, ...)

S3 method for class 'draws_array'
weight_draws(x, weights, log = FALSE, ...)

S3 method for class 'draws_df'
weight_draws(x, weights, log = FALSE, ...)

S3 method for class 'draws_list'
weight_draws(x, weights, log = FALSE, ...)

S3 method for class 'draws_rvars'
weight_draws(x, weights, log = FALSE, ...)

Arguments

x (draws) A draws object or another R object for which the method is defined.

106 weight_draws

weights (numeric vector) A vector of weights of length ndraws(x). Weights will be
internally stored on the log scale (in a variable called .log_weight) and will
not be normalized, but normalized (non-log) weights can be returned via the
weights.draws() method later.

... Arguments passed to individual methods (if applicable).

log (logicla) Are the weights passed already on the log scale? The default is FALSE,
that is, expecting weights to be on the standard (non-log) scale.

Value

A draws object of the same class as x.

See Also

weights.draws(), resample_draws()

Examples

x <- example_draws()

sample some random weights for illustration
wts <- rexp(ndraws(x))
head(wts)

add weights
x <- weight_draws(x, weights = wts)

extract weights
head(weights(x)) # defaults to normalized weights
head(weights(x, normalize=FALSE)) # recover original weights
head(weights(x, log=TRUE)) # get normalized log-weights

add weights which are already on the log scale
log_wts <- log(wts)
head(log_wts)

x <- weight_draws(x, weights = log_wts, log = TRUE)
extract weights
head(weights(x))
head(weights(x, log=TRUE, normalize = FALSE)) # recover original log_wts

Index

∗ diagnostics
ess_basic, 29
ess_bulk, 30
ess_quantile, 33
ess_sd, 34
ess_tail, 35
mcse_mean, 43
mcse_quantile, 45
mcse_sd, 46
rhat, 73
rhat_basic, 75
rhat_nested, 76
rstar, 77

∗ formats
draws, 12
draws_array, 15
draws_df, 16
draws_list, 18
draws_matrix, 20
draws_rvars, 23

∗ rfun
rdo, 66
rfun, 72
rvar_rng, 98

∗ rvar-summaries
rvar-summaries-over-draws, 87
rvar-summaries-within-draws, 90
rvar_is_finite, 97

[.rvar (rvar-slice), 85
[<-.rvar (rvar-slice), 85
[[.rvar (rvar-slice), 85
[[<-.rvar (rvar-slice), 85
%**% (rvar-matmult), 83
%in% (match), 42

all.rvar (rvar-summaries-over-draws), 87
any.rvar (rvar-summaries-over-draws), 87
as.character, 7, 95
as_draws (draws), 12
as_draws_array (draws_array), 15

as_draws_df (draws_df), 16
as_draws_list (draws_list), 18
as_draws_matrix (draws_matrix), 20
as_draws_rvars (draws_rvars), 23
as_function(), 25
as_rvar, 5
as_rvar(), 41, 81, 93
as_rvar_factor, 6
as_rvar_factor(), 42, 95
as_rvar_integer (as_rvar), 5
as_rvar_logical (as_rvar), 5
as_rvar_numeric (as_rvar), 5
as_rvar_ordered (as_rvar_factor), 6
as_rvar_ordered(), 42

base array slicing operators, 85
base::diag(), 9, 10
base::drop(), 27
base::factor, 7, 95
base::match, 43
base::match(), 42, 43
bind_draws, 8

cdf.rvar (rvar-dist), 82
cdf.rvar_factor (rvar-dist), 82
cdf.rvar_ordered (rvar-dist), 82
chain_ids (draws-index), 13
chol.rvar, 9
convergence (diagnostics), 10

default_convergence_measures
(draws_summary), 24

default_mcse_measures (draws_summary),
24

default_summary_measures
(draws_summary), 24

density.rvar (rvar-dist), 82
density.rvar_factor (rvar-dist), 82
diag,rvar-method, 9
diagnostic, 25

107

108 INDEX

diagnostics, 10, 26
dim(), 5, 6, 66, 80, 94
dimnames(), 5, 6, 80, 94
dissent, 11
dissent(), 61, 64
draw_ids (draws-index), 13
draws, 4, 8, 12, 16, 18, 19, 21, 24, 47, 50, 51,

67, 69, 71, 99, 101, 103–105
draws-index, 13
draws_array, 13, 15, 18, 19, 21, 24, 37, 50, 57
draws_df, 13, 16, 16, 19, 21, 24, 50, 58, 71, 78
draws_list, 13, 16, 18, 18, 21, 24, 50, 59
draws_matrix, 13, 16, 18, 19, 20, 24, 50, 60
draws_of, 21
draws_of(), 66, 73, 81
draws_of<- (draws_of), 21
draws_rvars, 13, 16, 18, 19, 21, 23, 40, 50, 61
draws_summary, 24
drop,rvar-method, 27

