Package 'rmsb’

March 12, 2024
Title Bayesian Regression Modeling Strategies
Version 1.1-0
Date 2024-03-11

Description

A Bayesian companion to the 'rms' package, 'rmsb' provides Bayesian model fitting, post-fit estimation, and graphics. It implements Bayesian regression models whose fit objects can be processed by 'rms' functions such as 'contrast()', 'summary()', 'Predict()', 'nomogram()', and 'latex()'. The fitting function currently implemented in the package is 'blrm()' for Bayesian logistic binary and ordinal regression with optional clustering, censoring, and departures from the proportional odds assumption using the partial proportional odds model of Peterson and Harrell (1990) https://www.jstor.org/stable/2347760.
License GPL (>=3)
Encoding UTF-8
URL https://hbiostat.org/R/rmsb/

RoxygenNote 7.3.1

Biarch true
Depends R ($>=3.4 .0$), rms ($>=6.8-0$)
Imports methods, Rcpp (>= 0.12.0), rstan ($>=2.26 .23$), Hmisc ($>=$ 4.3-0), survival (>=3.1-12), ggplot2, MASS, cluster, digest, knitr, loo
LinkingTo $\mathrm{BH}(>=1.66 .0)$, Rcpp ($>=0.12 .0$), RcppEigen ($>=0.3 .3 .3 .0$), RcppParallel ($>=5.0 .1$), rstan ($>=2.18 .1$), StanHeaders ($>=$ 2.18.0)

Suggests cmdstanr, bayesplot, mice
Additional_repositories https://mc-stan.org/r-packages/
SystemRequirements GNU make
NeedsCompilation yes
Author Frank Harrell [aut, cre] (https://orcid.org/0000-0002-8271-5493), Ben Goodrich [ctb] (contributed Stan code),
Ben Bolker [ctb] (wrote original code that is folded into the
pdensityContour function),Doug Bates [ctb] (write original code for highest posterior densityinterval that is folded into the HPDint function)
Maintainer Frank Harrell fh@fharrell.com
Repository CRAN
Date/Publication 2024-03-12 15:50:02 UTC
R topics documented:
rmsb-package 3
as.data.frame.Ocens 3
blrm 4
blrmStats 9
cluster 11
coef.rmsb 11
compareBmods 12
distSym 13
ExProb.blrm 13
getParamCoef 14
HPDint 15
Mean.blrm 15
Ocens 16
pdensityContour 17
plot.PostF 18
plot.rmsb 19
PostF 20
predict.blrm 21
print.blrm 23
print.blrmStats 24
print.predict.blrm 25
print.rmsb 25
Quantile.blrm 26
selectedQr 27
stackMI 28
stanDx 29
stanDxplot 30
stanGet 31
tauFetch 32
vcov.rmsb 32
[.Ocens 33
Index 35

```
    rmsb-package The 'rmsb' package.
```


Description

Regression Modeling Strategies Bayesian

The rmsb package is an appendage to the rms package that implements Bayesian regression models whose fit objects can be processed by rms functions such as contrast, summary, Predict, nomogram, and latex. The fitting function currently implemented in the package is blrm for Bayesian logistic binary and ordinal regression with optional clustering, censoring, and departures from the proportional odds assumption using the partial proportional odds model of Peterson and Harrell (1990).

References

Stan Development Team (2020). RStan: the R interface to Stan. R package version 2.19.3. https://mc-stan.org

See Also

- https://hbiostat.org/R/rmsb/ for the package's main web page
- https://hbiostat.org/R/examples/blrm/blrm.html for a vignette with many examples of using the blrm function

```
as.data.frame.Ocens Convert Ocens Object to Data Frame to Facilitate Subset
```


Description

Converts an Ocens object to a data frame so that subsetting will preserve all needed attributes

Usage

```
    ## S3 method for class 'Ocens'
    as.data.frame(x, row.names = NULL, optional = FALSE, ...)
```


Arguments

x
an Ocens object
row.names optional vector of row names
optional set to TRUE if needed
... ignored

Value

data frame containing a 2-column integer matrix with attributes

Author(s)

Frank Harrell
blrm
Bayesian Binary and Ordinal Logistic Regression

Description

Uses rstan with pre-compiled Stan code, or cmdstan to get posterior draws of parameters from a binary logistic or proportional odds semiparametric ordinal logistic model. The Stan code internally using the qr decompositon on the design matrix so that highly collinear columns of the matrix do not hinder the posterior sampling. The parameters are transformed back to the original scale before returning results to R. Design matrix columns are centered before running Stan, so Stan diagnostic output will have the intercept terms shifted but the results of blrm() for intercepts are for the original uncentered data. The only prior distributions for regression betas are normal with mean zero. Priors are specified on contrasts so that they can be specified on a meaningful scale and so that more complex patterns can be imposed. Parameters that are not involved in any contrasts in pcontrast or npcontrast have non-informative priors. Contrasts are automatically converted to the QR space used in Stan code.

