
TCK User’s Guide for Technology
Implementors



Table of Contents
Eclipse Foundation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1

Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2

Who Should Use This Book. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2

Before You Read This Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2

Typographic Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2

Shell Prompts in Command Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4

1.1 Compatibility Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4

1.2 About the TCK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6

1.3 Getting Started With the TCK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9

2 Procedure for Certification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10

2.1 Certification Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10

2.2 Compatibility Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10

2.3 Test Appeals Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15

2.4 Specifications for Jakarta Connectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17

2.5 Libraries for Jakarta Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17

3 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18

3.1 Obtaining a Compatible Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18

3.2 Installing the Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18

4 Setup and Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20

4.1 Configuring Your Environment to Run the TCK Against a Compatible Implementation . . . . . . . . .  20

4.2 Configuring Your Environment to Repackage and Run the TCK Against the Vendor

Implementation

 22

4.3 Deploying the JCA TCK Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22

4.4 Custom Configuration Handlers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  28

4.5 Custom Deployment Handlers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  28

4.6 Using the JavaTest Harness Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30

4.7 Using the JavaTest Harness Configuration GUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30

5 Executing Tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34

5.1 Starting JavaTest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34

5.2 Running a Subset of the Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  36

5.3 Running the TCK Against another CI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  38

5.4 Running the TCK Against a Vendor’s Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  38

5.5 Test Reports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  38

6 Debugging Test Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  41

6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  41



6.2 Test Tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  42

6.3 Folder Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  42

6.4 Test Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  42

6.5 Report Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  43

6.6 Configuration Failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  43

A Frequently Asked Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  44

A.1 Where do I start to debug a test failure? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  44

A.2 How do I restart a crashed test run? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  44

A.3 What would cause tests be added to the exclude list? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  44



Eclipse Foundation
Technology Compatibility Kit User’s Guide for Jakarta Connectors

Release 1.7 for Jakarta EE

September 2019

Technology Compatibility Kit User’s Guide for Jakarta Connectors, Release 1.7 for Jakarta EE

Copyright © 2017, 2019 Oracle and/or its affiliates. All rights reserved.

This program and the accompanying materials are made available under the terms of the Eclipse
Public License v. 2.0, which is available at http://www.eclipse.org/legal/epl-2.0.

SPDX-License-Identifier: EPL-2.0

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

References in this document to JCA refer to the Jakarta Connectors unless otherwise noted.

Eclipse Foundation

DRAFT TCK User’s Guide for Technology Implementors    1

http://www.eclipse.org/legal/epl-2.0


Preface
This guide describes how to install, configure, and run the Technology Compatibility Kit (TCK) that is
used to test the Jakarta Connectors (Connectors 1.7) technology.

The Connectors TCK is a portable, configurable automated test suite for verifying the compatibility of a
vendor’s implementation of the Connectors 1.7 Specification (hereafter referred to as the vendor
implementation or VI). The Connectors TCK uses the JavaTest harness version 5.0 to run the test suite


Note All references to specific Web URLs are given for the sake of your convenience in
locating the resources quickly. These references are always subject to changes that are
in many cases beyond the control of the authors of this guide.

Jakarta EE is a community sponsored and community run program. Organizations contribute, along
side individual contributors who use, evolve and assist others. Commercial support is not available
through the Eclipse Foundation resources. Please refer to the Eclipse EE4J project site
(https://projects.eclipse.org/projects/ee4j). There, you will find additional details as well as a list of all
the associated sub-projects (Implementations and APIs), that make up Jakarta EE and define these
specifications. If you have questions about this Specification you may send inquiries to jca-
dev@eclipse.org. If you have questions about this TCK, you may send inquiries to jakartaee-tck-
dev@eclipse.org.

Who Should Use This Book
This guide is for vendors that implement the Connectors 1.7 technology to assist them in running the
test suite that verifies compatibility of their implementation of the Connectors 1.7 Specification.

Before You Read This Book
You should be familiar with the Connectors 1.7, version 1.7 Specification, which can be found at
https://jakarta.ee/specifications/connectors/1.7/.

Before running the tests in the Connectors TCK, you should familiarize yourself with the JavaTest
documentation which can be accessed at the JT Harness web site.

Typographic Conventions
The following table describes the typographic conventions that are used in this book.

Who Should Use This Book

2    TCK User’s Guide for Technology Implementors DRAFT

https://projects.eclipse.org/projects/ee4j
mailto:jca-dev@eclipse.org
mailto:jca-dev@eclipse.org
mailto:jakartaee-tck-dev@eclipse.org
mailto:jakartaee-tck-dev@eclipse.org
https://jakarta.ee/specifications/connectors/1.7/
https://wiki.openjdk.java.net/display/CodeTools/JT+Harness


Convention Meaning Example

Boldface Boldface type indicates graphical user
interface elements associated with an
action, terms defined in text, or what
you type, contrasted with onscreen
computer output.

From the File menu, select Open Project.

A cache is a copy that is stored locally.

machine_name% *su*

Password:

Monospace Monospace type indicates the names of
files and directories, commands within
a paragraph, URLs, code in examples,
text that appears on the screen, or text
that you enter.

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

Italic Italic type indicates book titles,
emphasis, or placeholder variables for
which you supply particular values.

Read Chapter 6 in the User’s Guide.

Do not save the file.

The command to remove a file is rm filename.

Shell Prompts in Command Examples
The following table shows the default UNIX system prompt and superuser prompt for the C shell,
Bourne shell, and Korn shell.

Shell Prompt

C shell machine_name%

C shell for superuser machine_name#

Bourne shell and Korn shell $

Bourne shell and Korn shell for superuser #

Bash shell shell_name-shell_version$

Bash shell for superuser shell_name-shell_version#

Shell Prompts in Command Examples

DRAFT TCK User’s Guide for Technology Implementors    3



1 Introduction
This chapter provides an overview of the principles that apply generally to all Technology
Compatibility Kits (TCKs) and describes the Jakarta Connectors TCK (Connectors 1.7 TCK). It also
includes a high level listing of what is needed to get up and running with the Connectors TCK.

This chapter includes the following topics:

• Compatibility Testing

• About the TCK

• Getting Started With the TCK

1.1 Compatibility Testing
Compatibility testing differs from traditional product testing in a number of ways. The focus of
compatibility testing is to test those features and areas of an implementation that are likely to differ
across other implementations, such as those features that:

• Rely on hardware or operating system-specific behavior

• Are difficult to port

• Mask or abstract hardware or operating system behavior

Compatibility test development for a given feature relies on a complete specification and compatible
implementation (CI) for that feature. Compatibility testing is not primarily concerned with robustness,
performance, nor ease of use.

1.1.1 Why Compatibility Testing is Important

Jakarta platform compatibility is important to different groups involved with Jakarta technologies for
different reasons:

• Compatibility testing ensures that the Jakarta platform does not become fragmented as it is ported
to different operating systems and hardware environments.

• Compatibility testing benefits developers working in the Jakarta programming language, allowing
them to write applications once and then to deploy them across heterogeneous computing
environments without porting.

• Compatibility testing allows application users to obtain applications from disparate sources and
deploy them with confidence.

• Conformance testing benefits Jakarta platform implementors by ensuring a level playing field for

1.1 Compatibility Testing

4    TCK User’s Guide for Technology Implementors DRAFT

#GBFTK
#GBFQR
#GBFQW


all Jakarta platform ports.

1.1.2 TCK Compatibility Rules

Compatibility criteria for all technology implementations are embodied in the TCK Compatibility Rules
that apply to a specified technology. Each TCK tests for adherence to these Rules as described in
Chapter 2, "Procedure for Certification."

1.1.3 TCK Overview

A TCK is a set of tools and tests used to verify that a vendor’s compatible implementation of a Jakarta
EE technology conforms to the applicable specification. All tests in the TCK are based on the written
specifications for the Jakarta EE platform. A TCK tests compatibility of a vendor’s compatible
implementation of the technology to the applicable specification of the technology. Compatibility
testing is a means of ensuring correctness, completeness, and consistency across all implementations
developed by technology licensees.

The set of tests included with each TCK is called the test suite. Most tests in a TCK’s test suite are self-
checking, but some tests may require tester interaction. Most tests return either a Pass or Fail status.
For a given platform to be certified, all of the required tests must pass. The definition of required tests
may change from platform to platform.

The definition of required tests will change over time. Before your final certification test pass, be sure
to download the latest version of this TCK.

1.1.4 Jakarta EE Specification Process (JESP) Program and Compatibility
Testing

The Jakarta EE Specification Process (JESP) program is the formalization of the open process that has
been used since 2019 to develop and revise Jakarta EE technology specifications in cooperation with
the international Jakarta EE community. The JESP program specifies that the following three major
components must be included as deliverables in a final Jakarta EE technology release under the
direction of the responsible Expert Group:

• Technology Specification

• Compatible Implementation (CI)

• Technology Compatibility Kit (TCK)

For further information about the JESP program, go to Jakarta EE Specification Process community
page https://jakarta.ee/specifications.

1.1 Compatibility Testing

DRAFT TCK User’s Guide for Technology Implementors    5

rules.html#GBFSN
https://jakarta.ee/specifications


1.2 About the TCK
The Connectors TCK 1.7 is designed as a portable, configurable, automated test suite for verifying the
compatibility of a vendor’s implementation of the Connectors 1.7 Specification.

1.2.1 TCK Specifications and Requirements

This section lists the applicable requirements and specifications.

• Specification Requirements: Software requirements for a Connectors implementation are
described in detail in the Connectors 1.7 Specification. Links to the Connectors specification and
other product information can be found at https://jakarta.ee/specifications/connectors/1.7/.

• Connectors Version: The Connectors 1.7 TCK is based on the Connectors Specification, Version 1.7.

• Compatible Implementation: One Connectors 1.7 Compatible Implementation, Eclipse GlassFish 5.1
is available from the Eclipse EE4J project (https://projects.eclipse.org/projects/ee4j). See the CI
documentation page at https://projects.eclipse.org/projects/ee4j.glassfish for more information.

