python2-numpy-1.16.5-150200.3.5.1<>,Xb9ޜp9|5'nZ Q $ C I8$XzV^;J@A,?d $ e :PV\  4 | #  0 dܘw(8797:7BXFXGXHc|In XpYpZp[p\p]{^3bcWdefluvw`xyӀzݼCpython2-numpy1.16.5150200.3.5.1NumPy array processing for numbers, strings, records and objectsNumPy is a general-purpose array-processing package designed to efficiently manipulate large multi-dimensional arrays of arbitrary records without sacrificing too much speed for small multi-dimensional arrays. NumPy is built on the Numeric code base and adds features introduced by numarray as well as an extended C-API and the ability to create arrays of arbitrary type which also makes NumPy suitable for interfacing with general-purpose data-base applications. There are also basic facilities for discrete fourier transform, basic linear algebra and random number generation.b9ޜs390zp31hSUSE Linux Enterprise 15SUSE LLC BSD-3-Clausehttps://www.suse.com/Development/Libraries/Pythonhttp://www.numpy.org/linuxs390xw{q 27K K W Y#v#~x $(V j%& xmpP'qH( ' (#"Y@9@g?|.fIBATBh*f"-\+Yi{EGjve)i@1nql! bIcS:7M3mKW:usAH3EFT .jw4M&5e]=%xZJ%&$J!bxP''55=5> %&/efopl3I  |-U-yzVYD?%`]r]S&e"#8j w #A [Udab/jVCd6n,H$/%*C&Lk&.Ncdv[)^o]Hei9y\ja`@Pqvd!Ku1bb69jAA{O#$HnU``,5VMB̈?|:AS23'g!]< HP4  kwFN<A|  uILfOVY'8ޚi9Z{ $M~_ 2(}(<9f|&Q*w];/#Mtn `6}e- 3"PNXIFJEHL` mX x ^Q'Nx#7)U9 0P#CjGL5|$LG | q/n e "&P AA큤A큤A큤A큤큤큤큤큤AA큤AA큤A큤A큤A큤A큤A큤A큤A큤A큤A큤AA큤AA큤A큤A큤A큤A큤A큤A큤A큤A큤A큤큤A큤A큤A큤A큤A큤큤큤A큤A큤A큤A큤A큤A큤A큤A큤큤A큤A큤A큤A큤A큤A큤b9b9b9b9b9b9b9b9b9b9]eEb4t@b9]eEb9]$b9]e6b9]e6b9b9]$b9]e6b9]eEb9b4t@b9b9]$]eE]eEb9b9]eEb9]eEb9]eEb9]eEb9]eEb9b9]eEb9]eEb9b9b9b9b9]e6b9b9]e6b9b9]eEb9]$b9]eEb9]eEb9]eEb9]eEb9]e6b9]eEb9b9b9b9Kb9K]$b9b9b9b9b9]eEb9]eEb9]eEb9]eEb9]eEb9]eEb9]eEb9]eEb9b4t@b9]eEb9b9]$]e6b9]$]$]$]eE]eE]eE]e6]eE]eE]eE]eE]e6]eE]e6]eE]$]eE]eE]e6]$]e6]eE]eE]eE]eE]e6]eE]e6]eE]eE]$]eE]e6]e6]eE]eE]eE]eE]eE]$]eEb9]7!b9]eEb9b9b4t@b9]e6b9]$b9]eEb9]e6b9b9]$b9b4t@b9]$b9]$b9]$b9]eEb9]$b9]$b9]eEb9]eEb9]e6b9]$b9]$b9b4t@b9]eEb9]$b9]$b9]$b9]$b9b4t@b9]e6b9b4t@b9b4t@b9]$b9b9]eEb9]e6b9]eEb9]eEb9]$b9]e6b9]$b9]eEb9]e6b9]$b9]$b9]$b9]$b9]$b9]e6b9]e6b9]$b9b4t@b9]$b9]$b9]e6b9]eEb9]$b9b9]eEb9]eEb9]$b9]$b9]eEb9]$b9]$b9b4t@b9b4t@b9b9]$]eE]eE]$]$]$]$]e6]$]e6]eE]7!b9b9]$b9]eEb9]eEb9]eEb9]eEb9]7!b9]eEb9]eEb9]eEb9]$b9]e6b9]eEb9]e6b9]eEb9]eEb9b9b4t@b9]e6b9]$b9b4t@b9b4t@b9b4t@b9b4t@b9b4t@b9b4t@b9b4t@b9b4t@b9]$b9b4t@b9b4t@b9]$b9b4t@b9b4t@b9b9b9]$b9b9]$b9]$]$]$]$]$b9]$b9]$b9]$]$]$b9]$]$]$]$]$b9]$b9]$b9]$]e6]$]e6]eE]$]e6]$]eE]e6]e6]e6]e6]e6]e6]e6]Y ]Y ]$]$]eEb4t@b9b9]eEb9]eEb9b9]eEb9]$b9]eEb9b9]$]eE]eEb9]e6b9]eEb9]eEb9]eEb9]eEb9]eEb9]eEb9]eEb9]eEb9]eEb9]eEb9]eEb9]$b9]e6b9]eEb9]eEb9]eEb9]eEb9]eEb9]$b9]eEb9]eEb9b9]$b9]$]$]$]$]$]$]e6]eE]$]eE]eE]$]$]eE]eE]eE]eE]eE]e6]eE]eE]e6]eE]eE]e6]eE]eE]eE]e6]eE]eEb9]eEb9]eEb9]$b9]eEb9b9]e6b9b9]$b9b9]eEb9]$b9b9]$]$]$]eE]$b9]e6b9b4t@b9]eEb9]eEb9]eEb9b4t@b9b9]$]eE]$]eE]eE]eE]eE]eE]$b9]eEb9]$b9]eEb9b9]e6b9]eEb9b4t@b9b9]$]e6]7!]eE]e6]e6]e6]e6b9]e6b9]eEb9]eEb9]eEb9]eEb9]eEb9]eEb9]eEb9]eEb9]$b9b9]$]eE]eE]eE]eE]eE]eE]eE]7!]$b9]eEb9]e6b9b9]eEb9b9]$]eE]eEb4t@b9b9]e6b9b9]$b9]7!b9]e6b9]e6b9]e6b9]eEb9]e6b9]e6b9]e6b9b4t@b9b4t@b9b9]$]e6]$]eE]eEb9b9]$]e6]7!]$]eE]eE]e6]eEb4t@b9b9ޏ]$7caec4ca71e116b1935c71bcb9a7093a8bcaa0845910b26a18d87fe07f4e813e44c5b3e02f6586c904f5c0db1c36fecf999c98e9113bbcad36403a227f05c405c7d7f28e5d9dd44dded98a60d3340a4570ecd8c1803223357986122c1f7c4926785140ed02bd79b9ebad0f536959faf23abcc2587c060cad1d6c71d9fdb667cd01ba4719c80b6fe911b091a7c05124b64eeece964e09c058ef8f9805daca546b12f11f0c43f6a0130d183824fec97a9eee671f06cc9f51bf6cdfdaa22088e19601ba4719c80b6fe911b091a7c05124b64eeece964e09c058ef8f9805daca546be09f656c130b9c08b2c5ab7187c891295e449ed77febea2a6ceee9cc98ccb0fc6b5086f61fe0c71564a79304ecbaa60f11fa3f3debf82f73d16a611cab102adc18c9e81b6a3ba02a6cf952d66d279dc2e33ce58b745e0b561705c1d68243cad51b7edf3f15de0b85eb7c133b8d36281fbccdf551382fb26cc8970dd50f700c75e9ba95ebf3add32b201e50e1d2685aa28c21a3ce5ce460b9384b7266b49c77d50813df7ab99881cd757c7964d9659b05932a289e4a0ebf362b01a9992734d3532203e448adc7f5b82315e51f5ae5e18caae07ad425e73b545bead3ca31872b774018f1c8fe26d2e9d84e2cfca3d95d5da20fccdf98e568ab782f1fcb7769188ca7cc7111166cc6318f51657da4c6378f3ef9359c432e9a4678a6876d81820ea31b0b63dbde1c333998a56fbaf289584e18b596449b100064b5bed08d085d9a1f78b58cc018aa6a61e87aff3e5659adbc26b157f822b6a2bb8ecf94923516e2ab3f7cf0f011fa3fb82543459727348c533b66def9368b8d317d0c05859848bc9530795ee2025cad7875c3848dbf49b3e6b6d44c08c0cc79f23b7aed6d25b7014a9c62505e387de1d9e919b0317ae65fbb6afd24cc75460c4a418fa936f8b74181c44226505866e150334f62c98f655aff20c01c9b1dcb44704a2d49c0e3a1ca45a57a90734878c0123e71092fc0df1727f0171b1e62b2d557872db8f375e4c7aca4112038812c6b27137220dc377dc3b7659d340f1cdc906dc644aecc0da0f1349c91bf67cedf3b19