E (rvar-summaries-over-draws), 87
entropy, 27
entropy(), 61, 63
ess_basic, 29, 31, 34, 35, 37, 44, 46, 47, 74,

76, 77, 79
ess_basic(), 10
ess_bulk, 30, 30, 34, 35, 37, 44, 46, 47, 74,

76, 77, 79
ess_bulk(), 10, 26, 29, 36
ess_mean, 32
ess_mean.default (ess_quantile), 33
ess_median (ess_quantile), 33
ess_quantile, 30, 31, 33, 35, 37, 44, 46, 47,

74, 76, 77, 79
ess_quantile(), 10
ess_sd, 30, 31, 34, 34, 37, 44, 46, 47, 74, 76,

77, 79
ess_sd(), 10
ess_tail, 30, 31, 34, 35, 35, 44, 46, 47, 74,

76, 77, 79
ess_tail(), 10, 26, 29, 30
example_draws, 37
extract_variable, 38
extract_variable_matrix, 39
extract_variable_matrix(), 29, 31–33, 35,

36, 44–46, 52, 54, 56, 65, 74–76

factor, 11, 12, 28, 49, 93, 95
for_each_draw, 40

format(), 64
format.rvar (print.rvar), 63

integer, 5, 11, 28, 49
is.finite.rvar

(rvar-summaries-over-draws), 87
is.infinite.rvar

(rvar-summaries-over-draws), 87
is.na.rvar (rvar-summaries-over-draws),

87
is.nan.rvar

(rvar-summaries-over-draws), 87
is_draws (draws), 12
is_draws_array (draws_array), 15
is_draws_df (draws_df), 16
is_draws_list (draws_list), 18
is_draws_matrix (draws_matrix), 20
is_draws_rvars (draws_rvars), 23
is_rvar, 41
is_rvar(), 66
is_rvar_factor, 42
is_rvar_ordered (is_rvar_factor), 42
iteration_ids (draws-index), 13

logical, 5, 84

mad (rvar-summaries-over-draws), 87
mad(), 25
match, 42
matrix multiplication, 22
max.rvar (rvar-summaries-over-draws), 87
mcse_mean, 30, 31, 34, 35, 37, 43, 46, 47, 74,

76, 77, 79
mcse_mean(), 10
mcse_median (mcse_quantile), 45
mcse_quantile, 30, 31, 34, 35, 37, 44, 45, 47,

74, 76, 77, 79
mcse_quantile(), 10
mcse_sd, 30, 31, 34, 35, 37, 44, 46, 46, 74, 76,

77, 79
mcse_sd(), 11
mean(), 25
mean.rvar (rvar-summaries-over-draws),

87
median(), 25
median.rvar

(rvar-summaries-over-draws), 87
merge_chains, 47, 102
min.rvar (rvar-summaries-over-draws), 87

INDEX 109

modal_category, 48
mutate_variables, 50, 67

names, 9, 65
nchains (draws-index), 13
ndraws (draws-index), 13
niterations (draws-index), 13
num(), 4, 25, 62
numeric, 5, 10–12, 27, 28, 49, 84
nvariables (draws-index), 13

option, 25, 57–62
order_draws, 51
order_draws(), 68, 69
ordered, 95

pareto_diags, 52
pareto_khat, 54
pareto_smooth, 55
pillar::style_num(), 64
posterior (posterior-package), 4
posterior-package, 4
Pr (rvar-summaries-over-draws), 87
print(), 57–61, 63
print.draws_array, 57
print.draws_df, 58
print.draws_list, 59
print.draws_matrix, 60
print.draws_rvars, 61
print.draws_summary, 62
print.rvar, 63
prod.rvar (rvar-summaries-over-draws),

87

quantile.rvar (rvar-dist), 82
quantile.rvar_factor (rvar-dist), 82
quantile.rvar_ordered (rvar-dist), 82
quantile2, 65
quantile2(), 25
quasiquotation, 40, 66

range.rvar (rvar-summaries-over-draws),
87

rdo, 66, 73, 99
rdo(), 6, 7, 81, 93, 95
rename_variables, 51, 67
rename_variables(), 14
repair_draws, 68
repair_draws(), 52

repairs, 103
resample_draws, 69, 104
resample_draws(), 70, 106
reserved_variables, 57–61, 71
rfun, 66, 72, 99
rfun(), 6, 7, 81, 93, 95
rhat, 30, 31, 34, 35, 37, 44, 46, 47, 73, 76, 77,