See the Connectors TCK Release Notes for more specific information about Java SE version
requirements, supported platforms, restrictions, and so on.

1.2.2 TCK Components

The Connectors TCK 1.7 includes the following components:

• JavaTest harness version 5.0 and related documentation. See the ReleaseNotes-jtharness.html file
and the JT Harness web site for additional information.

• Connectors TCK signature tests; check that all public APIs are supported and/or defined as specified
in the Connectors Version 1.7 implementation under test.

• If applicable, an exclude list, which provides a list of tests that your implementation is not required
to pass.

• API tests for all of the Connectors API in all related packages:

◦ javax.resource

◦ javax.resource.cci

◦ javax.resource.spi

◦ javax.resource.spi.endpoint

◦ javax.resource.spi.security

◦ javax.resource.work

1.2 About the TCK

6    TCK User’s Guide for Technology Implementors DRAFT

https://jakarta.ee/specifications/connectors/1.7/
https://projects.eclipse.org/projects/ee4j
https://projects.eclipse.org/projects/ee4j.glassfish
https://wiki.openjdk.java.net/display/CodeTools/JT+Harness


The Connectors TCK tests run on the following platforms:

• Microsoft Windows 10

• Oracle Linux 7.1

1.2.3 JavaTest Harness

The JavaTest harness version 5.0 is a set of tools designed to run and manage test suites on different
Java platforms. To JavaTest, Jakarta EE can be considered another platform. The JavaTest harness can
be described as both a Java application and a set of compatibility testing tools. It can run tests on
different kinds of Java platforms and it allows the results to be browsed online within the JavaTest GUI,
or offline in the HTML reports that the JavaTest harness generates.

The JavaTest harness includes the applications and tools that are used for test execution and test suite
management. It supports the following features:

• Sequencing of tests, allowing them to be loaded and executed automatically

• Graphic user interface (GUI) for ease of use

• Automated reporting capability to minimize manual errors

• Failure analysis

• Test result auditing and auditable test specification framework

• Distributed testing environment support

To run tests using the JavaTest harness, you specify which tests in the test suite to run, how to run
them, and where to put the results as described in Chapter 4, "Setup and Configuration."

1.2.4 TCK Compatibility Test Suite

The test suite is the collection of tests used by the JavaTest harness to test a particular technology
implementation. In this case, it is the collection of tests used by the Connectors TCK 1.7 to test a
Connectors 1.7 implementation. The tests are designed to verify that a vendor’s runtime
implementation of the technology complies with the appropriate specification. The individual tests
correspond to assertions of the specification.

The tests that make up the TCK compatibility test suite are precompiled and indexed within the TCK
test directory structure. When a test run is started, the JavaTest harness scans through the set of tests
that are located under the directories that have been selected. While scanning, the JavaTest harness
selects the appropriate tests according to any matches with the filters you are using and queues them
up for execution.

1.2 About the TCK

DRAFT TCK User’s Guide for Technology Implementors    7

config.html#GBFVV


1.2.5 Exclude Lists

Each version of a TCK includes an Exclude List contained in a .jtx file. This is a list of test file URLs that
identify tests which do not have to be run for the specific version of the TCK being used. Whenever
tests are run, the JavaTest harness automatically excludes any test on the Exclude List from being
executed.

A vendor’s compatible implementation is not required to pass or run any test on the Exclude List. The
Exclude List file, <TS_HOME>/bin/ts.jtx, is included in the Connectors TCK.



From time to time, updates to the Exclude List are made available. The exclude list is
included in the Jakarta TCK ZIP archive. Each time an update is approved and
released, the version number will be incremented. You should always make sure you
are using an up-to-date copy of the Exclude List before running the Connectors TCK to
verify your implementation.

A test might be in the Exclude List for reasons such as:

• An error in an underlying implementation API has been discovered which does not allow the test
to execute properly.

• An error in the specification that was used as the basis of the test has been discovered.

• An error in the test itself has been discovered.

• The test fails due to a bug in the tools (such as the JavaTest harness, for example).

In addition, all tests are run against the compatible implementations. Any tests that fail when run on a
compatible Jakarta platform are put on the Exclude List. Any test that is not specification-based, or for
which the specification is vague, may be excluded. Any test that is found to be implementation
dependent (based on a particular thread scheduling model, based on a particular file system behavior,
and so on) may be excluded.


Vendors are not permitted to alter or modify Exclude Lists. Changes to an Exclude List
can only be made by using the procedure described in Section 2.3.1, "TCK Test Appeals
Steps."

1.2.6 TCK Configuration

You need to set several variables in your test environment, modify properties in the
<TS_HOME>/bin/ts.jte file, and then use the JavaTest harness to configure and run the Connectors tests,
as described in Chapter 4, "Setup and Configuration."

1.2 About the TCK

8    TCK User’s Guide for Technology Implementors DRAFT

rules.html#CJAJEAEI
rules.html#CJAJEAEI
config.html#GBFVV



The Jakarta EE Specification Process support multiple compatible implementations.
These instructions explain how to get started with the Eclipse GlassFish 5.1 CI. If you
are using another compatible implementation, refer to material provided by that
implementation for specific instructions and procedures.

1.3 Getting Started With the TCK
This section provides an general overview of what needs to be done to install, set up, test, and use the
Connectors TCK. These steps are explained in more detail in subsequent chapters of this guide.

1. Make sure that the following software has been correctly installed on the system hosting the
JavaTest harness:

• A Jakarta EE 8 CI or an implementation of the Jakarta Connectors 1.7 specification

• Java SE 8

• A CI for Connectors 1.7. One example is Eclipse GlassFish 5.1.

• Connectors TCK version 1.7, which includes:

◦ JDOM 1.0

◦ Apache Commons HTTP Client 3.1

◦ Apache Commons Logging 1.1.1

◦ Apache Commons Codec 1.3

• The Connectors 1.7 Vendor Implementation (VI)
See the documentation for each of these software applications for installation instructions. See
Chapter 3, "Installation," for instructions on installing the Connectors TCK.

1. Set up the Connectors TCK software.
See Chapter 4, "Setup and Configuration," for details about the following steps.

1. Set up your shell environment.

2. Modify the required properties in the <TS_HOME>/bin/ts.jte file.

3. Configure the JavaTest harness.

2. Test the Connectors 1.7 implementation.
Test the Connectors implementation installation by running the test suite. See Chapter 5,
"Executing Tests."

1.3 Getting Started With the TCK

DRAFT TCK User’s Guide for Technology Implementors    9

install.html#GBFTP
config.html#GBFVV
using.html#GBFWO
using.html#GBFWO


2 Procedure for Certification
This chapter describes the compatibility testing procedure and compatibility requirements for Jakarta
Connectors. This chapter contains the following sections:

• Certification Overview

• Compatibility Requirements

• Test Appeals Process

• Specifications for Jakarta Connectors

• Libraries for Jakarta Connectors

2.1 Certification Overview
The certification process for Connectors 1.7 consists of the following activities:

• Install the appropriate version of the Technology Compatibility Kit (TCK) and execute it in
accordance with the instructions in this User’s Guide.

• Ensure that you meet the requirements outlined in Compatibility Requirements below.

• Certify to the Eclipse Foundation that you have finished testing and that you meet all of the
compatibility requirements, as required by the Eclipse Foundation TCK License.

2.2 Compatibility Requirements
The compatibility requirements for Connectors 1.7 consist of meeting the requirements set forth by the
rules and associated definitions contained in this section.

2.2.1 Definitions

These definitions are for use only with these compatibility requirements and are not intended for any
other purpose.

Table 2-1 Definitions 

2.1 Certification Overview

10    TCK User’s Guide for Technology Implementors DRAFT

#CJAFFDGI
#CJAFGIGG
#CJAIIBDJ
#CJAJECIE
#CJABAHGI
#CJAFGIGG


Term Definition

API Definition Product A Product for which the only Java class files contained in the product are
those corresponding to the application programming interfaces defined by
the Specifications, and which is intended only as a means for formally
specifying the application programming interfaces defined by the
Specifications.

Computational Resource A piece of hardware or software that may vary in quantity, existence, or
version, which may be required to exist in a minimum quantity and/or at a
specific or minimum revision level so as to satisfy the requirements of the
Test Suite.

Examples of computational resources that may vary in quantity are RAM
and file descriptors.

Examples of computational resources that may vary in existence (that is,
may or may not exist) are graphics cards and device drivers.

Examples of computational resources that may vary in version are
operating systems and device drivers.

Configuration
Descriptor

Any file whose format is well defined by a specification and which contains
configuration information for a set of Java classes, archive, or other feature
defined in the specification.

Conformance Tests All tests in the Test Suite for an indicated Technology Under Test, as released
and distributed by the Eclipse Foundation, excluding those tests on the
published Exclude List for the Technology Under Test.

Container An implementation of the associated Libraries, as specified in the
Specifications, and a version of a Java Platform, Standard Edition Runtime
Product, as specified in the Specifications, or a later version of a Java
Platform, Standard Edition Runtime Product that also meets these
compatibility requirements.

Documented Made technically accessible and made known to users, typically by means
such as marketing materials, product documentation, usage messages, or
developer support programs.

Exclude List The most current list of tests, released and distributed by the Eclipse
Foundation, that are not required to be passed to certify conformance. The
Jakarta EE Specification Committee may add to the Exclude List for that Test
Suite as needed at any time, in which case the updated TCK version
supplants any previous Exclude Lists for that Test Suite.

Libraries The class libraries, as specified through the Jakarta EE Specification Process
(JESP), for the Technology Under Test.

The Libraries for Jakarta Connectors are listed at the end of this chapter.

2.2 Compatibility Requirements

DRAFT TCK User’s Guide for Technology Implementors    11



Term Definition

Location Resource A location of classes or native libraries that are components of the test tools
or tests, such that these classes or libraries may be required to exist in a
certain location in order to satisfy the requirements of the test suite.