fbf46b0be8bdecfa6974f5c78fcef8b72a13175031e93aeb44425cc0d53b11b7f00454b51476b3189714861e74ff9818b6daf70527330a235118899eecf15798264a02df3c33bcd7cd5d9b583de5be38f1b513f8c0716e13e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855288fbb46edc86b94f0181981593337423aba1bf0853b35f5b8877efbd31e717a3109a28715f28f16e7d65f4df7b0c555ec273753dc1409d6a013b8d38ba70b0e944240fc69a29d13f92f64dc073205fd3675eaa9f1cef66cc4587c2ee2c551b1fd009a83f7527006ad20d657f2694370675a6c07a6913f22abd1a25968168ac12ebe6d22b1758831be24cbe42fbedde96a129e437442771663d7ccee273a8ea9bce8ab90a2f0fcf06c3e98dee2611bf1f1f4181be11187a9d7796bd15306d206d12a376ec38873dc3bc0ebd3828215f272af89e3a4ba862cea6136d3db5edfc9e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855fc6616ee3a6efcf34c0a3286cc38fbba1d8212fca7f3dc7a7633ed54406128ceaef69e39ffb2a6a851adbe3f0258edd825d7eae66b5f4493434a50c255d32afe7d01694c46604015b6d67f6b46706817e9bd68657e9dbb171bd8949981bf7d70b2b54f488ea426f5e3cc8be40500d4d62b407d3faf09929eca3802177c82fba4321f97a155d58f1e2b0a37bb80dea63e9f7e70f17155d18b625d7abc633182cf4a125cb175eb47fc5c8f34cea7a5708cee919c0b974d9c97799dd53ed06fe25271cd8adcac8f6e261be8c3510b040ed5217ae91af0ad6f8f65aa93b72fe4c78aeb24f2be2690f35d15b61acd6a2ce2c5c67cf3912c509c505c918c577e66df3cdd00d4276140377d7bc94e5f13a94f74580156b9c16a2627524b93bb5bd69a85ddf0682aaeeef8fcc526180019675da9106b2f9a902918b25364c1331a49a00b4dda5a1efd89523767f9764ca9ca3aeddd7a7e150022248034deceebd3a5bd01a94dcc13d3e1cc02243dc215805428c4490c6d9910de16b873c97ae0c6246e56b7abb67b2901bd1a3d8cecf8e21b021f99797e280bda49c9003a366f4bd6a8256e1291a88660aef23f76f5be2ac9b25cfd82a7af45b32939f8f69851799394dc34618685a15d539786894023dc64c80683a05ace2bf5a4cd96c136afd3605fa4ca66af239606f4cc083594dc77455e6d5b894f86762c3cf53c6664345a2cc9c174a2e4071ecb2616cfefff92ab08fe1e4df474a25bc0b877b372ea40e57e5bf1140d8fcf938aa9c2e5d5028b24dbbe1131c8cd0d628b72c7e6949d1e16647d90c0100020f35c3f8d60e17abd396c1ad054ac9e82df4eeebd565ac25057d3848361669cd13c114ff76e3ce24ee36f545ab75f3653a80b58a7069478948e113d58f7e193d398a2299bcc023868375014ada43507345a5a69aae7f9f47963e9f4be73fe0cbe1b194333749c9e4d3439c061ee2d01a179b92c696eca8bfdcfc17169ba460da647a2d02a22ec339c6eba17b83a1773a925e6877199ccbfdfda6ccc0da4620f15ad09becf3127d5b3206f9565b17f4b565deff457ac08a4eb9131e1a181199996baf2b8b80d40bb058cccd9cf85f68459d3673cea7e4a624d6c2fb612328c0e0d1549a2c08842af9387e767cb39bb6c257b22c36d76cb49f155823072f8ff366e5b4c3068d4091a588c962884674fa712c4c6e70695624b300ed7c43c51ba25f90b409d5a3812ca631eb32314a289d979b9293b4ec213e923eaf186748336bbc46edb58c58db6b434995e3bd7d1561e93809a4dbb2e7857b1d43921cb6d2da57042157007664c0f674bb03999c8cf5a33f96dc688a79a20746c0cb53e2fbfece5fce03a223c05913aa7b81b4325bcbe8c9bf0aaebb603040fb52a88fed0eba0117767e515e8ed9b0267d68d54add7b80936aeff0a65f23a2e46e525a6d090584ef7a451e272869ed030ab562522be2fa9553617afd7acb4176a97da95a70f819eed0361c7a5641540f5c216f0b3bf7c83903cc685779f9b94e6614b7ecc651d7970b0f06016972f0c0932fac56132a010eccef883a5ce3b49b4bf06164d7bd804abade32b2a5dfe549928d8455e1f6ff99052c37dad36f53c1c97d9b33da9efc1efa62c32c5c3d594f74c7633b9eaac213df49cc10f5f3a5dae51e29ad9ddf5c950fcd2f28481fe4faf926d0e39d58dcd832df89745642eabb293e7074a30ecf447ceb30132f8006052bf5fd3dbfcdec51d866c055d195a65b3860a70299406b4f04d51eb8d0de1b9b5e3980605e085a81c1ac2b4eda14770371f5c75fcbb16575792b4dab085d8983dadb9dfc18be3a7677d5c13e0cac8d736eca05c91a99436b60a0265ea41af0170dbfb0f9b0ba8787a6e70a1334ff9ad90ac4df64ad881feedd02168f9e514004844832e3bfff3ae740c4f2fb8277b7af865983216a0515ecac857f653007c0738e176d9aff33adcbe5e9eb558c6ab66d55f3fc5e1212d49e8515fc489b46b1e30fd619b82e0ad1478a0b6b6d309512d4cb8689541b3192f7b585c3cf35364dd82a66fcd0356b4a31770e6c7de246e4572a21464a688d1a1c395b79ac48273673370197a901de43f7c69b23fe656d4bcad531c99c36376444b0a944cdf0adc11921b8fcbbbd3935270de919b655039255283364b39a2d0c6ed4d42689e8690b904744b30120a5d4aa2aa60d36aa84882f37c2b9386d2bc76b27297baadddac7aac646359b95900ce84cbd6c320a9330e6b17fcdef1eb07e33a525a08d49dfa5ef422b40f932604fa2387a8962c6103cdaf4f8b61406e214440854131cf2f775cccebbdc28b1361e15afb559c76ad127b0b0067d3392912ae10bb765eb770af4faf4aade17e6b32c074db930da0f57efe8d7954d39f47b10239aab83eb55292a52f4943fdd964bd1457a201064e1a89d2cbd5b4e0e8df68ab3e7727fe5e18fb11f43c65b6463125dceb680d9d262974c418aa266e192b4bcf90dd060df611ec8b3154e52ecc06267a238118dbfb98688d5c7bc7c06b5a0901d75a3f33ed4c670f222006ef15b22ca853507245d3d1d2b43a202fa89ce597a7d3028b3f42da0e932573b183eda3104cd73f276f49ca38056c259bd9b9826cd48526d9e44f96393c91fc5fb76bb83f4bff1e46e6d737a5e48319180b5798723736c03668596c3d69ffad5c9c2ea43d0b9136a2f25cd86927a9b22f35e128e9e498ece417cb274ad4e8f52bc65fa1364eb27b921cae96d435b0faebb