Usage

blrm(
formula,
ppo = NULL,
cppo = NULL,
data $=$ environment(formula),
subset,
na. action = na.delete,
priorsdppo $=\operatorname{rep}(100$, pppo),
iprior = 0,
conc $=1 /(0.8+0.35 * \max (k, 3))$,
ascale $=1$,
psigma $=1$,
rsdmean $=$ if (psigma $==1$) 0 else 1 ,
rsdsd = 1,
normcppo = FALSE,
pcontrast = NULL,
npcontrast = NULL,
backend = c("rstan", "cmdstan"),
iter = 2000,
warmup = iter/2,
chains = 4,

```
    refresh = 0,
    progress = if (refresh > 0) "stan-progress.txt" else "",
    x = TRUE,
    y = TRUE,
    loo = n <= 1000,
    ppairs = NULL,
    method = c("both", "sampling", "optimizing"),
    inito = if (length(ppo)) 0 else "random",
    inits = inito,
    standata = FALSE,
    file = NULL,
    debug = FALSE,
    sampling.args = NULL,
)
```


Arguments

formula	a R formula object that can use rms package enhancements such as the restricted interaction operator
ppo	formula specifying the model predictors for which proportional odds is not assumed
cppo	a function that if present causes a constrained partial PO model to be fit. The function specifies the values in the Gamma vector in Peterson and Harrell (1990) equation (6). Sometimes to make posterior sampling better behaved, the function should be scaled and centered. This is done by wrapping cppo in a function that scales the cppo result before returning the vector value, when normcppo is TRUE. The default normalization is based on the mean and standard deviation of the function values over the distribution of observed Y. For getting predicted values and estimates post-blrm(), cppo must not reference any functions that are not available at such later times.
data	a data frame; defaults to using objects from the calling environment
subset	a logical vector or integer subscript vector specifying which subset of data whould be used
na.action	default is na.delete to remove missings and report on them
priorsdppo	vector of prior standard deviations for non-proportional odds parameters. The last element is the only one for which the SD corresponds to the original data scale. This only applies to the unconstrained PPO model.
iprior	specifies whether to use a Dirichlet distribution for the cell probabilities, which induce a more complex prior distribution for the intercepts (iprior=0, the default), non-informative priors (iprior=1) directly on the intercept parameters, or to directly use a t-distribution with 3 d.f. and scale parameter ascale (iprior=2).
conc	the Dirichlet distribution concentration parameter for the prior distribution of cell probabilities at covariate means. The default is the reciprocal of $0.8+0.35$ $\max (\mathrm{k}, 3)$ where k is the number of Y categories. The default is chosen to make the posterior mean of the intercepts more closely match the MLE. For

	optimizing, the concentration parameter is always 1.0 to obtain results very close to the MLE for providing the posterior mode. ascale scale parameter for the t-distribution for priors for the intercepts if iprior=2, defaulting to 1.0
rsdmean	defaults to 1 for a half-t distribution with 4 d.f., location parameter rsdmean and
scale parameter rsdsd. Set psigma=2 to use the exponential distribution.	
the assumed mean of the prior distribution of the standard deviation of random	
effects. When psigma=2 this is the mean of an exponential distribution and	
defaults to 1. When psigma=1 this is the mean of the half-t distribution and	
defaults to zero.	
rsdsd	applies only to psigma=1 and is the scale parameter for the half t distribution for
the SD of random effects, defaulting to 1.	

chains	number of separate chains to run
refresh	see rstan: :sampling() and cmdstanr: :sample(). The default is 0 , indicat-
ing that no progress notes are output. If refresh >0 and progress is not ' ',	
progress output will be appended to file progress. The default file name is	
'stan-progress.txt'.	
see refresh. Defaults to ' ' if refresh = 0. Note: If running interactively but	
not under RStudio, rstan will open a browser window for monitoring progress.	
set to FALSE to not store the design matrix in the fit. x=TRUE is needed if running	
blrmStats for example.	
x	set to FALSE to not store the response variable in the fit

sampling.args a list containing parameters to pass to rstan: : sampling() or to the rcmdstan sample function, other than these arguments: iter, warmup, chains, refresh, init which are already arguments to blrm
passed to rstan::optimizing() or the rcmdstan optimizing function. The seed parameter is a popular example.

Details

The partial proportional odds model of Peterson and Harrell (1990) is implemented, and is invoked when the user specifies a second model formula as the ppo argument. This formula has no left-hand-side variable, and has right-side variables that are a subset of those in formula specifying for which predictors the proportional odds assumption is relaxed.

The Peterson and Harrell (1990) constrained partial proportional odds is also implemented, and is usually preferred to the above unconstrained PPO model as it adds a vector of coefficients instead of a matrix of coefficients. In the constrained PPO model the user provides a function cppo that computes a score for all observed values of the dependent variable. For example with a discrete ordinal outcome cppo may return a value of 1.0 for a specific value of Y and zero otherwise. That will result in a departure from the proportional odds assumption for just that one level of Y. The value returned by cppo at the lowest Y value is never used in any case.
blrm() also handles single-level hierarchical random effects models for the case when there are repeated measurements per subject which are reflected as random intercepts, and a different experimental model that allows for AR(1) serial correlation within subject. For both setups, a cluster term in the model signals the existence of subject-specific random effects.

When using the cmdstan backend, cmdstanr will need to compile the Stan code once per computer, only recompiling the code when the Stan source code changes. By default the compiled code is stored in directory . rmsb under your home directory. Specify options (rmsbdir=) to specify a different location. You should specify rmsbdir to be in a project-specific location if you want to archive code for old projects.

If you want to run MCMC sampling even when no inputs or Stan code have changed, i.e., to use a different random number seed for the sampling process, remove the file before running blrm.