For example, classes may be required to exist in directories named in a
CLASSPATH variable, or native libraries may be required to exist in
directories named in a PATH variable.

Maintenance Lead The corresponding Jakarta EE Specification Project is responsible for
maintaining the Specification, and the TCK for the Technology. The
Specification Project Team will propose revisions and updates to the Jakarta
EE Specification Committee which will approve and release new versions of
the specification and TCK.

Operating Mode Any Documented option of a Product that can be changed by a user in order
to modify the behavior of the Product.

For example, an Operating Mode can be binary (enable/disable
optimization), an enumeration (select from a list of protocols), or a range
(set the maximum number of active threads).

Note that an Operating Mode may be selected by a command line switch, an
environment variable, a GUI user interface element, a configuration or
control file, etc.

Product A vendor’s product in which the Technology Under Test is implemented or
incorporated, and that is subject to compatibility testing.

Product Configuration A specific setting or instantiation of an Operating Mode.

For example, a Product supporting an Operating Mode that permits user
selection of an external encryption package may have a Product
Configuration that links the Product to that encryption package.

Rebuildable Tests Tests that must be built using an implementation-specific mechanism. This
mechanism must produce specification-defined artifacts. Rebuilding and
running these tests against a known compatible implementation verifies
that the mechanism generates compatible artifacts.

Resource A Computational Resource, a Location Resource, or a Security Resource.

Rules These definitions and rules in this Compatibility Requirements section of
this User’s Guide.

Runtime The Containers specified in the Specifications.

2.2 Compatibility Requirements

12    TCK User’s Guide for Technology Implementors DRAFT



Term Definition

Security Resource A security privilege or policy necessary for the proper execution of the Test
Suite.

For example, the user executing the Test Suite will need the privilege to
access the files and network resources necessary for use of the Product.

Specifications The documents produced through the Jakarta EE Specification Process
(JESP) that define a particular Version of a Technology.

The Specifications for the Technology Under Test are referenced later in this
chapter.

Technology Specifications and one or more compatible implementations produced
through the Jakarta EE Specification Process (JESP).

Technology Under Test Specifications and a compatible implementation for Jakarta Connectors
Version 1.7.

Test Suite The requirements, tests, and testing tools distributed by the Maintenance
Lead as applicable to a given Version of the Technology.

Version A release of the Technology, as produced through the Jakarta EE
Specification Process (JESP).

2.2.2 Rules for Jakarta Connectors Products

The following rules apply for each version of an operating system, software component, and hardware
platform Documented as supporting the Product:

Connectors1 The Product must be able to satisfy all applicable compatibility requirements, including
passing all Conformance Tests, in every Product Configuration and in every combination of Product
Configurations, except only as specifically exempted by these Rules.

For example, if a Product provides distinct Operating Modes to optimize performance, then that
Product must satisfy all applicable compatibility requirements for a Product in each Product
Configuration, and combination of Product Configurations, of those Operating Modes.

Connectors1.1 If an Operating Mode controls a Resource necessary for the basic execution of the Test
Suite, testing may always use a Product Configuration of that Operating Mode providing that Resource,
even if other Product Configurations do not provide that Resource. Notwithstanding such exceptions,
each Product must have at least one set of Product Configurations of such Operating Modes that is able
to pass all the Conformance Tests.

For example, a Product with an Operating Mode that controls a security policy (i.e., Security Resource)
which has one or more Product Configurations that cause Conformance Tests to fail may be tested

2.2 Compatibility Requirements

DRAFT TCK User’s Guide for Technology Implementors    13



using a Product Configuration that allows all Conformance Tests to pass.

Connectors1.2 A Product Configuration of an Operating Mode that causes the Product to report only
version, usage, or diagnostic information is exempted from these compatibility rules.

Connectors1.3 An API Definition Product is exempt from all functional testing requirements defined
here, except the signature tests.

Connectors2 Some Conformance Tests may have properties that may be changed. Properties that can
be changed are identified in the configuration interview. Properties that can be changed are identified
in the JavaTest Environment (.jte) files in the Test Suite installation. Apart from changing such
properties and other allowed modifications described in this User’s Guide (if any), no source or binary
code for a Conformance Test may be altered in any way without prior written permission. Any such
allowed alterations to the Conformance Tests will be provided via the Jakarta EE Specification Project
website and apply to all vendor compatible implementations.

Connectors3 The testing tools supplied as part of the Test Suite or as updated by the Maintenance Lead
must be used to certify compliance.

Connectors4 The Exclude List associated with the Test Suite cannot be modified.

Connectors5 The Maintenance Lead can define exceptions to these Rules. Such exceptions would be
made available as above, and will apply to all vendor implementations.

Connectors6 All hardware and software component additions, deletions, and modifications to a
Documented supporting hardware/software platform, that are not part of the Product but required for
the Product to satisfy the compatibility requirements, must be Documented and available to users of
the Product.

For example, if a patch to a particular version of a supporting operating system is required for the
Product to pass the Conformance Tests, that patch must be Documented and available to users of the
Product.

Connectors7 The Product must contain the full set of public and protected classes and interfaces for
all the Libraries. Those classes and interfaces must contain exactly the set of public and protected
methods, constructors, and fields defined by the Specifications for those Libraries. No subsetting,
supersetting, or modifications of the public and protected API of the Libraries are allowed except only
as specifically exempted by these Rules.

Connectors7.1 If a Product includes Technologies in addition to the Technology Under Test, then it
must contain the full set of combined public and protected classes and interfaces. The API of the
Product must contain the union of the included Technologies. No further modifications to the APIs of
the included Technologies are allowed.

Connectors8 Except for tests specifically required by this TCK to be rebuilt (if any), the binary
Conformance Tests supplied as part of the Test Suite or as updated by the Maintenance Lead must be
used to certify compliance.

2.2 Compatibility Requirements

14    TCK User’s Guide for Technology Implementors DRAFT



Connectors9 The functional programmatic behavior of any binary class or interface must be that
defined by the Specifications.

2.3 Test Appeals Process
Jakarta has a well established process for managing challenges to its TCKs. Any implementor may
submit a challenge to one or more tests in the Connectors TCK as it relates to their implementation.
Implementor means the entity as a whole in charge of producing the final certified release. Challenges
filed should represent the consensus of that entity.

2.3.1 Valid Challenges

Any test case (e.g., test class, @Test method), test case configuration (e.g., deployment descriptor), test
beans, annotations, and other resources considered part of the TCK may be challenged.

The following scenarios are considered in scope for test challenges:

• Claims that a test assertion conflicts with the specification.

• Claims that a test asserts requirements over and above that of the specification.

• Claims that an assertion of the specification is not sufficiently implementable.

• Claims that a test is not portable or depends on a particular implementation.

2.3.2 Invalid Challenges

The following scenarios are considered out of scope for test challenges and will be immediately closed
if filed:

• Challenging an implementation’s claim of passing a test. Certification is an honor system and these
issues must be raised directly with the implementation.

• Challenging the usefulness of a specification requirement. The challenge process cannot be used to
bypass the specification process and raise in question the need or relevance of a specification
requirement.

• Claims the TCK is inadequate or missing assertions required by the specification. See the
Improvement section, which is outside the scope of test challenges.

• Challenges that do not represent a consensus of the implementing community will be closed until
such time that the community does agree or agreement cannot be made. The test challenge process
is not the place for implementations to initiate their own internal discussions.

• Challenges to tests that are already excluded for any reason.

• Challenges that an excluded test should not have been excluded and should be re-added should be
opened as a new enhancement request

2.3 Test Appeals Process

DRAFT TCK User’s Guide for Technology Implementors    15



Test challenges must be made in writing via the Connectors specification project issue tracker as
described in Section 2.3.3, "TCK Test Appeals Steps."

All tests found to be invalid will be placed on the Exclude List for that version of the Connectors TCK.

2.3.3 TCK Test Appeals Steps

1. Challenges should be filed via the Jakarta Connectors specification project’s issue tracker using the
label challenge and include the following information:

◦ The relevant specification version and section number(s)

◦ The coordinates of the challenged test(s)

◦ The exact TCK and exclude list versions

◦ The implementation being tested, including name and company

◦ The full test name

◦ A full description of why the test is invalid and what the correct behavior is believed to be

◦ Any supporting material; debug logs, test output, test logs, run scripts, etc.

2. Specification project evaluates the challenge.
Challenges can be resolved by a specification project lead, or a project challenge triage team, after a
consensus of the specification project committers is reached or attempts to gain consensus fails.
Specification projects may exercise lazy consensus, voting or any practice that follows the
principles of Eclipse Foundation Development Process. The expected timeframe for a response is
two weeks or less. If consensus cannot be reached by the specification project for a prolonged
period of time, the default recommendation is to exclude the tests and address the dispute in a
future revision of the specification.

3. Accepted Challenges.
A consensus that a test produces invalid results will result in the exclusion of that test from
certification requirements, and an immediate update and release of an official distribution of the
TCK including the new exclude list. The associated challenge issue must be closed with an accepted
label to indicate it has been resolved.

4. Rejected Challenges and Remedy.
When a`challenge` issue is rejected, it must be closed with a label of invalid to indicate it has been
rejected. There appeal process for challenges rejected on technical terms is outlined in Escalation
Appeal. If, however, an implementer feels the TCK challenge process was not followed, an appeal
issue should be filed with specification project’s TCK issue tracker using the label challenge-appeal.
A project lead should escalate the issue with the Jakarta EE Specification Committee via email
(jakarta.ee-spec.committee@eclipse.org). The committee will evaluate the matter purely in terms of
due process. If the appeal is accepted, the original TCK challenge issue will be reopened and a label
of appealed-challenge added, along with a discussion of the appeal decision, and the challenge-
appeal issue with be closed. If the appeal is rejected, the challenge-appeal issue should closed with a

2.3 Test Appeals Process

16    TCK User’s Guide for Technology Implementors DRAFT

#CJAJEAEI
mailto:jakarta.ee-spec.committee@eclipse.org


label of invalid.