5f6128b2b12c2d6eda0d80e299970a4026d14a65ac85118e746c2ff96a9e5c328e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855190ae8ddb85af1ce66b20432bcdce60d4acdc2a4b670690a2ae378820e1cead29564b309cbf3441ff0a6e4468fddaca46230fab34f15c77d87025a455bdf59d9340d24962cf7d4594b9d8c6fde9a737abb8e36a35892e12fb6ce70cd711e21ce72922ab775450592c76ee3693b836ec821a077efa4d738a3e5a6acbbb155efb293ba4de881a8945407053ec299a4591c9a91e7d6a65a4e907152b845da9090a73cf529a66f66e9c3f1da68d4d2541ebd37672d2ab4ffa2487bc2f2ba6377ba33c2019dda48e81b4279799383641e71acc8e4da58ea42f3be51362f672afce05f2f91283814d956b454d558eee48858f014949413863f311588a270c904a5a57a06435ac79ece5109ae12faa74782efda9db2d143695cf1e1b06011e9ae2a8e64115c7366e34bbe3aefc653dbcd89d86ec884f0debfe5040cd48411e2ce8892676e0f6dd47bbfcf41bcc465aa26e20ea92db540c47beb175097cc508657a35cf7e6f3795e2bfd7082d0d23eb63fb0eb64fbd302201d75163811fa0250642a80c9fb4cc422791a8b5a918572346dd1c282e53f99e0f7b3a4dde2f5080708ab6102a4b5108541ea75aeeececd39829dfdd2097e6c34b7a802cb2d05dced7ad67b3bd9f04aed2968ebb90fe9b4e170df5b38a99e5fd8063d0554135ee3195c9da1791e7963ed3e3e900293fb680f6bbfaf36b6ce389eaa7d9a1aab48d6e026c2b51bd0abb74b2e6371a1370f62acc83ac54ef810cccbf67725a36b785ce2de7e9ff9ff53d841f799af1cd0cbbe3c5f02f36670af3daacb23c49ea2a05c0f277d863ea4c8ddffcbf9602e165632cb22b8668ac3ce1bf0ccc388f7606119f9463590e0addf98bce2a063c5b43cc12d2c75a6e1eafc7578280b54938ba42e5063d6887b16b29e1a10bb8fecfdb40a52fee2351340d493389e2887541cc40f7c248cd2df032073e299bb1e14c37655b6a6af4547500ed04e5001874aa41a166ce752adca998adeabd1ea583cf967dafa9a676fcf8881e959d447ad72b550b3cddde685cd6a0d93ea829d2411381b88dad4baf7250c7fe949f84a368ec5b6c04edb2a8b1cb013b3a7120a0193dda19c1398b57c0c870e67d9b6fe891d0f19e04cdf65c0567846003411762cdd1a4f0145607a00a770424a8f3d66a7deb27c111bcda62d9c41da6090a0d7b872f24be72f9040fe90345952ff679e3179cd4e779bdc817588a916bc00e3819de8d2e997d6eef3f783e8e2a05748c01049de162b3d95f2ee4b439ddda9b8d0408942cd1a7fd5963403ea6d3fb1656c16553de31e30b5f471588c55a5c2b62a046292766b6ae7942aae0f1d83edf0bdc6a0afd2915c20b6c0c0a1ca0320896174543c3990ce1eef7d3806c3aa6974c1f0eaed0f615c98ab454c923c98965247ca1310193e3d5db8e3736b6e1475dc40833e3c0644c4c59cceafd14f54f79a2072d6d06fd8206e6822436526cd71293ba99b5e79f8722b803b9d88fe652e7fb3d6fb689e00af0edf890671f0356351131e28beed76232fa61a20c3258ab7cd1d8864c4dc0b6836224300b65b4270b0f1ffa2bb673355691414ab022b2c9c338afe7a0ad3d145429fa88a80e4dd68e02a44ee19fd7ebd45837c58f0d01b2a2b0f295737cfd09d3ebfe80954435a38efba2fec0062c25f0793911eb647db09dc15fed0d22dc665efd0ac4debf67230413fea376d3c2b3987958c4a00eb777fb12708cf11649f1e9e5920350e884fc4a4ad8c7e6bdf20e4bab8e9c34091d1820ce6670d1e168ab273cdc8f2675c5396b23cb23d9009a3dcc50f105f3ef5ade4d2e3830ba50a05da90710a309da94a94cb6d45a0cfd75913111c489fadd1228c30af2429695af305094551525ac0410fe5ab88de34995afa14dfa45572770606b6ad11528f5f0a61aff2a5989ab8d3f7496d0867ebf2917618ccf4354abe954136c7fac38c957cbeb60d7e52786decc29a695e30b40611ea641835b522fd49e4a12cf104f6c2b0a65b5c278ef8b7ab1be7f1e96c9dbe00919cc8bad5e2189760122832aaaacd0d9afc33372b0e6a4ee4b4fbebb2b9dc681d682cbfab3ad831a24360aecd8163bb136b18b4ee9b2f207839b2de0fa9881d09dcec5fc318c9e81b6a3ba02a6cf952d66d279dc2e33ce58b745e0b561705c1d68243cad5baf48346590f32c9b2f9a5c7af943612785a4995e424ab1204e2095e0546b5426fddc76624691df482f44f863e25e4e8f583c10dd24c9e2b973bf1e8f8471f590964e0c2b266cc934bbd6a75a428d83d36ed9a2095002e5dca5bf6a4884c9ec94924592af19fbe0fc6a586d75ad23981a4cad0d196f670410b236085a697061f1c6f72e520d0b640e62ba1ce8a3baa9f205240eaea99b90a2fc94709660efc73cca8f2e7a930e9ead83caef587e69fa57f47627d997901d2329bef6225703aedb9b440920d380dfb5fe12e8af657a2da83d332f5e0e16cd5ed3db64838358e597bdc83bbee0135f72b4ff4475c993e6bdd6a5b0c6b40eac85576dd8ff5f6d83f097f4d93ce9f1adbf13566d58fbcdfb1c7809dd294df22e2e7aa08399e005fd3979afd698c0812ad43f8925cf16154c40064e88a76f05a512bfa24ef048b45911efd92de36824d3551b455b5c79f18b566b8fe5cb5d0cb825e85d4aad89e0d6f45c96c0c1e7eca51360f6fea3a8e09f579b1f58c7df5fd15076f1603f5bb0ae8d4308365848514cb95e065b25bf47c9a176f713adde58558d099eb1036953304ae1848c85ce47793468ba95969fb78e0404f641df364544373be649496276f0f32fd9e50238fe25b33e86f704bfffc55e4e744a11e6620a78d8f91aea3b5bbaee90f5b0ee6eae567f04752b9c280c55de77af76b330f446afb90a4bf6c69a0aeecc7af973a5995c61e123c0837c8d868e8c9ca34486ba2a908626f7fcc6bbbf4fd8deea48fec95e920324d82236be994e5e3e69d7f6841daf85f7f9c9d073a088f4f73c2937ae7c01683251cc0e75a92ab248b60cc9f4d53cc2753e78e0a86604174bf675beba6f4eb4e351bea6f67d6ea68f73963a38a39c9ddbb4aee4b25f4d92c2840a17d4f6f9c20afde20f5cf8d1d14b246596b2bf5d007b8fe33a2b04bed30462f3d2f6b43d6eac117f9a523b17773be1b926c91a022b3229b5253c2eeb0b68efab54d623748a188a41cdfa898d8ae91fd8aec78d01e1004080615b22dcded7d8c70610b726080a2db2fdc20b3d237986ee5b3e57635bca4be578dc204c43a15f818c00ce0f2ba6aafb4d27ede3b8195b49ab84e7be22a88e0ebc7294069497665ff1692d302afc7f5bba6280256e53525468effa5cffef24df38a0bcd3acf58bb4f6ebd1af5461bbba5b4f18a4a47c0fb1c84db277e9f50331c71a4b40f1bef16a52d28f097cc709f0b60ce41c3019baed8911757c967816b76d8150128ca98d622542296b982b12b0be4eed5e864ebe30c3d7d520d9b9ffafc976f1148a253124fd8fc36be75560e1c075fe1cdf25f18e513576cafe849c58d26d0f5f8f71da931a5c07e9965e486427e580fe99bd0be7665195dd76fcad6811074c09d8339ca384ab462a1ff7c19c2bbc44012d81ca95dcfae1a53ed224b27129170f3cc087a80302f75ec68e68b157f125d052bdb12bb143b0201d433f53f00e1e6a5d882150890b88a5fff199593d36397b8a8c18f42c469fd2916d4f80f5e05f8fb9b66157d273c36eb05ee383e23912488126873a9f9624954c9061b0fc7ea27a7ef6fe48b9ad31a85cf90d7590f6462ece836a99c5c0f3c076ef108647867db1a02b07cdb3c397dae54aff4cdc450e91b965da7ad3266e2c70b45acc9984adbead50edc56c5fdbfdefcbcb7d6aa1df6b078c87036cfc9b69a1eaaaf2d5ae329f4c06200fba047ed95745e1331bb91d5b2164c24ffdc4f23143096d0e2dbf5e0ee2593c3ddedcb6b013f01f083f10486042165265ee92b0a75f4d2f516d447d0eeeceed34131097c04c020daf334f3c5a581711f7298d40d08de5963764180f835b670b7e268a3cd33ff54dfc40fa62165e6d8bf4c9a1e192e1b7b1c0baf7a8a64740aa7d7c03c2e36dbae28c6a83a6b4183b8c72d2b1fadfbe7d20440f9f780b479a56f44730fcc74e1db303d712e6bd1ff6fa1ae1d66355778589302432af057d20ac2d3b788dca11aa294f36d1f97b5811f6cd0d87e560b7c04c4e6088f73c73916f098098064e6c9edf84026132242dfb1706f98fbb8b6f802c1735d894d0b3ad23f68f41e87a4d68b3c86815163bf9cc731521c2f77e5d71c9fb75848f56268c363a1c2f119b3b1c8b16022bfe7c32f3308bf715ebdda7529c3bbf245a1d4603b9ad307dcb2e53d2dac36ce2d63dc70b25047657f4379670eabfda02848f4634dc960d30aa7e70fb269dadce9f6f381572789985f25b20bffc5d96de7d8211dd2dc5231b69799cedcf9fe90c1c82bf8bd595b0242449186935f1953cb233d3083cc0ecd0d4f8a63760eef1f62c2b009f2a1cf8451608489347203e14e40a691b368262baed33f9519502ecd5e71dbad3e25c63712d79ad64260452f98cf95a328c59d7b0f923472791471ef78c297e04e5d63df15879ff03f8e2b1d72ef251fa3328122b86aa7f03134978967198dee4734dda3b3cf148c6a5c584d933dabf363816fac3a878405b792109c05878d7599382c17b073198b28eb559fd2a8397f34ca1cc146b0318f0ba710da0715f2840d170dd72f3f6294213843c7c517bf7ce4e96ff1417088e47d346950580e2e48812ba0ef3ac640ac6997be10b3f93e547f543b393418c613356c01f2ab92ee467b5a812c64fe0788726646ae9cc800a6e3e6e1abf1da460cbcd12096dd5275d702d17fe64e09aa7ab04d6bf2fad4e5c4036138d4ac73381f91e170543cc8a0dd37e2d6beac62fdf326225717d7df763ba56a511d57a6f9f287dc130d78528ab9f9a3606e524ca8b233370989d921d6e9f47c7cc56880e764f52a186665a98968f3b891613d36a16ea7d2df88b2e8f92e93339c5cfe9ad707d92cec1141694b96d259d82b625ef6699cc104d4b22f769bc73dee07b7a2bdf6913d241b4d63e5ad70404f8d0bf1b7692d1cd9cf8ef92baf11440bcebf22a887e8ec0fd278643b0796dac69c9fc0965c542e1cba88e102ca493cd86d820d96c99d5b165176374a709268df005ac7642ee071a886bf25a078a9243c9f8ac48af7f29d92fd40bfc8431d8dd46cb00b8167c13bb71790f08238eb944136780ae9dc12f6d6220a80e2ca5024ab2f93222db1f076289e6524c6935fcbbbc22963e727933724f9e33007b028101f28de61157de1bc42f6cda3601d34597bd91d1dcf5e63356660762a8c78923c1253645144c3eb21c65f4a3feba802ac16db56faaefcbbdd5fb6bd300d7936a3486360d73ce3d416b535cd17ec279cb292d0cc4a1c76a08df2700b1c025995597ed4cea0fc87809f0fe6b4165a5b01b6f6672e91647bba13a4c08360595c70d494596901da9e36da2c105115787c458f41aba14eea532c34ab3c821b6a25e68ef86cb2448b96ca3aadd326c5a49d3ec60b58c3261782df0994df0f15e618116077bce98590dc7a514157cee386fa858d47ec9c1ab2071e7db0bda69815d22bd9f29303970b4b20b9bdd2c6492312e88d6475a22d155bddcfc4fa4741747065c61f7c3d5dba7965416db0d7d02f3a316ed2e315cb147833edf413cba43d6c1667aa7bd9373eb28395f230a4507a24ef068a5d0a0561e7e1c34ebc956d1ad8bdfe2bfd2aac7b59abb93b79065a11e9af056f74a8dbff6e8027aff7d3f40ba6d37396531a4311378fc0fa708df437a69da0501ff229c841f083101ccae5c188de12c8596a479905eec7c8890df069f94bc3e04ef546c135c405ca5f581dd954c736af11f959069f76b3c863ecc65dfd49301df43c34a836903563ebca3d105e34ed177d28b476f550bef7637d44c208cd466b2c97413e8d5861533843a71ea15b9753d67d7c52e4149a1b6898101b4b8d3df79d99b91859f0a183551bc412aaa36e517a7cd2549375054b510f0d5c0f1c79fa36716f58ca0337ffd3393eb9914f75a40d6a5d85ab077516e46055db50d0e91a6bafdac4a78a69ecda7c902c0e7345dfa9dc5ad625f43bec8f24f308358ef5cae359769538d067991b07370a61dd50ae5d0fc8db17dcfacab24ee32c9db5f96209b22aae2ed8dd0da36c26a6e5c0de70b8cd8566c625d51e34bcdfc72dfb0471ad51989c5f48238ff3a691501c648bf8e57e988bebf6264f2b9ae3751312e6824caba8f591377953882f1620ad335368fbce9d9c74f12939fa2013f90ffa0a59a7a27c5c2fcf51e40f524c05c015d11cf891337dc0d08ae7b7f0f994dc5485b267cd68c0e3b3f623ff4d5beb6e56b8c6ccbeb68c70e5409de9a7a1fa78de182b643970cc5eb895a1b215e0e9bb1d9b1c3c765f30e4208d9abe04e0d6acebe