See here and here for multiple examples with results.

Value

an rms fit object of class blrm, rmsb, rms that also contains rstan or cmdstanr results under the name rstan. In the rstan results, which are also used to produce diagnostics, the intercepts are shifted because of the centering of columns of the design matrix done by blrm(). With method='optimizing' a class-less list is return with these elements: coefficients (MLEs), beta (non-intercept parameters on the QR decomposition scale), deviance (-2 log likelihood), return_code (see rstan: :optimizing()), and, if you specified hessian=TRUE to blrm(), the Hessian matrix. To learn about the scaling of orthogonalized QR design matrix columns, look at the xqrsd object in the returned object. This is the vector of SDs for all the columns of the transformed matrix. The returned element sampling_time is the elapsed time for running posterior samplers, in seconds. This will be just a little more than the time for running one CPU core for one chain.

Author(s)

Frank Harrell and Ben Goodrich

See Also

print.blrm(), blrmStats(), stanDx(), stanGet(), coef.rmsb(), vcov.rmsb(), print.rmsb(), coef.rmsb()

Examples

```
## Not run:
    getHdata(titanic3)
    dd <- datadist(titanic3); options(datadist='dd')
    f<- blrm(survived ~ (rcs(age, 5) + sex + pclass)^2, data=titanic3)
    f # model summary using print.blrm
    coef(f) # compute posterior mean parameter values
    coef(f, 'median') # compute posterior median values
    stanDx(f) # print basic Stan diagnostics
    s <- stanGet(f) # extract rstan object from fit
    plot(s, pars=f$betas) # Stan posteriors for beta parameters
    stanDxplot(s) # Stan diagnostic plots by chain
    blrmStats(f) # more details about predictive accuracy measures
    ggplot(Predict(...)) # standard rms output
    summary(f, ...) # invokes summary.rms
    contrast(f, ...) # contrast.rms computes HPD intervals
    plot(nomogram(f, ...)) # plot nomogram using posterior mean parameters
    # Fit a random effects model to handle multiple observations per
    # subject ID using cmdstan
    # options(rmsb.backend='cmdstan')
    f <- blrm(outcome ~ rcs(age, 5) + sex + cluster(id), data=mydata)
## End(Not run)
```


Description

For a binary or ordinal logistic regression fit from blrm(), computes several indexes of predictive accuracy along with highest posterior density intervals for them. Optionally plots their posterior densities. When there are more than two levels of the outcome variable, computes Somers' Dxy and c-index on a random sample of 10,000 observations.

Usage

blrmStats(fit, $n s=400, \operatorname{prob}=0.95, \mathrm{pl}=$ FALSE, dist = c("density", "hist"))

Arguments

fit	an object produced by blrm()
ns	number of posterior draws to use in the calculations (default is 400)
prob	HPD interval probability (default is 0.95)
pl	set to TRUE to plot the posterior densities using base graphics
dist	if pl is TRUE specifies whether to plot the density estimate (the default) or a histogram

Value

list of class blrmStats whose most important element is Stats. The indexes computed are defined below, with gp, B, EV, and vp computed using the intercept corresponding to the median value of Y. See https://fharrell.com/post/addvalue for more information.
"Dxy" Somers' Dxy rank correlation between predicted and observed. The concordance probability (c-index; AUROC in the binary Y case) may be obtained from the relationship Dxy=2(c0.5).
"g" Gini's mean difference: the average absolute difference over all pairs of linear predictor values
'gp" Gini's mean difference on the predicted probability scale
"B" Brier score
'EV'" explained variation
" \mathbf{v} " variance of linear predictor
"vp" variable of estimated probabilities

Author(s)

Frank Harrell

See Also

```
Hmisc::rcorr.cens()
```


Examples

```
## Not run:
    f <- blrm(...)
    blrmStats(f, pl=TRUE) # print and plot
## End(Not run)
```

```
    cluster cluster
```


Description

Cluster Function for Random Effects

Usage

cluster (x)

Arguments

x
a vector representing a categorical vector

Details

Used by blrm to signal a categorical variable to generate random effects.

Value

x unchanged

Author(s)

Frank Harrell

```
coef.rmsb
Extract Bayesian Summary of Coefficients
```


Description

Computes either the posterior mean (default), posterior median, or posterior mode of the parameters in an rms Bayesian regression model

Usage

```
## S3 method for class 'rmsb'
coef(object, stat = c("mean", "median", "mode"), ...)
```


Arguments

$$
\begin{array}{ll}
\text { object } & \text { an object created by an rms package Bayesian fitting function } \\
\text { stat } & \text { name of measure of posterior distribution central tendency to compute } \\
\ldots & \text { ignored }
\end{array}
$$

Value

a vector of intercepts and regression coefficients

Author(s)

Frank Harrell

Examples

```
## Not run:
    f <- blrm(...)
    coef(f, stat='mode')
## End(Not run)
```


compareBmods

Compare Bayesian Model Fits

Description

Uses loo: : loo_model_weights() to compare a series of models such as those created with blrm()

Usage

compareBmods(..., method = "stacking", r_eff_list = NULL)

Arguments

... a series of model fits
method see loo::loo_model_weights()
r_eff_list see loo::loo_model_weights()

Value

a loo::loo_model_weights() object

Author(s)

Frank Harrell

Description

From a sample from a distribution computes a symmetry measure. By default it is the gap between the mean and the 0.95 quantile divided by the gap between the 0.05 quantile and the mean.