5. Escalation Appeal.
If there is a concern that a TCK process issue has not been resolved satisfactorily, the Eclipse
Development Process Grievance Handling procedure should be followed to escalate the resolution.
Note that this is not a mechanism to attempt to handle implementation specific issues.

2.4 Specifications for Jakarta Connectors
The Jakarta Connectors specification is available from the specification project web-site:
https://jakarta.ee/specifications/connectors/1.7/.

2.5 Libraries for Jakarta Connectors
The following is a list of the packages comprising the required class libraries for Connectors 1.7:

• javax.resource

• javax.resource.cci

• javax.resource.spi

• javax.resource.spi.endpoint

• javax.resource.spi.security

• javax.resource.work

For the latest list of packages, also see:

https://jakarta.ee/specifications/connectors/1.7/

2.4 Specifications for Jakarta Connectors

DRAFT TCK User’s Guide for Technology Implementors    17

https://www.eclipse.org/projects/dev_process/#6_5_Grievance_Handling
https://www.eclipse.org/projects/dev_process/#6_5_Grievance_Handling
https://jakarta.ee/specifications/connectors/1.7/
https://jakarta.ee/specifications/connectors/1.7/


3 Installation
This chapter explains how to install the Jakarta Connectors TCK software.

After installing the software according to the instructions in this chapter, proceed to Chapter 4, "Setup
and Configuration," for instructions on configuring your test environment.

3.1 Obtaining a Compatible Implementation
Each compatible implementation (CI) will provide instructions for obtaining their implementation.
Eclipse GlassFish 5.1 is a compatible implementation which may be obtained from
https://projects.eclipse.org/projects/ee4j.glassfish

3.2 Installing the Software
Before you can run the Connectors TCK tests, you must install and set up the following software
components:

• A Jakarta EE 8 CI or an implementation of the Jakarta Connectors 1.7 specification

• Java SE 8

• A CI for Connectors 1.7, one example is Eclipse GlassFish 5.1

• Connectors TCK version 1.7, which includes:

◦ JDOM 1.0

◦ Apache Commons HTTP Client 3.1

◦ Apache Commons Logging 1.1.1

◦ Apache Commons Codec 1.3

• The Connectors 1.7 Vendor Implementation (VI)

Follow these steps:

1. Install the Java SE 8 software, if it is not already installed.
Download and install the Java SE 8 software from http://www.oracle.com/technetwork/java/javase/
downloads/index.html. Refer to the installation instructions that accompany the software for
additional information.

2. Install the Connectors TCK 1.7 software.

1. Copy or download the Connectors TCK software to your local system.
You can obtain the Connectors TCK software from the Jakarta EE site https://jakarta.ee/

3.1 Obtaining a Compatible Implementation

18    TCK User’s Guide for Technology Implementors DRAFT

config.html#GBFVV
config.html#GBFVV
https://projects.eclipse.org/projects/ee4j.glassfish
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://jakarta.ee/specifications/connectors/1.7/


specifications/connectors/1.7/.

2. Use the unzip command to extract the bundle in the directory of your choice:
unzip connectortck-x.x_dd-Mmm-YYYY.zip

This creates the TCK directory. The TCK is the test suite home, <TS_HOME>.

3. Install the Jakarta EE 8 CI software, if it is not already installed.
Refer to any installation instructions that accompany the software for additional information. One
CI is Eclipse GlassFish 5.1. You may obtain a copy of this CI by downloading it from
https://projects.eclipse.org/projects/ee4j.glassfish.

4. Install a Connectors 1.7 Compatible Implementation.
A Compatible Implementation is used to validate your initial configuration and setup of the
Connectors TCK 1.7 tests, which are explained further in Chapter 4, "Setup and Configuration."
The Compatible Implementations for Connectors are listed on the Jakarta EE Specifications web
site: https://jakarta.ee/specifications/connectors/1.7/.

5. Install the Connectors VI to be tested.
Follow the installation instructions for the particular VI under test.

3.2 Installing the Software

DRAFT TCK User’s Guide for Technology Implementors    19

https://jakarta.ee/specifications/connectors/1.7/
https://projects.eclipse.org/projects/ee4j.glassfish
config.html#GBFVV
https://jakarta.ee/specifications/connectors/1.7/


4 Setup and Configuration


The Jakarta EE Specification process provides for any number of compatible
implementations. As additional implementations become available, refer to project or
product documentation from those vendors for specific TCK setup and operational
guidance.

This chapter describes how to set up the Connectors TCK and JavaTest harness software. Before
proceeding with the instructions in this chapter, be sure to install all required software, as described in
Chapter 3, "Installation."

After completing the instructions in this chapter, proceed to Chapter 5, "Executing Tests," for
instructions on running the Connectors TCK.

4.1 Configuring Your Environment to Run the TCK
Against a Compatible Implementation
After configuring your environment as described in this section, continue with the instructions in
Section 4.6, "Using the JavaTest Harness Software."



In these instructions, variables in angle brackets need to be expanded for each
platform. For example, <TS_HOME> becomes $TS_HOME on Solaris/Linux and %TS_HOME% on
Windows. In addition, the forward slashes (/) used in all of the examples need to be
replaced with backslashes (\) for Windows. Finally, be sure to use the appropriate
separator for your operating system when specifying multiple path entries (; on
Windows, : on UNIX/Linux).

On Windows, you must escape any backslashes with an extra backslash in path
separators used in any of the following properties, or use forward slashes as a path
separator instead.

1. Set the following environment variables in your shell environment:

1. JAVA_HOME to the directory in which Java SE 8 is installed

2. TS_HOME to the directory in which the Connectors TCK 1.7 software is installed

3. JAVAEE_HOME to the directory in which the Connectors 1.7 CI has been installed

4. PATH to include the following directories: JAVA_HOME/bin, JAVAEE_HOME/bin, and
<TS_HOME>/tools/ant/bin

2. Edit your <TS_HOME>/bin/ts.jte file and set the following environment variables:

1. Set the webServerHost property to the name of the host on which Jakarta EE 8 CI is running.

4.1 Configuring Your Environment to Run the TCK Against a Compatible Implementation

20    TCK User’s Guide for Technology Implementors DRAFT

install.html#GBFTP
using.html#GBFWO
#GBFUY


The default setting is localhost.

2. Set the webServerPort property to the port number of the host on which Jakarta EE 8 CI is
running.
The default setting is 8080.

3. connector.home to the location where your Connectors runtime implementation is installed.

4. orb.host to the hostname of the system on which your Connectors runtime was installed.

5. orb.port to the port number of the system on which your Connectors runtime was installed.

6. connector.classes to the Connectors classes or JAR files that contain the Connectors classes.

7. sigTestClasspath to the to the classes or JAR file (or files) for the runtime implementation of the
Connectors API and any additional required signature or Connectors API classes.

8. impl.vi to the directory where vendor-specific targets can best be stored and isolated. The
default directory if you are using Eclipse GlassFish 5.1, glassfish, is where details about the
installation and configuration of the Eclipse GlassFish 5.1 enterprise server can be found.

9. report.dir to the default directory in which JavaTest creates a test report for the most recent
test run.
This property is a required property for the TCK Ant targets; it must be set. To disable reporting,
set the report.dir property to none.

10. work.dir to the default directory in which JavaTest writes temporary files that are created
during test execution.
This property is required for the TCK Ant targets.

3. Provide your own implementations of the porting package interfaces provided with the Connectors
TCK.
TSURLInterface.java obtains URL strings for web resources in an implementation-specific manner.
API documentation for the TSURLInterface.java porting package interface is available in the
documentation bundle in the docs/api directory.

4. Execute the config.vi Ant task.
This target performs the following tasks:

◦ Stops the application server running the Connectors 1.7 CI

◦ Copies the TCK-dependent files ${tslib.name}.jar and tsharness.jar into the application
server’s external library folder

◦ Starts the application server

◦ Sets the appropriate JVM options in the runtime

◦ Creates connection pools and connection resources

◦ Deploys the required RAs

◦ Creates users in the runtime, then maps RA users to these runtime users
Ensure that the users and passwords specified in the ts.jte file are created in the Connectors
server. These users and passwords include the ts.jte properties of rauser1, rapassword1, user,
password, authuser, authpassword, user_vi, password_vi, and so on.

4.1 Configuring Your Environment to Run the TCK Against a Compatible Implementation

DRAFT TCK User’s Guide for Technology Implementors    21



4.2 Configuring Your Environment to Repackage and
Run the TCK Against the Vendor Implementation
After configuring your environment as described in this section, continue with the instructions in
Section 4.4, "Using the JavaTest Harness Software."



In these instructions, variables in angle brackets need to be expanded for each
platform. For example, <TS_HOME> becomes $TS_HOME on Solaris/Linux and %TS_HOME% on
Windows. In addition, the forward slashes (/) used in all of the examples need to be
replaced with backslashes (\) for Windows. Finally, be sure to use the appropriate
separator for your operating system when specifying multiple path entries (; on
Windows, : on UNIX/Linux).

On Windows, you must escape any backslashes with an extra backslash in path
separators used in any of the following properties, or use forward slashes as a path
separator instead.

Adapt the instructions above for your environment.

4.3 Deploying the JCA TCK Tests

4.3.1 Extension Libraries

The JCA 1.7 TCK RAR files are deployed simultaneously. The manifest file in each RAR file includes a
reference to the whitebox extension library. The whitebox.jar file is a shared library that must be
deployed as a separate entity that all the standalone RAR files can access. This extension library is
needed to address classloading issues.

4.3.1.1 JCA 1.7 TCK Resource Adapter Files

The Resource Adapter (RAR) files that are used with the JCA 1.7 TCK differ from those that were used in
earlier JCA TCK releases. The TCK no longer includes the same common classes into every RAR file.
Duplicate common classes, such as whitebox.jar, have been removed from each RAR file and are now
handled as an Installed Library.