8f3318b4524474354637aedde0ab0c3d1b027e19b7bdd72c502a589e539a6b78d0c59c57f3420ddfadd9b9598a7e72de59bac1429b9847fbc6e8b3f474560f4129b941e8c48b9cf55cb20c21f677bde382c7461b63c12958ac6a79555b435a30871dfb848bfc0d76df30cafd12d11079962e700c8985122b70cb183aa6813b67bbe788a29f8625a3b14dc25060ea73ee75732741961d85585ff84dda04f0550db5f995efe2a7fe512133147918465433527ba18efb39d64c4ac497a43c87cddb4d75383a62dbcee741eef8b7b9589ed3ca9d93bda09869b7a54da50edbf150322d70e9d9f7a12f6671b6a84e0e322032d18b6024763fce0e5d63172cbe1f53441efc170864e1678f0cb8db701f1075d57a96f26b25aef3df94c431866a01202bb83b732215f94044eee0b50a559355183e7bdbdd5c4e5021eb19e93f1d26ee39bc6899ba0738c5f6345c1e0f90bbf4ccca8afb69cecc05648566e360cb74062c9ad0c06e6710ac2abf4a46fd6cdf3adfcde68dccb1c577334c25181864ee3d88cf169de76104881b5828371b8e972ee8dd5331f87df93ce329c9c07791a76472020187ca341cc15bdab28499bda054ad64562793530f2c884ec901cb2ec45251db81d2810491b7033804f780107941678f41dc0fa33bfd83cdeef742b6142a9d3e161972ff5ce821bed5d64de98c63858c6bc74cf0042290cc84c01a293797148e0bf22744148675d6df6ef30b4531aa9c4f8b9623576a4c1d677007f85d9253276568e03613f8fa950b08f12e958fd026b36e8b03720771909890cb095b9c45b53b15b10bfd67dac29dd10ddf0b942735d16e02434096f5c5f7dcc84705f0bed6ba3b9488216f8dd3400fd617e49a349b21194ecd8248847154608e0163368b8e4cbf2ee202cc6c95bb19d4f4465b03da75d5d7f48404d663f507694169d6c807c1c86fd81a369d481d26f513eea07180c316d2f432120de352ce3ee208b0cddebf6b9332c110870241f776d2aecfc70e4f8b354590cebc9206e14023261aecaced01d1c476c6d6d738c6c23d9a48ba66419b0760ed0803cdd69202f9d73a8c4d3f3634cd4ca55e183742cac50afc5b074825ad05b7118d920b01aecd253bef9c38b21a879ca8913ea9f87c6c55d1a0fb8f976b0a5b7f9dce2a7a97ae3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855487f516969949d2bbcb86123c32a13af3aa854f7254d49cce944c648ac56f2a7b76e89507c09c65fe6f802cf6b95c0060545accb61070ee044a378c985f585843b9eee0841de4084b45c5f0696811ab373a568e7e62070d612d8184bfab7c78f7ce8ddfe3bf439de9b672cc57f862964c72716f6b43992bbc8957fe0779b6fa0e7e36e9b403770deff352dc1940818b75ef84be38639644b2fdad7b6ffa1fdf04836287b45d4a406b2c84403abb661aef104cfb53dba92432d8ce171da1589f7f0b226d765fcdc79af826a6f249f629da53b1651addbced5c0333eacc2823afec1ad10310f490327bceedda00db15a047a741c6a4d160c3126b277d19ac7bcd9c1ef4ff00be3090932d4d4433f7b170099cd51e93bac398c47802bf5c83d892902cbfa73e3752362501c070166e39bb2806569a28e55ea64872140986a74ce8c33b1e7dc034ca3c88ffac66d48079b2374422e9d158916316b001b724d219503be5c728b757dd61edbf32b46005d05beff31781d9f640d8982d1c697498823ea043a714ccd22c36178b618c1918aa32175f9ec5e4a7c8687f3131debb37a261dd33650989fdaeaefeb3fc194e2709f9ca2589e9d114e9a0474b63221f8f8c7b0e72818fe311266983d4c434ed1db330adb65ab9bf9217bd78cbda95a0e40b66bc60741b954bd46407774e52b620e08ffff6943961ee8afe9c523da9f61565a16d2ea1f2713df930b1a41a4d28eef13c223a9b265d2c361776f31bc09d90abe25fa6d45ea655630ae347077a0422a384c68b2949975d7f87016da65a6dba3977e8af7fd8d40290e63228ce8f57f904662418245587838b6bf5b26db725dc0f59c23bd66a9b2c10c3aee83378660b718afb0d47221e95c04b49acc46b8b7e26d4b1bec550dfa9121dd7a74a5ded4ec32ebeb657b12332544ee8abdb2bb789080c7ef8681243b88e407220dcd4f6d8b9b3720fa47ee71e0fcfb0e3efc01b5458ed6e855002c35a0a8f58e6dc5be6470d03009dfa38d88eb4ad147da43a706f8f9814fa2ba0a891e44337f806582b46156d8cc8c9ab1e85f6f76f0de026f849b933fc0a548cbe073b169b8afc5e1a32a2b612220a3fdea86e3cd4cd55c6527e934f9226ed1daa44ad0d971edae12dd026a5847671ec8213147648653b3b0c719139b0f92e3bf564e3888fe3b43de83613641a5015779996fad1b24e23fe20426153a1d5cb4b4dc44ba812ae2531d9dd8eda4d0749d92ee9b9471e2709c6469328f5aaa186c880786ffb636ae0ce2c23e75e45b30d3014be1dab5aae4fe8dadfed33b225c09e2eef3d8d2be55b2887934ee1fefaa41236435230f85f0e55146feb1a3c58a7a96fe32c95d19228fea0af2c2016c436b4ae1bbb14dad39a95d8d62b0eeffa2319c5a5857cf18dfa8d1bdb331902f07611473d3c65cc961d14ed8973dd325626aca260bdaaa1231501bd100bcc3f3e6e65ed92f1c7667d0f98a5814e14a49dde214a699212977182ed00b130fbd181aea41970975e250abb1c26f3158d72c48501855e3285da7643bdbfe7416ba2255ebae26bd04b864e242df20192cbc109f26d910f687321a3274f15b0adbd3c27b471dba743dbf286bbfb254d14e3402ab4496dc9b5fffe0863f756fbdd0817706a5877c806970a0ef91ed2403c1ef8499773abcfad5c9720d0dd0a711f830ea8b5eed082e05601a74d3cf0904edd2bec02408b10c87b41aff7c7859b0cc637210b0308b74e0ae07fe8fd9a11c54b8d20b573d218c8c3036aae581d69ee3313c5bbe3aa5b0a1a181d7af5222b9fa76499dc32d65d016fd6544a3754e51b8f3bc667b1a4915aedf69a05d9e77b19b71d03fefacbf4d79a67765c49d50c21b9dd859413449f1239983650a71ed21153a0471c9d9421e26f1f87bf8dda80443ce8f3d0eb3f9a3015336b6f61470ef3c3d385f4b1a2194976a43858dc1562380c85b07d8978bb239030b18aa020f002fc89a792c01c3322dd2b44a8fc3b1e427d336a586703b2df952ee11efa3b40256352be4c86b335b348ea1d9974469ab75fb64bfdd1c8b5b25