Usage

distSym(x, prob = 0.9, na.rm = FALSE)

Arguments

$x \quad$ a numeric vector representing a sample from a continuous distribution
prob quantile interval coverage
na.rm set to TRUE to remove NAs before proceeding.

Value

a scalar with a value of 1.0 indicating symmetry

Author(s)

Frank Harrell
ExProb.blrm Function Generator for Exceedance Probabilities for blrm()

Description

For a blrm() object generates a function for computing the estimates of the function $\operatorname{Prob}(\mathrm{Y}>=\mathrm{y})$ given one or more values of the linear predictor using the reference (median) intercept. This function can optionally be evaluated at only a set of user-specified y values, otherwise a right-step function is returned. There is a plot method for plotting the step functions, and if more than one linear predictor was evaluated multiple step functions are drawn. ExProb is especially useful for nomogram(). The linear predictor argument is a posterior summarized linear predictor lp (e.g. using posterior mean of intercepts and slopes) computed at the reference intercept. lptau must be provided when call the created function if the model is a partial proportional odds model.

Usage

\#\# S3 method for class 'blrm'
ExProb(object, posterior.summary = c("mean", "median"), ...)

Arguments

```
    object a blrm() fit
    posterior.summary
```

 defaults to posterior mean; may also specify "median". Must be consistent with
 the summary used when creating lp.
 ... ignored

Value

an R function

Author(s)

Frank Harrell

```
    getParamCoef Get a Bayesian Parameter Vector Summary
```


Description

Retrieves posterior mean, median, or mode (if available)

Usage

getParamCoef(
fit,
posterior.summary = c("mean", "median", "mode"),
what = c("both", "betas", "taus")
)

Arguments

fit a Bayesian model fit from rmsb
posterior.summary
which summary statistic (Bayesian point estimate) to fetch
what specifies which coefficients to include. Default is all. Specify what="betas" to include only intercepts and betas if the model is a partial proportional odds model (i.e.,, exclude the tau parameters). Specify what="taus" to include only the tau parameters.

Value

vector of regression coefficients

Author(s)

Frank Harrell

HPDint Highest Posterior Density Interval

Description

Adapts code from coda: :HPDinterval() to compute a highest posterior density interval from posterior samples for a single parameter. Quoting from the coda help file, for each parameter the interval is constructed from the empirical cdf of the sample as the shortest interval for which the difference in the ecdf values of the endpoints is the nominal probability. Assuming that the distribution is not severely multimodal, this is the HPD interval.

Usage

HPDint(x, prob $=0.95$)

Arguments

$x \quad$ a vector of posterior draws

Value

a 2-vector with elements Lower and Upper

Author(s)

Douglas Bates and Frank Harrell
Mean.blrm Function Generator for Mean Y for blrm()

Description

Creates a function to turn a posterior summarized linear predictor lp (e.g. using posterior mean of intercepts and slopes) computed at the reference intercept into e.g. an estimate of mean Y using the posterior mean of all the intercept. lptau must be provided when call the created function if the model is a partial proportional odds model.

Usage

```
## S3 method for class 'blrm'
Mean(object, codes = FALSE, posterior.summary = c("mean", "median"), ...)
```


Arguments

> object ablrm() fit
codes if TRUE, use the integer codes $1,2, \ldots, k$ for the k-level response in computing the predicted mean response.
posterior.summary
defaults to posterior mean; may also specify "median". Must be consistent with the summary used when creating $1 p$.
... ignored

Value

an R function

Author(s)

Frank Harrell
Ocens Censored Ordinal Variable

Description

Creates a 2-column integer matrix that handles left- right- and interval-censored ordinal or continuous values for use in blrm(). A pair of values [a, b] represents an interval-censored value known to be in the interval [a, b] inclusive of a and b. It is assumed that all distinct values are observed as uncensored for at least one observation. When both input variables are factors it is assume that the one with the higher number of levels is the one that correctly specifies the order of levels, and that the other variable does not contain any additional levels. If the variables are not factors it is assumed their original values provide the orderings. Since all values that form the left or right endpoints of an interval censored value must be represented in the data, a left-censored point is is coded as $a=1$ and a right-censored point is coded as b equal to the maximum observed value. If the maximum observed value is not really the maximum possible value, everything still works except that predictions involving values above the highest observed value cannot be made. As with most censored-data methods, blrm() assumes that censoring is independent of the response variable values that would have been measured had censoring not occurred.

Usage

Ocens(a, b = a)

Arguments

a
vector representing a factor, numeric, or alphabetically ordered character strings
b

Value

a 2-column integer matrix of class "Ocens" with an attribute levels (ordered). When the original variables were factors, these are factor levels, otherwise are numerically or alphabetically sorted distinct (over a and b combined) values. When the variables are not factors and are numeric, another attribute median is also returned. This is the median of the uncensored values. When the variables are factor or character, the median of the integer versions of variables for uncensored observations is returned as attribute mid. A final attribute freq is the vector of frequencies of occurrences of all uncensored values. freq aligns with levels.