79
rhat(), 11, 26, 39, 75
rhat_basic, 30, 31, 34, 35, 37, 44, 46, 47, 74,

75, 77, 79
rhat_basic(), 11
rhat_nested, 30, 31, 34, 35, 37, 44, 46, 47,

74, 76, 76, 79
rhat_nested(), 11
rlang::as_function(), 72
rstar, 30, 31, 34, 35, 37, 44, 46, 47, 74, 76,

77, 77
rstar(), 11
rvar, 4–7, 9–12, 21, 22, 24, 27–36, 41–47, 49,

50, 52, 54, 56, 63–66, 72–77, 80, 80,
82–87, 89, 91–94, 96–99

rvar(), 5–7, 95
rvar-dist, 82, 90, 91
rvar-matmult, 83
rvar-slice, 85
rvar-summaries-over-draws, 87, 91, 97
rvar-summaries-within-draws, 90, 90
rvar_all (rvar-summaries-within-draws),

90
rvar_any (rvar-summaries-within-draws),

90
rvar_apply, 92
rvar_factor, 5–7, 11, 28, 42, 49, 61, 63, 64,

93
rvar_factor(), 7, 95
rvar_ifelse, 96
rvar_is_finite, 90, 92, 97
rvar_is_infinite (rvar_is_finite), 97
rvar_is_na (rvar_is_finite), 97
rvar_is_nan (rvar_is_finite), 97
rvar_mad (rvar-summaries-within-draws),

90
rvar_max (rvar-summaries-within-draws),

90
rvar_mean

(rvar-summaries-within-draws),
90

110 INDEX

rvar_median
(rvar-summaries-within-draws),
90

rvar_min (rvar-summaries-within-draws),
90

rvar_ordered, 5–7, 11, 28, 42, 49, 61, 63
rvar_ordered (rvar_factor), 93
rvar_ordered(), 7, 95
rvar_prod

(rvar-summaries-within-draws),
90

rvar_quantile
(rvar-summaries-within-draws),
90

rvar_range
(rvar-summaries-within-draws),
90

rvar_rng, 66, 73, 98
rvar_rng(), 6, 7, 66, 73, 81, 93, 95
rvar_sd (rvar-summaries-within-draws),

90
rvar_sum (rvar-summaries-within-draws),

90
rvar_var (rvar-summaries-within-draws),

90

sd (rvar-summaries-over-draws), 87
sd(), 25
set_variables, 99
set_variables(), 14
split_chains, 100
stats::density(), 83
stats::quantile(), 65, 83
str.rvar (print.rvar), 63
subset.draws (subset_draws), 101
subset_draws, 70, 101
sum.rvar (rvar-summaries-over-draws), 87
summarise_draws (draws_summary), 24
summarise_draws(), 62
summarize_draws, 4
summarize_draws (draws_summary), 24
summary(), 24
summary.draws (draws_summary), 24
Summary.rvar

(rvar-summaries-over-draws), 87
summary.rvar (draws_summary), 24

thin (thin_draws), 103
thin_draws, 103

tibble, 17, 26
tibble::print.tbl_df(), 62

var (rvar-summaries-over-draws), 87
variables, 51, 67, 100
variables (draws-index), 13
variables<- (draws-index), 13
variance.rvar

(rvar-summaries-over-draws), 87

weight_draws, 71, 104, 105
weight_draws(), 69
weights.draws, 104
weights.draws(), 105, 106

	posterior-package
	as_rvar
	as_rvar_factor
	bind_draws
	chol.rvar
	diag,rvar-method
	diagnostics
	dissent
	draws
	draws-index
	draws_array
	draws_df
	draws_list
	draws_matrix
	draws_of
	draws_rvars
	draws_summary
	drop,rvar-method
	entropy
	ess_basic
	ess_bulk
	ess_mean
	ess_quantile
	ess_sd
	ess_tail
	example_draws
	extract_variable
	extract_variable_matrix
	for_each_draw
	is_rvar
	is_rvar_factor
	match
	mcse_mean
	mcse_quantile
	mcse_sd
	merge_chains
	modal_category
	mutate_variables
	order_draws
	pareto_diags
	pareto_khat
	pareto_smooth
	print.draws_array
	print.draws_df
	print.draws_list
	print.draws_matrix
	print.draws_rvars
	print.draws_summary
	print.rvar
	quantile2
	rdo
	rename_variables
	repair_draws
	resample_draws
	reserved_variables
	rfun
	rhat
	rhat_basic
	rhat_nested
	rstar
	rvar
	rvar-dist
	rvar-matmult
	rvar-slice
	rvar-summaries-over-draws
	rvar-summaries-within-draws
	rvar_apply
	rvar_factor
	rvar_ifelse
	rvar_is_finite
	rvar_rng
	set_variables
	split_chains
	subset_draws
	thin_draws
	weights.draws
	weight_draws
	Index