b200f01521ffe8f099ac41c1f619569a9af284d6b412632794094308623819720b0bd09950457759ecb6f127b15eda0b2ce809df7d9c4a7f5102b51f188d8b81dfcdfa9bea51b1f208233e448829e71c88a2e7ff187e5c1b85b76141d363065cd4b817f27cf2ba531e62d1f6b01715e91e82e34360d75a2108611a647f6747300668475f76cd29e2f3a9f05b982e75d7c3a2f54a438812ff93821876d7ef60ad1dd527935a5bf0f784e3328cd1e9749a3ac55f0ed106d678fd6979f82bb3d27af67bd875245672ac5cfab72a765d2554a6825e1b8ba0aee46e24fd1b23bde2fc43cbf124ef314bafc17c8d6136529e03351249963c397be5846e6c58556e5739b51658602d7ec012e7f7baeef6c18327e7fa6c057cb294c5c552f256ea89bc825c7ab6142a924afab4f69044e0869ca328890fbf89a3ea5d6f38a18df5faa37da30daf918199c56a9d01bda84a9eeb17f1bd657618ff2b4d7702cc7726f51ff2bd965a7ac1724933dae65a83d7509cdee7ae681c6e40546386adbc09a12e805f30fbda0d06dac80a4eb81a3fc7e3b51e654a3af37b9bcd49300cd55df56ab383e7fb431437f7e3a322b7e56b9b989f600f5ad2fa1bcabd130aaba395d30e0998084e961a4f67cdd315d1482a26a15352ad2a5207f98687a2e056c47200c2ffdf9a5e102d8415c149d4156f00906adcaeda92297af8399479df614398ea12289ef60cb5219a7a624024232027743b5f9afaa575811393bd102a93eea3a957d38e8955a4e3c5b7505e0942db8acd0ce6727034c2d6be1500630f9658c862965b32791d14f34069ebe1d3f2b9018d4b0d8416afa680608bf6ea0d2f07f2d05d779051f21ac4e8436c200a234b28b9bb80e8aeac42011e71a4eaf4689aa022459925f2ff0d702376e9bc3de83e5f81f8b60f6f2c9c1a1aaabc2b20cc3106ea42e59c925470f5e341fd3b368686391a1e9692439a7108ccb5728d23baee89cd9c908cea88c731b168d10bffe34046ec2cfbb3711b6d25279c495c8566c1643fe12cdfc72703270e46b490c4ebe258ee9d023ae46f7695dc7d3f127c9bfc6a0aaf01a24d0e04f5d79f3db920324d7e9deaa9a9843a9e3a1550228798c93216402a61e587e1c199afc35f2a22c6bb085abafaa76500e79bc77c32eb1f7d2d0e33711f7abee6151afd9829a81190a26c60c7d10371b0b328ce0062b6d488934e62347adb7f3386612e30c37871be313e5ef72f468492a28c4818c65fdd92ac6655c3d9f4410301da9e2e93f7389b29003a6a2906dedff99564c2f33b4d79bfffad909c4b00c315d30217acce0bd193e69f908c6657f6114f29357191ed09e2cc86b3e1732124d73aada581ec36e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b8552ff67418cc9f608a11892d05201973cbf9f1945a0d6e42c06ad39b56629e1ac906eb7dafd9b888bec41aafe168c5bc222438562bc7d13814a33c57e293ef7691a01c1b19295bafd3241728553b66a5763734d5dafd187accad289141e93c53aeadfcf0dd0748f9e6834a5fa1b250a01a9779b477ed24e5615ef6f6d58f467fa3ae64fd9388cff51bb53cb706a9ea70f4973a3fd5cd5ccd1ac58ee8e218bd954caf4f097935664d313103e85867a1f36b1570067d4631b3c0baec018410ed2549190d0f77e54c5f71f76befff7f64aea2c49dc0d5c7a41aa81a74038dff1a1bd8cc81e9c3529d9166d3cdb5dbef784f6c28383761ed8f75cbf0323033bb1e5e9af74ce66d21e5a18d5741870f6fc07977d6eff66099c7c67c00c4ed803c090f3fa712ae3f3c45dca9f9921c85abd6b20ac422a25c41dd268db5c59a2b98fa46fe7c843bd70ac1734d095005548ffaf7405f5275e36788188cc3a2f2ec21a03d65f9b05fd9ea876feb85c60a3a43b880b55514433ac616ace11c335ac7048809f4adeee97f372e6aaba23a26b9dd44fba8d36b4d8bb67ae18a385e088682e64fa89c498c2e2b4aa12006ee00411102d6ba6a2037e292dc305938064959c4839c5c21cc444952ca25467593db982a849bf077e6f7e3bfe2b567964894536762cbc4aae35b0ec3354ecdab3785ad3ceebb4bd5e2ffc97671769b5913b4d023d049240a91e980cadfd1ba80d56dcece8def2270f3d113fdd384bb2e4a5d007e8e0dc922514041acf0051af7cf24fbbf7ebeb55d3e7d7b41d5ded6169e92d4954cb2d88a1aff047f6563b797710a471c342116829c6eeed530e5f940fd9396bef195a380b497f49b85ffc34d6e8510473445dc8602ee9589d3a330f26eaccb6c10bc244214ac489e20ceb8000923be7726ac30f84949f6bb3f30c0c4077dc8dd0ceb3295dd46e290448bc1781ab9180e934124a25d95f0c034d23ab6229f0504bd23ac779dfaeab64f24ca3014b77b022c143117612937bc04c79a91ca75a6540d0492b4b9a2d49adfc05753701954227c539f4e1fe877fc792074d2c591a0a26f1eb38101bd3de31a5c272395cdb7ddc1096f978ca0d15fbf301d9077fca9bec2b2cd1babba1168d51de9e63e3bb745009af5b49e089183ba5dd5c97160a76fd873bc9d480672f71bc9dfcd07a36ec050881fccdee5e78cced0be7c4e650875dcf418ff05fe80cf971b103f99f0c133c9e9f4d2e3622085e8b25b825c0a7f4f496dd3434a03b65dd24d0ab349aa795583e97f3249ef636d41c866e9583e6f0ba8065e94f4142b1e51ad5b4687222f21c592e46800fc2810ca969bbae9daf90d73de1be1afc9784b58d40913f90fb4d62699caa58b0c6999196d7b77cf093456685d3714ee287e50a770d21fb77e91dc57bdba2c83b6bca207efddd8f2cc1f7c7ae08e732c806f21d47a9c187b25e58086b6143e01ec0d9d1e7a69da3c31f190d08994bb775ace4394d68cfd9192985c1776196684af4d8c61f8c674badbee44fc322641544acde3b8e19b88955f04c9c9ad5da1d3fe2d2b9d7d9b8b7ace87ba72e063bfb605c7ea136d7519678aa375b94261e555b640f56186b809bb847f62d338bb195ed2e2d97c1612bad13fc4a57f3ac95428fdb3154ddc8e4c1f1f195210db8a2d3402f40155b1402e25516e1f75a5b65f8d7c52229559742af04d9c481d9e6abb4e8526fa4419933a3fd59a65691f4f14794d27630a6ede5e4bb8e4c3b947fa49667fb1855feeabc4886fed1a2a44ec5a2fbbfa357bf2283f7a242b2b350257ec95af0a04e10242ec8c02f73bf68685338b71734a9c3846e2b20f41f908c2d02865814ddc3fe9c91421