Author(s)

Frank Harrell

```
pdensityContour Bivariate Posterior Contour
```


Description

Computes coordinates of a highest density contour containing a given probability volume given a sample from a continuous bivariate distribution, and optionally plots. The default method assumes an elliptical shape, but one can optionally use a kernel density estimator. Code adapted from embbook: :HPDregionplot. See https://www.sumsar.net/blog/2014/11/how-to-summarize-a-2d-posterior-usin

Usage

```
    pdensityContour(
        x,
        y,
        method = c("ellipse", "kernel"),
        prob = 0.95,
        otherprob = c(0.01, 0.1, 0.25, 0.5, 0.75, 0.9),
        h = c(1.3 * MASS::bandwidth.nrd(x), 1.3 * MASS::bandwidth.nrd(y)),
        n = 70,
        pl = FALSE
    )
```


Arguments

x
$y \quad a \quad$ numeric vector the same length of x
method defaults to 'ellipse', can be set to 'kernel'
prob main probability coverage (the only one for method='ellipse')
otherprob vector of other probability coverages for method='kernel '
$h \quad$ vector of bandwidths for x and y. See MASS: :kde2d().
$\mathrm{n} \quad$ number of grid points in each direction, defaulting to normal reference bandwidth (see bandwidth.nrd).
pl set to TRUE to plot contours

Value

a 2-column matrix with x and y coordinates unless $\mathrm{pl}=$ TRUE in which case a ggplot2 graphic is returned

Author(s)

Ben Bolker and Frank Harrell

```
plot.PostF
```

Plot Posterior Density of PostF

Description

Computes highest posterior density and posterior mean and median as vertical lines, and plots these on the density function. You can transform the posterior draws while plotting.

Usage

```
    ## S3 method for class 'PostF'
    plot(
        x,
        ...,
        cint = 0.95,
        label = NULL,
        type = c("linetype", "facet"),
        ltitle = ""
    )
```


Arguments

x
... other results created by such functions
cint interval probability
label x-axis label if not the expression originally evaluated. When more than one result is plotted, label is a vector of character strings, one for each result.
type when plotting more than one result specifies whether to make one plot distinguishing results by line type, or whether to make separate panels
ltitle used of type='linetype' to specify name of legend for the line types

Value

ggplot2 object

Author(s)

Frank Harrell
plot.rmsb Plot Posterior Densities and Summaries

Description

For an rms Bayesian fit object, plots posterior densities for selected parameters along with posterior mode, mean, median, and highest posterior density interval. If the fit was produced by stackMI the density represents the distribution after stacking the posterior draws over imputations, and the per-imputation density is also drawn as pale curves. If exactly two parameters are being plotted and bivar=TRUE, hightest bivariate posterior density contrours are plotted instead, for a variety of prob values including the one specified, using

Usage

```
    ## S3 method for class 'rmsb'
    plot(
        x,
        which = NULL,
        nrow = NULL,
        ncol = NULL,
        prob = 0.95,
        bivar = FALSE,
        bivarmethod = c("ellipse", "kernel"),
    )
```


Arguments

X
which
nrow number of rows of plots
ncol number of columns of plots
prob probability for HPD interval
bivar set to TRUE to plot bivariate density contours instead of univariate results (ignored if the number of parameters plotted is not exactly two)
bivarmethod passed as method argument to pdensityContour
... passed to pdensityContour

Value

ggplot2 object

Author(s)

Frank Harrell

Description

From a Bayesian fit object such as that from blrm() generates an R function for evaluating the probability that an assertion is true. The probability, within simulation error, is the proportion of times the assertion is true over the posterior draws. If the assertion does not evaluate to a logical or $0 / 1$ quantity, it is taken as a continuous derived parameter and the vector of draws for that parameter is returned and can be passed to the PostF plot method. PostF can also be used on objects created by contrast.rms

Usage

PostF(fit, name = c("short", "orig"), pr = FALSE)

Arguments

fit a Bayesian fit or contrast.rms object
name specifies whether assertions will refer to shortened parameter names (the default) or original names. Shorted names are of the form a1, . . , ak where k is the number of intercepts in the model, and $\mathrm{b} 1, \ldots, \mathrm{bp}$ where p is the number of non-intercepts. When using original names that are not legal R variable names, you must enclose them in backticks. For contrast objects, name is ignored and you must use contrast names. The cnames argument to contrast.rms is handy for assigning your own names.
pr set to TRUE to have a table of short names and original names printed when name='short'. For contrasts the contrast names are printed if $p r=T R U E$.

Value

an R function

Author(s)

Frank Harrell

Examples

```
## Not run:
    f <- blrm(y ~ age + sex)
    P <- PostF(f)
    P(b2 > 0) # Model is a1 + b1*age + b2*(sex == 'male')
    P(b1 < 0 & b2 > 0) # Post prob of a compound assertion
    # To compute probabilities using original parameter names:
    P <- PostF(f, name='orig')
    P(age < 0) # Post prob of negative age effect
    P(`sex=male` > 0)
```

```
    f <- blrm(y ~ sex + pol(age, 2))
    P <- PostF(f)
    # Compute and plot posterior density of the vertex of the
    # quadratic age effect
    plot(P(-b2 / (2 * b3)))
    # The following would be useful in age and sex interacted
    k <- contrast(f, list(age=c(30, 50), sex='male'),
            list(age=c(30, 50), sex='female'),
    cnames=c('age 30 M-F', 'age 50 M-F'))
    P <- PostF(k)
    P(`age 30 M-F`>0 & `age 50 M-F`> 0)
##'
## End(Not run)
```