This was done to address the following compatibility issues:

4.2 Configuring Your Environment to Repackage and Run the TCK Against the Vendor Implementation

22    TCK User’s Guide for Technology Implementors DRAFT

#GBFUY


• Portable use of Installed Libraries for specifying a resource adapter’s shared libraries
See section EE.8.2.2 of the Java EE 7 platform specification and section 20.2.0.1 in the JCA 1.7
specification, which explicitly state that the resource adapter server may employ the library
mechanisms in Java EE 7.

• Support application-based standalone connector accessibility
See section 20.2.0.4 of the JCA 1.7 specification, which uses the classloading requirements listed in
section 20.3 in the specification.

4.3.1.2 JCA 1.7 TCK Resource Adapters and Classloading

The JCA TCK 1.7 has scenarios in which multiple standalone RAR files that use the same shared library
(for example, whitebox.jar) are referenced from a TCK application component.

Each standalone RAR file gets loaded in its own classloader. Since the application component refers to
more than one standalone RAR file, all of the referenced standalone RAR files need to be made
available in the classpath of the application component. In previous versions of the TCK, since each
standalone RAR file contained a copy of the whitebox.jar file, every time there was a reference to a
class in the whitebox.jar file from a standalone RAR, the reference was resolved by using the private
version of whitebox.jar (the whitebox.jar file was bundled in each standalone RAR file). This approach
can lead to class type inconsistency issues.

4.3.1.3 Use Case Problem Scenario

Assume that RAR1 and RAR2 are standalone RAR files that are referred to by an application, where:

• RAR1’s classloader has access to RAR1’s classes and its copy of whitebox.jar. (RAR1’s classloader
contains RAR1’s classes and whitebox.jar)

• RAR2’s classloader has access to RAR2’s classes and its copy of whitebox.jar. (RAR2’s classloader
contains RAR2’s classes and whitebox.jar)

When the application refers to both of these RAR files, a classloader that encompasses both of these
classloaders (thereby creating a classloader search order) is provided to the application. The
classloader search order could have the following sequence: , .

1. RAR1’s Classloader: RAR1’s classes and whitebox.jar

2. RAR2’s Classloader: RAR2’s classes and whitebox.jar

In this scenario, when an application loads a class (for example, class Foo) in whitebox.jar, the
application gets class Foo from RAR1’s classloader because that is first in the classloader search order.
However, when this is cast to a class (for example, Foo or a subclass of Foo or even a class that
references Foo) that is obtained from RAR2’s classloader (a sequence that is typically realized in a
ConnectionFactory lookup), this would result in a class-cast exception.

4.3 Deploying the JCA TCK Tests

DRAFT TCK User’s Guide for Technology Implementors    23



The portable way of solving the issues raised by this use case problem scenario is to use installed
libraries, as described in section EE.8.2.2 in the Java EE 7 platform specification. If both RAR files (RAR1
and RAR2) reference whitebox.jar as an installed library and the application server can use a single
classloader to load this common dependency, there will be no type-related issues.

In the the Eclipse GlassFish 5.1 CI, domain-dir/lib/applibs is used as the Installed Library directory and
is the location to which the whitebox.jar file gets copied. Refer to specific instructions for other CIs.

4.3.1.4 Required Porting Package

The JCA 1.7 TCK treats the whitebox.jar dependency as an Installed Library dependency instead of
bundling the dependency (or dependencies) with every RAR file. Each RAR file now contains a
reference to the whitebox.jar file through its Manifest files Extension-List attribute.

It is necessary to identify the whitebox.jar to the connector server as an installed library. The
mechanism used to identify the whitebox.jar file to the connector server as an Installed Library must
allow the Installed Libraries to have dependencies on Jakarta EE APIs. In other words, because the
whitebox.jar file depends on Jakarta EE APIs, one cannot simply put the whitebox.jar file into a
java.ext.dir directory , which gets loaded by the VM extension classloader, because that mechanism
does not allow the whitebox.jar file to support its dependencies on the Jakarta EE APIs. For this reason,
the Installed Library must support access to the Jakarta EE APIs.

See section EE.8.2.2 in the Java EE 7 platform specification for information about the reference
implementation’s support for Installed libraries. However, note that this section does not recommend a
mechanism that a deployer can use to provide Installed Libraries in a portable manner.

The JCA TCK tests should only be deployed after you properly configure your connector runtime. This
configuration includes creating users and JVM options in the runtime, mapping RA users to existing
runtime users, deploying RAs, and creating connection pools and connection resources.

Deployment of the connector resource adapters involves the deployment of 17 RAR files:

• whitebox-mixedmode.rar

• whitebox-tx-param.rar

• whitebox-multianno.rar

• whitebox-tx.rar

• whitebox-anno_no_md.rar

• whitebox-notx-param.rar

• whitebox-xa-param.rar

• whitebox-mdcomplete.rar

• whitebox-notx.rar

• whitebox-xa.rar

• whitebox-ibanno_no_md.rar

4.3 Deploying the JCA TCK Tests

24    TCK User’s Guide for Technology Implementors DRAFT



• old-dd-whitebox-notx-param.rar

• old-dd-whitebox-xa-param.rar

• old-dd-whitebox-tx.rar

• old-dd-whitebox-notx.rar

• old-dd-whitebox-xa.rar

• old-dd-whitebox-tx-param.rar


RAR files with an "old" prefix are used to test the support of RAs that are bundled with
an older version of the ra.xml files.

Deploying RAR files require the installation of a whitebox.jar file to a directory into which the server
can load. The whitebox.jar file is a common library, which is referenced and used by all the RAR files.
To ensure proper class loading, the whitebox.jar file must be copied into the application server’s
domains/domain1/lib/applibs directory, a location where it can be loaded by the server and can be
accessed by all the RAR files.

To deploy the Connectors TCK tests to the Jakarta EE 8 platform, perform the following steps.

4.3.2 To Configure and Deploy the JCA TCK Tests on the Jakarta EE 8 Web
Profile CI

The config.vi Ant task performs several configuration procedures on your connector server. This
target deploys some of the required Resource Adapters (RAR files) and creates some connection
resources and connection pools. The test suite also provides a convenience Ant target, which deploys
only the RAR files and creates connection pools and connection resources. This Ant target is in the
<TS_HOME>/bin/xml/impl/glassfish/connector.xml file. See the Ant target setup.all.rars.and.pools for
more information.

1. Make sure that the server to which you will deploy the JCA TCK tests is running.

2. Change to the <TS_HOME>/bin directory and execute the Ant task to configure the CI.

cd <TS_HOME>/bin
ant

3. Execute the ant deploy.all Ant task to deploy the requisite RAR files.

ant deploy.all

Follow the instructions in Section 5.1, "Using the GUI for TCK Test Execution," or Section 5.2, "Using
the Command-Line for TCK Test Execution," to run the tests you just deployed.

4.3 Deploying the JCA TCK Tests

DRAFT TCK User’s Guide for Technology Implementors    25

using.html#GBFUZ
using.html#GJCIW
using.html#GJCIW


4.3.3 Configuring the JCA TCK Tests on the Vendor Implementation

Vendors need to configure their application or connector servers to run the TCK tests. This
configuration needs to support the same features that are currently performed against all CIs through
the execution of the config.vi and setup.all.rars.and.pools Ant targets.

This section describes how to configure the Vendor Implementation (VI) before running the JCA TCK
tests.

Performing the tasks of these targets should minimally include the following:

• Creating Security Mappings for the RAR Files

• Creating Required Server-Side JVM Options

• Replacing the Default Vehicle with a Custom Vehicle

4.3.3.1 Creating Security Mappings for the RAR Files

See the Ant target create.security.eis.mappings in the <TS_HOME>/bin/xml/impl/glassfish/connector.xml
to see how this is done with the Eclipse GlassFish 5.1 CI. This task maps Resource Adapter user
information to existing user information in the connector runtime.

For the Eclipse GlassFish 5.1 CI, these mappings add a line to the domain.xml file, similar to the one
shown below, and should include 6 of these mappings:

<jvm-options>-Dwhitebox-tx-map=cts1=j2ee</jvm-options>
<jvm-options>-Dwhitebox-tx-param-map=cts1=j2ee</jvm-options>
<jvm-options>-Dwhitebox-notx-map=cts1=j2ee</jvm-options>
<jvm-options>-Dwhitebox-notx-param-map=cts1=j2ee</jvm-options>
<jvm-options>-Dwhitebox-xa-map=cts1=j2ee</jvm-options>
<jvm-options>-Dwhitebox-xa-param-map=cts1=j2ee</jvm-options>

If the rauser1 property has been set to cts1 and the user property has been set to j2ee in the ts.jte file,
the following mappings would be required in the connector runtime:

• For RA whitebox-tx, map cts1 to j2ee

• For RA whitebox-tx-param, map cts1 to j2ee

• For RA whitebox-notx, map cts1 to j2ee

• For RA whitebox-notx-param, map cts1 to j2ee

• For RA whitebox-xa, map cts1 to j2ee

4.3 Deploying the JCA TCK Tests

26    TCK User’s Guide for Technology Implementors DRAFT

#GJKVE
#GJKVI
#GJKVW


• For RA whitebox-xa-param, map cts1 to j2ee

4.3.3.2 Creating Required Server-Side JVM Options

Create the required JVM options to allow the passing and/or setting of user information from the
ts.jte file to the server. These properties are set in the connector runtime for use by the RAR files,
which are deployed to the connector runtime. The RAR files need to know some of the property
settings used in the ts.jte file; this is the means used to specify some of the user properties.

To see some of required JVM options for the Eclipse GlassFish 5.1 CI, examine the ri.jvm.options
property in the ts.jte file. The following subset of JVM option specified in the ri.jvm.options property
must be set in the connector runtime:

-Dj2eelogin.name=j2ee
-Dj2eelogin.password=j2ee
-Deislogin.name=cts1
-Deislogin.password=cts1

4.3.3.3 Replacing the Default Vehicle with a Custom Vehicle

If your connector server does not have web support, you will need to create your own vehicle. A
vehicle is a wrapper that supports running tests in different server-side containers, such as servlet, JSP,
and so on. The JCA TCK provides a default vehicle, connectorservlet, which supports running the TCK
tests in a connector runtime that has a Servlet container. To support running tests in an environment
other than a Servlet container, you need to implement your own vehicle, effectively replacing the
default vehicle, connectorservlet.