f9e221d8a49200700f2f2b89a1880fcc7871d39ffc3b2718dd16751e6228d1618f917a752871af68b8da3aa7449dab8dca4958207c7796c8c933cd9976187db7af1d42bcceea23e285d804fd02b71ad4927e96047312d7ac602f957507c8d9ccaa62d58b16fa93a96e2c5dc45bf86532276ce334c30527ab1c0180aaa188a107bd745c2ed4b69e2c96759d9622689c38e9abc129cf36e90fd21913f686e93059126388be4e89d49f749224bd9a3b01e3d2a9830b80924540b1317103769c7dd655dbe379d91c96e1838e887302ccd8d3aadc430f5dd9f37d4dc22088df7ba22f1db51bb9050b0cd9b85c437e653c9fed8b1b81499b6cde62b753a79fd7af2fcd03708319c2329e438e367c08655a99e1cb26522a4882551d5ba1e7bbc5977794e415449df4f37234918aaaffe442a3a08ae942bc2eca80a60c587efda537fc5918ea94923f15219fc1777e85be128284293662126916e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b85551bf686a8c8420badebf4919a0487485369895ffa8ace52d7ca22c35b00dc285abccbbc7421a5d15b66a2d1d0849a15b8f0c46443a93c6d27a0b62e60084e9a7360c14b8968009b405faa77d54bcba0843f07191e4d4611d58f5b452164f425fa947cbd653e4320ccaf222c27403841fecff8066cfc253e62eaf7ffd283bab6ca8a3438cf4b4abc089e070fd23a20f809126af630dda6fb28a7c9838906a675c5a10f511b892091f2d412aff9ef318a4b81422c0fc31f39f2130a4f01b6b5c94244454159d578daf26abd4fb01076d3b6470a1b94b9a60dc7e19cbf624f4c4e1d2d4ea3fc986edf0eed2ee5fd4cacd7ee5fea07482c21a62e537caeed4de2fd8f28b88e436e05f546e35b3e1557fc59f5e3fbfb662c3043582b40f5f7fdb5c1b6a62b56c7fb990ddcf7e5b495fc26dbc12468062d79cbc0349ebe2e942d250be740840cdd1340172f6e953323a3d1723387f5ea7235afe920d20da006485c724d4d95f8857c4a130eb88cc886f2868bac630a43bd2285c8e770b8404f60a6477829426ca3eb6361c869ace355f82742f6a85e5aa733ea48246c48dd4eb3c015ad4000396c415763c6165b29d74d8e5251e45624ae740969ea6166b53c82175dc9e260d236aa1c92513e63ff7825d3ba4f6e4998e0626a77020668c6723e297ce90e4519b9678b16bba4a9110a6de2812ca6fdb70f555513913502b6b0ba29c017d8155c6f666249531c966ab98ea4dcfcae115fb3f1afdefc7c881f4bd8b5707ef18a22419feee4833258eab6f3852369240692309808877dc4ed7b0255819604b4f53712329ca751bbf11e614806881222aa0f1f84807e67e0da4f0c1ba03f122a07e3866c4049148d23b5d2130ab72c7c6847673d6d1fba25126b9aaf193e5a028cd6464867a044b4da10c98e2706284d3591d5e66e5443bd1c92c2936e8672e9240e88dd83a0c1d92d9ae2a9fcd1c7169faea4caacb323aff9182ef4c98eaa91b34c12a3e26a3310f0667c79400443620c957efea2352f0b605d851d64726aa2c8a1a3ef4207184da05501e4fc8611a61ebbcf667ca50a25199665c80cac13b2987b7a3338b5e97641592bcb767c06afdcb068f91eafedc3ab6bd01d737b2125d55522beba47e0c9f925c4b65ff9b32a9f64dfa332c05cf42a9303b29a0d6a1573317fa42fc23190b687669d6f61c7cdaff5a85dea234eb98f8441addf88ea65489aad6fe36a9c66f3194b05d2be5ba5ca92bf48cb1a3d50926d0f8e255a519e3a2ab4d44ebadd9ff4eb141f21460aa65d893e4b30aa169011eae78e73bf43cc0525c4e9b2333ddc0fc33f372d00fcf6526e868ed2ca42d79ffdb3b115dd3ecbb059a1d2678ec01269ce836747557c7b69c026feb503c21bf445a660544b8269e604a2ecde69d0d24b5d4af645ef8979e6083f8c21076b89be7fa68f8630c40ba76b8ee10e92857396797dd69934bd5b9c1c413138a9ccef88a8b534917a6ef9f0a3feb5bc474c3aaacecc10e353196ff3bbde678eb9dbea90b936f4abb727c524d238b79dcfe656b918b57bdb46ec04b85077fe10cecd2ac27f858a91c88d2f5c12112321a82869ee569dc56a3a0d6d3d20304030b6da2927263ab6ad1eaf8625c777227db105eecb52a4ee39532dfa876e89292b6320ae5366f3095fb8de6255eb66c759f80d6e4c93550d5510c7ed4734992a8de41d47e0caf9526a7456b17ff2bc0e98646ee2995c0e8ad80e5f6f222ed4174a43a3fbe22156f58a5375f8e65d990c6b7c6a7968fdb46602fc71525e6885e27a74878b13cf9e2c7809ca2cf5e57dc12cf04d095fc5ea10df7818438c0e8f5ffa12fa9c44e73c3f219b178c7799f293d355cc352e8b3fe3d83fa6a48f4779d8026a070eae5e5ef1f52314f545a543b3d5fb19405c95605fd926642d9858df16e972d32ff2bb6dd2074cd848bb418f8997392e8736ad16956167e2978891b7c5069aa791755216c1814b53fb9280877462e0df52b66903c83dc026a8b28ab2763e1d9c3f792de1a94a590650b6ba9441bb541e2848fc67388357ebb4d8d0c8ee8e25138111599850374b1e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855178732502fbf4c1f504852c0a3673b738e2b0ba35460882b7c6c7d3ea58f48a9c68d771c14f415b159daabd9cf42d61836f74ae40049269787baca7d57098f1ea534d587c7b3a7e97000addf920bdd294f00ae9e4d30ace7543f8ce84c7fb80da90474812e7b7bdb5ad7a77fbc242369a28cef880f765c023e4a79e4ffaaaddc5f469dde101a2c65e283d2ed487028f8180ebcb9457cf60c9d9b952314668fed6a039c807558149ad5fa7ad12436c69d49c5e194cf617b92785f8cb60ec63297e4bc1f9af232b1a2c79426249ac8f8e92ed8445db3446e0198a4a38c9afa7dd1ee870d2b423e5cab6224bc67ab616afd8b338be7beef42a6edcac8dbc272ab0c78279e4aa6fc1b758db428243375c6cfd66ccf2c9ef8a14394d43b118d89fd4664870b147e72922ccad974fa58dd5ff42c91e3cb6a1d09f1fdbd8e8eeaecedea5ac1ffbc923982ecc6f4c8b1d32fa4c1571e4d9f1ef9a289c4469ffd135371b1aee9fb89659bbe81c61ac0effee07a1bc404345cce09281423100c569ed932eef1c09d969362c709755ab81b95e9b18b79dd4f15ff4aadb2afedf49525119eadac76d63d8a86eb4d57db3fa3932e9ebaaeff2dd2c04bc68efc049a10cb61f48611