predict.blrm Make predictions from a blrm() fit

Description

Predict method for blrm() objects

Usage

```
\#\# S3 method for class 'blrm'
predict(
        object,
        ...,
        kint \(=\) NULL,
        ycut = NULL,
        zcppo = TRUE,
        Zmatrix = TRUE,
        fun = NULL,
        funint = TRUE,
        type = c("lp", "fitted", "fitted.ind", "mean", "x", "data.frame", "terms", "cterms",
            "ccterms", "adjto", "adjto.data.frame", "model.frame"),
        se.fit = FALSE,
        codes = FALSE,
        posterior.summary = c("mean", "median", "all"),
        cint \(=0.95\)
)
```


Arguments

object, ..., type, se.fit, codes see predict.lrm()

kint	This is only useful in a multiple intercept model such as the ordinal logistic model. There to use to second of three intercepts, for example, specify kint=2. The default is the middle intercept corresponding to the median y . You can specify ycut instead, and the intercept corresponding to $\mathrm{Y}>=$ ycut will be used for kint.
ycut	for an ordinal model specifies the Y cutoff to use in evaluating departures from proportional odds, when the constrained partial proportional odds model is used. When omitted, ycut is implied by kint. The only time it is absolutely mandatory to specify ycut is when computing an effect (e.g., odds ratio) at a level of the response variable that did not occur in the data. This would only occur when the cppo function given to blrm is a continuous function. If type= ' x ' and neither kint nor ycut are given, the partial PO part of the design matrix is not multiplied by the cppo function. If type=' x ', the number of predicted observations is 1 , ycut is longer than 1 , and zcppo is TRUE, predictions are duplicated to the length of ycut as it is assumed that the user wants to see the effect of varying ycut, e.g., to see cutoff-specific odds ratios.
zcppo	applies only to type='x' for a constrained partial PO model. Set to FALSE to prevent multiplication of Z matrix by cppo(ycut).
Zmatrix	set to FALSE to exclude the partial PO Z matrix from the returned design matrix if type='x'
fun	a function to evaluate on the linear predictor, e.g. a function created by Mean() or Quantile()
funint	set to FALSE if fun is not a function such as the result of Mean(), Quantile(), or ExProb() that contains an intercepts argument
posterior.summary	
	set to 'median' or 'mode' to use posterior median/mode instead of mean. For some types set to 'all' to compute the needed quantity for all posterior draws, and return one more dimension in the array.
cint	probability for highest posterior density interval. Set to FALSE to suppress calculation of the interval.

Value

a data frame, matrix, or vector with posterior summaries for the requested quantity, plus an attribute 'draws ' that has all the posterior draws for that quantity. For type=' fitted' and type='fitted.ind' this attribute is a 3-dimensional array representing draws x observations generating predictions x levels of Y.

Author(s)

Frank Harrell

See Also

predict.1rm()

Examples

```
    \#\# Not run:
        f <- blrm(...)
        predict(f, newdata, type='...', posterior.summary='median')
    \#\# End(Not run)
```

print.blrm Print blrm() Results

Description

Prints main results from blrm() along with indexes and predictive accuracy and their highest posterior density intervals computed from blrmStats.

Usage

```
## S3 method for class 'blrm'
    print(
        x,
        dec = 4,
        coefs = TRUE,
        intercepts = x$non.slopes < 10,
        prob = 0.95,
        ns = 400,
        title = NULL,
    )
```


Arguments

x	object created by blrm()
dec	number of digits to print to the right of the decimal
coefs	specify FALSE to suppress printing parameter estimates, and in integer k to print only the first k
intercepts	set to FALSE to suppress printing intercepts. Default is to print them unless there are more than 9 .
prob	HPD interval probability for summary indexes
ns	number of random samples of the posterior draws for use in computing HPD intervals for accuracy indexes
title	title of output, constructed by default
	passed to prModFit

Author(s)

Frank Harrell

Examples

```
## Not run:
    f <- blrm(...)
    options(lang='html') # default is lang='plain'; also can be latex
    f # print using defaults
    print(f, posterior.summary='median') # instead of post. means
## End(Not run)
```

```
print.blrmStats Print Details for blrmStats Predictive Accuracy Measures
```


Description

Prints results of blrmStats with brief explanations

Usage

\#\# S3 method for class 'blrmStats'
print(x, dec = 3, ...)

Arguments

x
dec number of digits to round indexes
... ignored

Author(s)

Frank Harrell

Examples

```
## Not run:
    f <- blrm(...)
    s <- blrmStats(...)
    s # print with defaults
    print(s, dec=4)
## End(Not run)
```

```
print.predict.blrm Print Predictions for blrm()
```


Description

Prints the summary portion of the results of predict.blrm

Usage

\#\# S3 method for class 'predict.blrm'
print(x, digits $=3, \ldots$)

Arguments

$x \quad$ result from predict.blrm
digits number of digits to round numeric results
... ignored

Author(s)

Frank Harrell

```
print.rmsb Basic Print for Bayesian Parameter Summary
```


Description

For a Bayesian regression fit prints the posterior mean, median, SE, highest posterior density interval, and symmetry coefficient from the posterior draws. For a given parameter, the symmetry measure is computed using the distSym function.