This TCK was designed so you could use connectorservlet as a template for creating your own vehicle.
The connectorservlet vehicle is used to contain and execute your client-side tests in the connector
runtime.

The connectorservlet vehicle is located in the
<TS_HOME>/src/com/sun/ts/tests/common/vehicle/connectorservlet directory.

To run the tests in a vehicle other than connectorservlet, you need to create a custom vehicle named
customvehicle. See Section 4.2.2, "To Create a Custom Vehicle," for more information on this topic.

4.3.4 Deploying the RAR files to the VI

This section describes how deploy the RAR files to the VI before running the JCA TCK tests.

The deployment requirements for VI are similar to the requirements for the CI in that the required

4.3 Deploying the JCA TCK Tests

DRAFT TCK User’s Guide for Technology Implementors    27

#GJKYA


Resource Adapter (RAR) files must be deployed before any TCK tests can be run. Before you attempt to
deploy the RAR files, ensure your connector server has been properly configured. For additional
information about deploying the RAR files and creating the corresponding connection pools and
connection resources, see the setup.all.rars.and.pools Ant target in the
<TS_HOME>/bin/xml/impl/glassfish/connector.xml file.

4.4 Custom Configuration Handlers
Configuration handlers are used to configure and unconfigure a Connectors 1.7 implementation during
the certification process. These are similar to deployment handlers but used for configuration. A
configuration handler is an Ant build file that contains at least the required targets listed below:

• config.vi - to configure the vendor implementation

• clean.vi - to unconfigure the vendor implementation

These targets are called from the <TS_HOME>/bin/build.xml file and call down into the implementation-
specific configuration handlers.

To provide your own configuration handler, create a config.vi.xml file with the necessary
configuration steps for your implementation and place the file under the
<TS_HOME>/bin/xml/impl/<your_impl> directory.

For more information, you may wish to view <TS_HOME>/bin/xml/impl/glassfish/config.vi.xml, the
configuration file for Eclipse EE4J Jakarta EE 8 Compatible Implementation, Eclipse GlassFish.

4.5 Custom Deployment Handlers
Deployment handlers are used to deploy and undeploy the WAR files that contain the tests to be run
during the certification process. A deployment handler is an Ant build file that contains at least the
required targets listed in the table below.

The Connectors TCK provides these deployment handlers:

• <TS_HOME>/bin/xml/impl/none/deploy.xml

• <TS_HOME>/bin/xml/impl/glassfish/deploy.xml

• <TS_HOME>/bin/xml/impl/tomcat/deploy.xml

The deploy.xml files in each of these directories are used to control deployment to a specific container
(no deployment, deployment to the Eclipse GlassFish Web container, deployment to the Tomcat Web
container) denoted by the name of the directory in which each deploy.xml file resides. The primary
build.xml file in the <TS_HOME>/bin directory has a target to invoke any of the required targets (-deploy,
-undeploy, -deploy.all, -undeploy.all).

4.4 Custom Configuration Handlers

28    TCK User’s Guide for Technology Implementors DRAFT



4.5.1 To Create a Custom Deployment Handler

To deploy tests to another Connectors implementation, you must create a custom handler.

1. Create a new directory in the <TS_HOME>/bin/xml/impl directory tree. For example, create the
<TS_HOME>/bin/xml/impl/my_deployment_handler directory. Replace my_deployment_handler with the
value of the impl.vi property that you set in Step 5 of the configuration procedure described in
Section 4.2, "Configuring Your Environment to Repackage and Run the TCK Against the Vendor
Implementation".

2. Copy the deploy.xml file from the <TS_HOME>/bin/xml/impl/none directory to the directory that you
created.

3. Modify the required targets in the deploy.xml file. This is what the deploy.xml file for the "none"
deployment handler looks like.

<project name="No-op Deployment" default="deploy">
    <!-- No-op deployment target -->
    <target name="-deploy">
        <echo message="No deploy target implemented for this deliverable"/>
    </target>
    <target name="-undeploy">
        <echo message="No undeploy target implemented for this deliverable"/>
    </target>
    <target name="-deploy.all">
        <echo message="No deploy target implemented for this deliverable"/>
    </target>
    <target name="-undeploy.all">
        <echo message="No undeploy target implemented for this deliverable"/>
    </target>
</project>

Although this example just echoes messages, it does include the four required Ant targets (-deploy,
-undeploy, -deploy.all, -undeploy.all) that your custom deploy.xml file must contain. With this as
your starting point, look at the required targets in the deploy.xml files in the Tomcat and Eclipse
Glassfish directories for guidance as you create the same targets for the Web container in which
you will run your implementation of Connectors.

The following Ant targets can be called from anywhere under the <TS_HOME>/src directory:

• deploy

• undeploy

• deploy.all

• undeploy.all

4.5 Custom Deployment Handlers

DRAFT TCK User’s Guide for Technology Implementors    29



The deploy.all and undeploy.all targets can also be called from the <TS_HOME>/bin directory.


The targets in the deploy.xml file are never called directly. They are called indirectly
by the targets listed above.

4.6 Using the JavaTest Harness Software
There are two general ways to run the Connectors TCK test suite using the JavaTest harness software:

• Through the JavaTest GUI; if using this method, please continue on to Section 4.7, "Using the
JavaTest Harness Configuration GUI."

• In JavaTest batch mode, from the command line in your shell environment; if using this method,
please proceed directly to Chapter 5, "Executing Tests."

4.7 Using the JavaTest Harness Configuration GUI
You can use the JavaTest harness GUI to modify general test settings and to quickly get started with the
default Connectors TCK test environment. This section covers the following topics:

• Configuration GUI Overview

• Starting the Configuration GUI

• To Configure the JavaTest Harness to Run the Connectors TCK Tests

• Modifying the Default Test Configuration


It is only necessary to proceed with this section if you want to run the JavaTest
harness in GUI mode. If you plan to run the JavaTest harness in command-line mode,
skip the remainder of this chapter, and continue with Chapter 5, "Executing Tests."

4.7.1 Configuration GUI Overview

In order for the JavaTest harness to execute the test suite, it requires information about how your
computing environment is configured. The JavaTest harness requires two types of configuration
information:

• Test environment: This is data used by the tests. For example, the path to the Java runtime, how to
start the product being tested, network resources, and other information required by the tests in
order to run. This information does not change frequently and usually stays constant from test run

4.6 Using the JavaTest Harness Software

30    TCK User’s Guide for Technology Implementors DRAFT

#GBFWG
#GBFWG
using.html#GBFWO
#GBFVA
#GBFVD
#GBFVX
#GBFUU
using.html#GBFWO


to test run.

• Test parameters: This is information used by the JavaTest harness to run the tests. Test parameters
are values used by the JavaTest harness that determine which tests in the test suite are run, how
the tests should be run, and where the test reports are stored. This information often changes from
test run to test run.

The first time you run the JavaTest harness software, you are asked to specify the test suite and work
directory that you want to use. (These parameters can be changed later from within the JavaTest
harness GUI.)

Once the JavaTest harness GUI is displayed, whenever you choose Start, then Run Tests to begin a test
run, the JavaTest harness determines whether all of the required configuration information has been
supplied:

• If the test environment and parameters have been completely configured, the test run starts
immediately.

• If any required configuration information is missing, the configuration editor displays a series of
questions asking you the necessary information. This is called the configuration interview. When
you have entered the configuration data, you are asked if you wish to proceed with running the
test.

4.7.2 Starting the Configuration GUI

Before you start the JavaTest harness software, you must have a valid test suite and Java SE 8 installed
on your system.

The Connectors TCK includes an Ant script that is used to execute the JavaTest harness from the
<TS_HOME> directory. Using this Ant script to start the JavaTest harness is part of the procedure
described in Section 4.7.3, "To Configure the JavaTest Harness to Run the TCK Tests."

When you execute the JavaTest harness software for the first time, the JavaTest harness displays a
Welcome dialog box that guides you through the initial startup configuration.

• If it is able to open a test suite, the JavaTest harness displays a Welcome to JavaTest dialog box that
guides you through the process of either opening an existing work directory or creating a new
work directory as described in the JavaTest online help.

• If the JavaTest harness is unable to open a test suite, it displays a Welcome to JavaTest dialog box
that guides you through the process of opening both a test suite and a work directory as described
in the JavaTest documentation.

After you specify a work directory, you can use the Test Manager to configure and run tests as
described in Section 4.7.3, "To Configure the JavaTest Harness to Run the TCK Tests."

4.7 Using the JavaTest Harness Configuration GUI

DRAFT TCK User’s Guide for Technology Implementors    31

#GBFVX
#GBFVX


4.7.3 To Configure the JavaTest Harness to Run the TCK Tests

The answers you give to some of the configuration interview questions are specific to your site. For
example, the name of the host on which the JavaTest harness is running. Other configuration
parameters can be set however you wish. For example, where you want test report files to be stored.

Note that you only need to complete all these steps the first time you start the JavaTest test harness.
After you complete these steps, you can either run all of the tests by completing the steps in Section 5.1,
"Starting JavaTest," or run a subset of the tests by completing the steps in Section 5.2, "Running a
Subset of the Tests."

1. Change to the <TS_HOME>/bin directory and start the JavaTest test harness:
cd <TS_HOME>/bin

ant gui

2. From the File menu, click Open Quick Start Wizard.
The Welcome screen displays.

3. Select Start a new test run, and then click Next.
You are prompted to create a new configuration or use a configuration template.

4. Select Create a new configuration, and then click Next.
You are prompted to select a test suite.

5. Accept the default suite (<TS_HOME>/src), and then click Next.
You are prompted to specify a work directory to use to store your test results.

6. Type a work directory name or use the Browse button to select a work directory, and then click
Next.
You are prompted to start the configuration editor or start a test run. At this point, the Connectors
TCK is configured to run the default test suite.

7. Deselect the Start the configuration editor option, and then click Finish.

8. Click Run Tests, then click Start.
The JavaTest harness starts running the tests.

9. To reconfigure the JavaTest test harness, do one of the following:

◦ Click Configuration, then click New Configuration.

◦ Click Configuration, then click Change Configuration.

10. Click Report, and then click Create Report.

11. Specify the directory in which the JavaTest test harness will write the report, and then click OK.
A report is created, and you are asked whether you want to view it.

12. Click Yes to view the report.

4.7 Using the JavaTest Harness Configuration GUI

32    TCK User’s Guide for Technology Implementors DRAFT

using.html#GBFUZ
using.html#GBFUZ
using.html#GBFWM
using.html#GBFWM


4.7.4 Modifying the Default Test Configuration

The JavaTest GUI enables you to configure numerous test options. These options are divided into two
general dialog box groups:

• Group 1: Available from the JavaTest Configure/Change Configuration submenus, the following
options are displayed in a tabbed dialog box:

◦ Tests to Run

◦ Exclude List

◦ Keywords

◦ Prior Status

◦ Test Environment

◦ Concurrency

◦ Timeout Factor

• Group 2: Available from the JavaTest Configure/Change Configuration/Other Values submenu, or
by pressing Ctrl+E, the following options are displayed in a paged dialog box:

◦ Environment Files

◦ Test Environment

◦ Specify Tests to Run

◦ Specify an Exclude List

Note that there is some overlap between the functions in these two dialog boxes; for those functions
use the dialog box that is most convenient for you. Please refer to the JavaTest Harness documentation
or the online help for complete information about these various options.

4.7 Using the JavaTest Harness Configuration GUI

DRAFT TCK User’s Guide for Technology Implementors    33



5 Executing Tests
The Connectors TCK uses the JavaTest harness to execute the tests in the test suite. For detailed
instructions that explain how to run and use JavaTest, see the JavaTest User’s Guide and Reference in
the documentation bundle.

This chapter includes the following topics:

• Starting JavaTest

• Running a Subset of the Tests

• Running the TCK Against your selected CI

• Running the TCK Against a Vendor’s Implementation

• Test Reports


The instructions in this chapter assume that you have installed and configured your
test environment as described in Chapter 3, "Installation," and Chapter 4, "Setup and
Configuration,", respectively.

5.1 Starting JavaTest
There are two general ways to run the Connectors TCK using the JavaTest harness software:

• Through the JavaTest GUI

• From the command line in your shell environment


The ant command referenced in the following two procedures and elsewhere in this
guide is the Apache Ant build tool, which will need to be downloaded separately. The
build.xml file in <TS_HOME>/bin contains the various Ant targets for the Connectors TCK
test suite.

5.1.1 To Start JavaTest in GUI Mode

Execute the following commands:

cd <TS_HOME>/bin
ant gui

5.1 Starting JavaTest

34    TCK User’s Guide for Technology Implementors DRAFT

#GBFUZ
#GBFWM
#GCLRR
#GCLRZ
#GBFVK
install.html#GBFTP
config.html#GBFVV
config.html#GBFVV


5.1.2 To Start JavaTest in Command-Line Mode

1. Change to any subdirectory under <TS_HOME>/src/com/sun/ts/tests.

2. Start JavaTest using the following command:

ant runclient

Example 5-1 Connectors TCK Signature Tests

To run the Connectors TCK signature tests, enter the following commands:

cd <TS_HOME>/src/com/sun/ts/tests/signaturetest/connector
ant runclient

Example 5-2 Single Test Directory

To run a single test directory, enter the following commands:

cd <TS_HOME>/src/com/sun/ts/tests/connector/mdb
ant runclient

Example 5-3 Subset of Test Directories

To run a subset of test directories, enter the following commands:

cd <TS_HOME>/src/com/sun/ts/tests/connector
ant runclient

Example 5-4 MDB-Specific JCA TCK Tests

To run the MDB-specific JCA TCK tests, enter the following commands:

cd <TS_HOME>/src/com/sun/ts/tests/connector/mdb
ant runclient

Alternatively, from the <TS_HOME>/src/com/sun/ts/tests/connector directory, you can also run the
MDB-specific JCA TCK tests by using the appropriate keyword:

cd <TS_HOME>/src/com/sun/ts/tests/connector
ant -Dkeywords="connector_mdb_optional" runclient

5.1 Starting JavaTest

DRAFT TCK User’s Guide for Technology Implementors    35



Example 5-5 EJB and Servlet Resource Definition Annotation Tests

To run the JCA TCK EJB and Servlet Resource Definition Annotation Tests, enter the following
commands:

cd <TS_HOME>/src/com/sun/ts/tests/connector/resourceDefs
ant runclient

Alternatively, from the <TS_HOME>/src/com/sun/ts/tests/connector directory, you can also run the JCA
TCK Web tests by using the appropriate keyword:

cd <TS_HOME>/src/com/sun/ts/tests/connector
ant -Dkeywords=  "(connector_resourcedef_ejb_optional |
connector_resourcedef_servlet_optional)"
  runclient

Example 5-6 All JCA TCK Tests Except the EJB and Servlet Resource Definition Annotation Tests

From the <TS_HOME>/src/com/sun/ts/tests/connector directory, you can run all the JCA TCK tests except
the EJB and Servlet Resource Definition Annotation Tests by using the appropriate keyword:

cd <TS_HOME>/src/com/sun/ts/tests/connector
ant -Dkeywords=
  "!(connector_resourcedef_ejb_optional | connector_resourcedef_servlet_optional)"
  runclient

5.2 Running a Subset of the Tests
Use the following modes to run a subset of the tests:

• Section 5.2.1, "To Run a Subset of Tests in GUI Mode"

• Section 5.2.2, "To Run a Subset of Tests in Command-Line Mode"

• Section 5.2.3, "To Run a Subset of Tests in Batch Mode Based on Prior Result Status"

5.2.1 To Run a Subset of Tests in GUI Mode

1. From the JavaTest main menu, click Configure, then click Change Configuration, and then click
Tests to Run.

5.2 Running a Subset of the Tests

36    TCK User’s Guide for Technology Implementors DRAFT

#GBFVT
#GBFWK
#GBFVL


The tabbed Configuration Editor dialog box is displayed.

2. Click Specify from the option list on the left.

3. Select the tests you want to run from the displayed test tree, and then click Done.
You can select entire branches of the test tree, or use Ctrl+Click or Shift+Click to select multiple
tests or ranges of tests, respectively, or select just a single test.

4. Click Save File.

5. Click Run Tests, and then click Start to run the tests you selected.
Alternatively, you can right-click the test you want from the test tree in the left section of the
JavaTest main window, and choose Execute These Tests from the menu.

6. Click Report, and then click Create Report.

7. Specify the directory in which the JavaTest test harness will write the report, and then click OK
A report is created, and you are asked whether you want to view it.

8. Click Yes to view the report.

5.2.2 To Run a Subset of Tests in Command-Line Mode

1. Change to the directory containing the tests you want to run.

2. Start the test run by executing the following command:

ant runclient

The tests in the directory and its subdirectories are run.

5.2.3 To Run a Subset of Tests in Batch Mode Based on Prior Result Status

You can run certain tests in batch mode based on the test’s prior run status by specifying the
priorStatus system property when invoking ant

Invoke ant with the priorStatus property.

The accepted values for the priorStatus property are any combination of the following:

• fail

• pass

• error

• notRun

For example, you could run all the Connectors tests with a status of failed and error by invoking the

5.2 Running a Subset of the Tests

DRAFT TCK User’s Guide for Technology Implementors    37



following commands:

ant -DpriorStatus="fail,error" runclient

Note that multiple priorStatus values must be separated by commas.

5.3 Running the TCK Against another CI
Some test scenarios are designed to ensure that the configuration and deployment of all the prebuilt
Connectors TCK tests against one Compatible Implementation are successful operating with other
compatible implementations, and that the TCK is ready for compatibility testing against the Vendor
and Compatible Implementations.

1. Verify that you have followed the configuration instructions in Section 4.1, "Configuring Your
Environment to Run the TCK Against the Compatible Implementation."

2. If required, verify that you have completed the steps in Section 4.3.2, "Deploying the Prebuilt
Archives."

3. Run the tests, as described in Section 5.1, "Starting JavaTest," and, if desired, Section 5.2, "Running a
Subset of the Tests."

5.4 Running the TCK Against a Vendor’s Implementation
This test scenario is one of the compatibility test phases that all Vendors must pass.

1. Verify that you have followed the configuration instructions in Section 4.2, "Configuring Your
Environment to Repackage and Run the TCK Against the Vendor Implementation."

2. If required, verify that you have completed the steps in Section 4.3.3, "Deploying the Test
Applications Against the Vendor Implementation."

3. Run the tests, as described in Section 5.1, "Starting JavaTest," and, if desired, Section 5.2, "Running a
Subset of the Tests."

5.5 Test Reports
A set of report files is created for every test run. These report files can be found in the report directory
you specify. After a test run is completed, the JavaTest harness writes HTML reports for the test run.
You can view these files in the JavaTest ReportBrowser when running in GUI mode, or in the web

5.3 Running the TCK Against another CI

38    TCK User’s Guide for Technology Implementors DRAFT

config.html#GBFVU
config.html#GBFVU
config.html#GCLIW
config.html#GCLIW
#GBFUZ
#GBFWM
#GBFWM
config.html#GCLHU
config.html#GCLHU
config.html#GCLIL
config.html#GCLIL
#GBFUZ
#GBFWM
#GBFWM


browser of your choice outside the JavaTest interface.

To see all of the HTML report files, enter the URL of the report.html file. This file is the root file that
links to all of the other HTML reports.

The JavaTest harness also creates a summary.txt file in the report directory that you can open in any
text editor. The summary.txt file contains a list of all tests that were run, their test results, and their
status messages.