Usage

\#\# S3 method for class 'rmsb'
print (x, prob $=0.95$, dec $=4$, intercepts $=$ TRUE, pr = TRUE, ...)

Arguments

X
prob
an object created by an rms Bayesian fitting function
dec
dec amount of rounding (digits to the right of the decimal)
intercepts
pr set to FALSE to return an unrounded matrix and not print
... ignored

Value

matrix (rounded if $\mathrm{pr}=$ TRUE)

Author(s)

Frank Harrell

Examples

```
## Not run:
    f <- blrm(...)
    print.rmsb(f)
## End(Not run)
```

Quantile.blrm Function Generator for Quantiles of Y for blrm()

Description

Creates a function to turn a posterior summarized linear predictor lp (e.g. using posterior mean of intercepts and slopes) computed at the reference intercept into e.g. an estimate of a quantile of Y using the posterior mean of all the intercepts. lptau must be provided when call the created function if the model is a partial proportional odds model.

Usage

\#\# S3 method for class 'blrm'
Quantile(object, codes = FALSE, posterior.summary = c("mean", "median"), ...)

Arguments

object ablrm() fit
codes if TRUE, use the integer codes $1,2, \ldots, k$ for the k-level response in computing the quantile
posterior.summary
defaults to posterior mean; may also specify "median". Must be consistent with the summary used when creating $l p$.
... ignored

Value
an R function

Author(s)

Frank Harrell

```
selectedQr QR Decomposition Preserving Selected Columns
```


Description

Runs a matrix through the QR decomposition and returns the transformed matrix and the forward and inverse transforming matrices R, Rinv. If columns of the input matrix X are centered the $Q R$ transformed matrix will be orthogonal. This is helpful in understanding the transformation and in scaling prior distributions on the transformed scale. not can be specified to keep selected columns as-is. cornerQr leaves the last column of X alone (possibly after centering). When not is specified, the square transforming matrices have appropriate identity submatrices inserted so that recreation of original X is automatic.

Usage

selectedQr(X, not $=$ NULL, corner $=$ FALSE, center $=$ TRUE $)$

Arguments

X
a numeric matrix
not an integer vector specifying which columns of X are to be kept with their original values
corner set to FALSE to not treat the last column specially. You may not specify both not and corner.
center set to FALSE to not center columns of X first

Value

list with elements X, R, Rinv, xbar where xbar is the vector of means (vector of zeros if center=FALSE)

Author(s)

Ben Goodrich and Frank Harrell

Examples

```
    x<- 1 : 10
    x <- cbind(x, x^2)
w <- selectedQr(X)
w
    with(w, X %*% R) # = scale(X, center=TRUE, scale=FALSE)
    Xqr <- w$X
    plot(X[, 1], Xqr[, 1])
    plot(X[, 1], Xqr[, 2])
    cov(X)
    cov(Xqr)
```

```
x <- cbind(x, x^3, x^4, x^2)
w <- selectedQr(X, not=2:3)
with(w, X %*% R)
```


stackMI

Bayesian Model Fitting and Stacking for Multiple Imputation

Description

Runs an rmsb package Bayesian fitting function such as blrm separately for each completed dataset given a multiple imputation result such as one produced by Hmisc: : aregImpute. Stacks the posterior draws and diagnostics across all imputations, and computes parameter summaries on the stacked posterior draws.

Usage

```
stackMI(
    formula,
    fitter,
    xtrans,
    data = NULL,
    n.impute = xtrans$n.impute,
    dtrans = NULL,
    derived = NULL,
    subset = NULL,
    refresh = 0,
    progress = if (refresh > 0) "stan-progress.txt" else "",
    file = NULL,
    )
```


Arguments

formula	a model formula
fitter	a Bayesian fitter
xtrans	an object created by transcan, aregImpute, or mice
data	data frame
n.impute	number of imputations to run, default is the number saved in xtrans
dtrans	see Hmisc: :fit.mult.impute
derived	see Hmisc: :fit.mult.impute
subset	an integer or logical vector specifying the subset of observations to fit
refresh	see rstan::sampling. The default is 0, indicating that no progress notes are out- put. If refresh >0 and progress is not ' ', progress output will be appended to file progress. The default file name is 'stan-progress.txt'.

progress see refresh. Defaults to ' ' if refresh $=0$. Note: If running interactively but not under RStudio, rstan will open a browser window for monitoring progress.
file optional file name in which to store results in RDS format. If file is given and it already exists, and none of the arguments to stackMI have changed since that fit, the fit object from file is immediately returned. So if the model, data, and imputations have not changed nothing needs to be computed.
... arguments passed to fitter

Value

an rmsb fit object with expanded posterior draws and diagnostics

Author(s)

Frank Harrell
stanDx
Print Stan Diagnostics

Description

Retrieves the effect samples sizes and Rhats computed after a fitting function ran rstan, and prepares it for printing. If the fit was created by stackImpute, the diagnostics for all imputations are printed (separately).