5.5.1 Creating Test Reports

Use the following modes to create test reports:

• Section 5.5.1.1, "To Create a Test Report in GUI Mode"

• Section 5.5.1.2, "To Create a Test Report in Command-Line Mode"

5.5.1.1 To Create a Test Report in GUI Mode

1. From the JavaTest main menu, click Report, then click Create Report.
You are prompted to specify a directory to use for your test reports.

2. Specify the directory you want to use for your reports, and then click OK.
Use the Filter list to specify whether you want to generate reports for the current configuration, all
tests, or a custom set of tests.
You are asked whether you want to view report now.

3. Click Yes to display the new report in the JavaTest ReportBrowser.

5.5.1.2 To Create a Test Report in Command-Line Mode

1. Specify where you want to create the test report.

1. To specify the report directory from the command line at runtime, use:

ant -Dreport.dir="report_dir"

Reports are written for the last test run to the directory you specify.

2. To specify the default report directory, set the report.dir property in <TS_HOME>/bin/ts.jte.
For example:

5.5 Test Reports

DRAFT TCK User’s Guide for Technology Implementors    39

#GBFVH
#GBFVC


report.dir="/home/josephine/reports"

3. To disable reporting, set the report.dir property to "none", either on the command line or in
<TS_HOME>/bin/ts.jte.
For example:

ant -Dreport.dir="none"

5.5.2 Viewing an Existing Test Report

Use the following modes to view an existing test report:

• Section 5.5.2.1, "To View an Existing Report in GUI Mode"

• Section 5.5.2.2, "To View an Existing Report in Command-Line Mode"

5.5.2.1 To View an Existing Report in GUI Mode

1. From the JavaTest main menu, click Report, then click Open Report.
You are prompted to specify the directory containing the report you want to open.

2. Select the report directory you want to open, and then click Open.
The selected report set is opened in the JavaTest ReportBrowser.

5.5.2.2 To View an Existing Report in Command-Line Mode

Use the Web browser of your choice to view the report.html file in the report directory you specified
from the command line or in <TS_HOME>/bin/ts.jte.

5.5 Test Reports

40    TCK User’s Guide for Technology Implementors DRAFT

#GBFVO
#GBFWB


6 Debugging Test Problems
There are a number of reasons that tests can fail to execute properly. This chapter provides some
approaches for dealing with these failures. Please note that most of these suggestions are only relevant
when running the test harness in GUI mode.

This chapter includes the following topics:

• Overview

• Test Tree

• Folder Information

• Test Information

• Report Files

• Configuration Failures

6.1 Overview
The goal of a test run is for all tests in the test suite that are not filtered out to have passing results. If
the root test suite folder contains tests with errors or failing results, you must troubleshoot and correct
the cause to satisfactorily complete the test run.

• Errors: Tests with errors could not be executed by the JavaTest harness. These errors usually occur
because the test environment is not properly configured.

• Failures: Tests that fail were executed but had failing results.

The Test Manager GUI provides you with a number of tools for effectively troubleshooting a test run.
See the JavaTest User’s Guide and JavaTest online help for detailed descriptions of the tools described
in this chapter. Ant test execution tasks provide command-line users with immediate test execution
feedback to the display. Available JTR report files and log files can also help command-line users
troubleshoot test run problems.

For every test run, the JavaTest harness creates a set of report files in the reports directory, which you
specified by setting the report.dir property in the <TS_HOME>/bin/ts.jte file. The report files contain
information about the test description, environment, messages, properties used by the test, status of
the test, and test result. After a test run is completed, the JavaTest harness writes HTML reports for the
test run. You can view these files in the JavaTest ReportBrowser when running in GUI mode, or in the
Web browser of your choice outside the JavaTest interface. To see all of the HTML report files, enter
the URL of the report.html file. This file is the root file that links to all of the other HTML reports.

The JavaTest harness also creates a summary.txt file in the report directory that you can open in any
text editor. The summary.txt file contains a list of all tests that were run, their test results, and their

6.1 Overview

DRAFT TCK User’s Guide for Technology Implementors    41

#GBFYP
#GBFVF
#GBFWI
#GBFVP
#GBFVZ
#GBFYF


status messages.

The work directory, which you specified by setting the work.dir property in the <TS_HOME>/bin/ts.jte
file, contains several files that were deposited there during test execution: harness.trace, log.txt,
lastRun.txt, and testsuite. Most of these files provide information about the harness and environment
in which the tests were executed.


You can set harness.log.traceflag=true in <TS_HOME>/bin/ts.jte to get more debugging
information.

If a large number of tests failed, you should read Configuration Failures to see if a configuration issue
is the cause of the failures.

6.2 Test Tree
Use the test tree in the JavaTest GUI to identify specific folders and tests that had errors or failing
results. Color codes are used to indicate status as follows:

• Green: Passed

• Blue: Test Error

• Red: Failed to pass test

• White: Test not run

• Gray: Test filtered out (not run)

6.3 Folder Information
Click a folder in the test tree in the JavaTest GUI to display its tabs.

Choose the Error and the Failed tabs to view the lists of all tests in and under a folder that were not
successfully run. You can double-click a test in the lists to view its test information.

6.4 Test Information
To display information about a test in the JavaTest GUI, click its icon in the test tree or double-click its
name in a folder status tab. The tab contains detailed information about the test run and, at the bottom
of the window, a brief status message identifying the type of failure or error. This message may be
sufficient for you to identify the cause of the error or failure.

6.2 Test Tree

42    TCK User’s Guide for Technology Implementors DRAFT

#GBFYF


If you need more information to identify the cause of the error or failure, use the following tabs listed
in order of importance:

• Test Run Messages contains a Message list and a Message section that display the messages
produced during the test run.

• Test Run Details contains a two-column table of name/value pairs recorded when the test was run.

• Configuration contains a two-column table of the test environment name/value pairs derived from
the configuration data actually used to run the test.


You can set harness.log.traceflag=true in <TS_HOME>/bin/ts.jte to get more debugging
information.

6.5 Report Files
Report files are another good source of troubleshooting information. You may view the individual test
results of a batch run in the JavaTest Summary window, but there are also a wide range of HTML
report files that you can view in the JavaTest ReportBrowser or in the external browser or your choice
following a test run. See Section 5.5, "Test Reports," for more information.

6.6 Configuration Failures
Configuration failures are easily recognized because many tests fail the same way. When all your tests
begin to fail, you may want to stop the run immediately and start viewing individual test output.
However, in the case of full-scale launching problems where no tests are actually processed, report
files are usually not created (though sometimes a small harness.trace file in the report directory is
written).

6.5 Report Files

DRAFT TCK User’s Guide for Technology Implementors    43

using.html#GBFVK


A Frequently Asked Questions
This appendix contains the following questions.

• Where do I start to debug a test failure?

• How do I restart a crashed test run?

• What would cause tests be added to the exclude list?

A.1 Where do I start to debug a test failure?
From the JavaTest GUI, you can view recently run tests using the Test Results Summary, by selecting
the red Failed tab or the blue Error tab. See Chapter 6, "Debugging Test Problems," for more
information.

A.2 How do I restart a crashed test run?
If you need to restart a test run, you can figure out which test crashed the test suite by looking at the
harness.trace file. The harness.trace file is in the report directory that you supplied to the JavaTest GUI
or parameter file. Examine this trace file, then change the JavaTest GUI initial files to that location or to
a directory location below that file, and restart. This will overwrite only .jtr files that you rerun. As
long as you do not change the value of the GUI work directory, you can continue testing and then later
compile a complete report to include results from all such partial runs.

A.3 What would cause tests be added to the exclude list?
The JavaTest exclude file (<TS_HOME>/bin/ts.jtx) contains all tests that are not required to be run. The
following is a list of reasons for a test to be included in the Exclude List:

• An error in a reference implementation that does not allow the test to execute properly has been
discovered.

• An error in the specification that was used as the basis of the test has been discovered.

• An error in the test has been discovered.

A.1 Where do I start to debug a test failure?

44    TCK User’s Guide for Technology Implementors DRAFT

#GBFYQ
#GBFYR
#GBFWU
debug.html#GBFUV


Appendix B is not used for the Connectors TCK.

A.3 What would cause tests be added to the exclude list?

DRAFT TCK User’s Guide for Technology Implementors    45


	TCK User’s Guide for Technology Implementors
	Table of Contents
	Eclipse Foundation
	Preface
	Who Should Use This Book
	Before You Read This Book
	Typographic Conventions
	Shell Prompts in Command Examples

	1 Introduction
	1.1 Compatibility Testing
	1.2 About the TCK
	1.3 Getting Started With the TCK

	2 Procedure for Certification
	2.1 Certification Overview
	2.2 Compatibility Requirements
	2.3 Test Appeals Process
	2.4 Specifications for Jakarta Connectors
	2.5 Libraries for Jakarta Connectors

	3 Installation
	3.1 Obtaining a Compatible Implementation
	3.2 Installing the Software

	4 Setup and Configuration
	4.1 Configuring Your Environment to Run the TCK Against a Compatible Implementation
	4.2 Configuring Your Environment to Repackage and Run the TCK Against the Vendor Implementation
	4.3 Deploying the JCA TCK Tests
	4.4 Custom Configuration Handlers
	4.5 Custom Deployment Handlers
	4.6 Using the JavaTest Harness Software
	4.7 Using the JavaTest Harness Configuration GUI

	5 Executing Tests
	5.1 Starting JavaTest
	5.2 Running a Subset of the Tests
	5.3 Running the TCK Against another CI
	5.4 Running the TCK Against a Vendor’s Implementation
	5.5 Test Reports

	6 Debugging Test Problems
	6.1 Overview
	6.2 Test Tree
	6.3 Folder Information
	6.4 Test Information
	6.5 Report Files
	6.6 Configuration Failures

	A Frequently Asked Questions
	A.1 Where do I start to debug a test failure?
	A.2 How do I restart a crashed test run?
	A.3 What would cause tests be added to the exclude list?