Usage

stanDx (object)

Arguments

object an object created by an rms package Bayesian fitting function such as blrm() or stackMI ()

Value

matrix suitable for printing

Author(s)

Frank Harrell

Examples

```
## Not run:
    f <- blrm(...)
    stanDx(f)
## End(Not run)
```


Description

For an rms Bayesian fit object, uses by default the stored posterior draws to check convergence properties of posterior sampling. If instead rstan=TRUE, calls the rstan traceplot function on the rstan object inside the rmsb object, to check properties of posterior sampling. If rstan=TRUE and the rstan object has been removed and previous=TRUE, attempts to find an already existing plot created by a previous run of the knitr chunk, assuming it was the plotno numbered plot of the chunk.

Usage

```
stanDxplot(
        x,
        which = NULL,
        rstan = FALSE,
        previous = TRUE,
        plotno = 1,
        rev = FALSE,
        stripsize = 8,
)
```


Arguments

x	
which	an rms Bayesian fit object names of parameters to plot, defaulting to all non-intercepts. When rstan=FALSE these are the friendly rms names, otherwise they are the rstan parameter names. If the model fit was run through stackMI for multiple imputation, the number of traces is multiplied by the number of imputations. Set to 'ALL' to plot all parameters.
rstan	set to TRUE to use rstan: : traceplot() on a (presumed) stored rstan object in x, otherwise only real iterations are plotted and parameter values are shown as points instead of lines, with chains separated
previous	see details
plotno	see details
rev	set to TRUE to reverse direction for faceting chains
stripsize	specifies size of chain facet label text, default is 8
\ldots	passed to rstan: : traceplot()

Value

ggplot2 object if rstan object was in x

Author(s)

Frank Harrell

stanGet Get Stan Output

Description

Extracts the object created by rstan::sampling() so that standard Stan diagnostics can be run from it

Usage

stanGet (object)

Arguments

object an objected created by an rms package Bayesian fitting function

Value

the object created by rstan: : sampling()

Author(s)

Frank Harrell

Examples

```
## Not run:
    f <- blrm(...)
    s <- stanGet(f)
## End(Not run)
```


Description

Fetches matrix of posterior draws for partial proportional odds parameters (taus) for a given intercept. Can also form a matrix containing both regular parameters and taus, or for just non-taus. For the constrained partial proportional odds model the function returns the appropriate cppo function value multiplied by tau (tau being a vector in this case and not a matrix).

Usage

tauFetch(fit, intercept, what = c("tau", "nontau", "both"))

Arguments

fit an object created by blrm()
intercept integer specifying which intercept to fetch
what specifies the result to return

Value

matrix with number of raws equal to the numnber of original draws

Author(s)

Frank Harrell

```
vcov.rmsb
Variance-Covariance Matrix
```


Description

Computes the variance-covariance matrix from the posterior draws by compute the sample covariance matrix of the draws

Usage

```
    ## S3 method for class 'rmsb'
    vcov(object, regcoef.only = TRUE, intercepts = "all", ...)
```


Arguments

object	an object produced by an rms package Bayesian fitting function
regcoef.only	set to FALSE to also include non-regression coefficients such as shape/scale pa- rameters
intercepts	set to 'all' to include all intercepts (the default), 'none' to exclude them all, or a vector of integers to get selected intercepts
\ldots	ignored

Value

matrix

Author(s)

Frank Harrell

See Also

vcov.rms

Examples

```
## Not run:
        f <- blrm(...)
        v <- vcov(f)
## End(Not run)
```


Description

Subset Method for Ocens Objects

Usage

```
## S3 method for class 'Ocens'
    x[rows = 1:d[1], cols = 1:d[2], ...]
```


Arguments

X
an Ocens object
rows logical or integer vector
cols logical or integer vector
... ignored

Details

Subsets an Ocens object, preserving its special attributes. Attributes are not updated. In the future such updating should be implemented.

Value
 new Ocens object

Author(s)

Frank Harrell

Index

[.Ocens, 33

aregImpute, 28
as.data.frame.Ocens, 3
blrm, 4
blrm(), 4, 5, 7-10, 12-16, 20, 21, 23, 25, 26, 29, 32
blrmStats, 9
blrmStats(), 9
cluster, 11
cmdstanr::sample(), 7
coda: :HPDinterval(), 15
coef.rmsb, 11
coef.rmsb(), 9
compareBmods, 12
distSym, 13
ExProb(), 22
ExProb.blrm, 13
getParamCoef, 14
Hmisc: :rcorr.cens(), 10
HPDint, 15
loo::loo_model_weights(), 12
MASS: :kde2d(), 17
Mean(), 22
Mean.blrm, 15
mice, 28
Ocens, 16
pdensityContour, 17
plot.PostF, 18
plot.rmsb, 19
PostF, 20
predict.blrm, 21
predict.lrm(),21,22
print.blrm, 23
print.blrm(), 9
print.blrmStats, 24
print.predict.blrm, 25
print.rmsb, 25
print.rmsb(), 9
Quantile(), 22
Quantile.blrm, 26
rms: :contrast.rms(), 6
rms: :datadist(), 6
rms::gendata(), 6
rms: :Xcontrast(), 6
rmsb (rmsb-package), 3
rmsb-package, 3
rstan::optimizing(), 7, 8
rstan::sampling, 28
rstan::sampling(), 6-8, 31
rstan::traceplot(), 30
selectedQr, 27
stackMI, 28
stackMI(), 29
stanDx, 29
stanDx(), 9
stanDxplot, 30
stanGet, 31
stanGet(), 9
tauFetch, 32
vcov.rms, 33
vcov.rmsb, 32
vcov.rmsb(), 9