f25f850cbd6e96942c2eefff9faaf0d308e67036ef6d5118e37c598236d258d0484b2ca3800e4c90653b9c09c5df632002e57d67e7fbe094c89dd1524ef831425f80517a8881049d2e36de448ec699a89556d7601f46284749b90c64bf57e80e88cb0f28c15cb01eee37f1658d81528c0a150f7eaf423179e618891892795a60d20a17bd7a273ed5f0527c673c30fc5ea56930fc8f703a481c425eab7aac04c12fa2d09b08c0c6f4a77e6f5b6a860bf7697b00c55732366139c9db9a6bd4ef5b882da1805ae4b6debef6d72fd96fad9453e56b757eac88dc9ee80cbb736bf0361085da71a6738dcaada3df47a2c2043f0cfa2fb164ac08b0b60f157362d16110955bb026066c0678994776aabdec2caf7e06c5f9f4bd4a57cfbd32cc9390f8f7aa4a79c6061cf6700281d5dff90bbe5de021bd0f3749b7dd1d07ddd77bb9299d55336c7003066ace68e1de8797c0dbb823c6c9ce0b7afe4b9972a359f9315f1d4a7d60bede05345f4fc82cea2ada325e8cdd8be80f17c59a4930c26ae88a782ebd67bf01c3bb829cb7248cc18827e799a92f6dee462a6da2afe332da0a88a52b19e85a36378864e7af4a435846a1ef7640c7fe9af394bd4929e42881beb27d545b7ff010c7eeaf34c979982529f572ba2520c8b328537798025c8a069accb59081fb8ba37f1adb24f058081d3b98bc049e1b1401d795183c9c2abd604f5a46cdcc2e93b4a8a5a3f8cf43d67d1a1ab18fe978989cf208ce72365966e4353646e8d6cacf9b781dd924cf927e1cdb854d59ac502119928d813db6e1ac490bb6315ec497b63f1b1e4db68aae0d359a70a8c28f33d16875db583562858bade866a7f7c8723f2efeaf78ca597ab0a79d5fb05b8cc103f2d43dbee3ef14607cb2b2a5d5d7fe2d3f14942fd2466734e838409ec5192c744ec74a79ea3c3a194c1c6a9f40e171fc8afbf1086d318fb8281dd1a8909eb93081546a80c469de5d49d1a474ee724f9437cffb4e0b72af221ff72a05b484b31e5c1c2723fb63f2fa887ee6dd7c904a71deb706e8d7f267211e0d5d47e5a996fb720b7546625c4b37289f4aa02ff26d361b91c0cebfe18ca13398c2a5e1f7ea3fe58f9fade97253de9078227d742ae3868cae59882625cc010f25ea0dd82bec2c510497f52a34b7e7cc556ff03f6ab97f25a164473ec6172bb8511c1d699885204e592afade2f548c4f31ddf93fb39e9fb7bf3c91c75de0c6e1785072b5b5a86e6e3c852369df807ffa09b77add387d0dcbcfc8e32d40f9d61c95057a69a7e7251afa02234caf4ca5e330396f01b5cf61869b24ae489f417d20c93ea15599803c846a8538e569eae91b6e089b3095fee0367b664d4969e865eec345a3cc742f1851bdc96f3c03e245e51322f2f79da06325ea4f32587f565fc66e3bab6d49338fb11d528afbd228bf1279c6f4ad9b8a364daeedceb90a9f32b2c07504478248f6ae0c295c81817a378758d92a90551d3ea46b72d6a5c4d96a47d3bc4135a664968d36d6d24883b8c5782177919355f811f45600216d2587dbf168a897ffa93e710cb6a511c50f07f45c051d6806a589c7c01b4cbf69d5e5b63a75ad5f431e8b0c2b6c4ede9da0802fa10869b7e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855c4a709f0998693ecd3ab1c4c8435f9185b30fa9b67f2ec0e50e73169352e3c77786603545deb9864320c430639cfa9ff373ce02c752378d03f26897bbc4ebc47cbcecd91ad373d902a525e46ab339be0bb0b6e06c689be55f5e85da1320f2d12cf3ee5a6ba8383bc94fb3d5de8039d0831f74e3aa0c3cd901a268f33ba5e8b167dc98c084953dcc9829232065615f21006e3b967bf8f535552213ae5e00cbf2d47ff1f5b144e22a0719fc04a7b7d3cd0c025f11de41fac85bd220b858920a06f6952568c97e714973fce9d1dd8db83f22f92a31dae1dccb6dce4ae939405e03e03f5682ec97ca681e1349cd981dff99f2c4bbb310b20c3a2c090efea721fc1335152f7d1fc4275d76c9cc94b3a0702c65f9c6bff88aa6eaec8df101e7733707e06fff46169058837aa89f24db1007b8eb2f88ac5517950784b25333ba7259b0f88d698e63a6060bb2c2b3ce04bb15f86567704ce7d8232dbb0d6fb094ca52c359cc43e2085733594596c83bd10a031ab52a09fb624f0df967dd1b761f920d0e48fc122b6ebdbc8e146e68893c0706755d417d66843fea07205ecc1781fd1d613b8b1fd14543b0dddf33ebac566cf341f555b7c4bfd201af38a4b822be5372a1480ff71c689074a7946bfd608010b5f4083b5b0a2bad75d685fca06f9b38236758e1aba02945b4ae1b4c63baade4d1e6a79fc9ee316d052f6d2774c467bf838a6e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855a4ce969f78f1c3a70f57bc0594d296cb2018143006026d2862dc36b7106e74ac4ad37e99a3d5e9dc083e7d4b989fc577d97f62cadbcef97c059cbacd8794aeef7fbc05728c0133ad299cdc08276db55bd5fa016352f6944afd58d55d5e56aa2a497d3ff92811a8840194f6a20cd543d3ea01028b7437d68b3d633b1a3e14f34ef3934930a8fe4c6f161923054f629b0c4b01b2b815e7c51190551dd6ff62b817006000f7b7bdff4ab55474933b1eaa22c875a80e7a1b310a856656bdeb877f7c184ab16ea7e876fd7cdb77118ad7c92b7a8c5936c3588a6fd87c2e541fe4a57999ecb2f3fd2cc78836b1e6ec54ed4fac549cea880bcc453bbe33aebb65636355ac5fba6fb465706d780fcec10ead08696e1b10a611f053ead5b23ffaadaa45754350327c7ccdad6cd54ebc7a79b2fd1e0a501241093c70246d6b932bfd1b0644b8f2f4aa993519c4fb3e442fdef0976d227a06079b2ed11bae3ded70efd940592a9240994135b354e96e0aa0741a43a2c9719bb90e3297332e31332cc1aff4086196f461bc1a59c4f4b252435bbcfe23bb491825733fde2eb475db8ddd83c9a46df93945f95684e8e704a8695382fe58369fcb3a0d232e7e2bef0c33221ab8dfab6f40a014b0a4aae7a3bce186d03a978692528879ddca32914ef39ba146308f5bed9b8bbcee316418e54d629307da04fb9badc6246f1ccfcf321e633dd160f0ca8a841ebd777dcbefcce95b3ec8f3b8bc764ef8a5b4fda1e24d4cde0a88ea58d6d47516c81aa514365db880bd5e229389b090a2c9035cba0017b3b52798af69c34a6de1ebc9d39996181638f0a4da4e9ad85d7379b30cbd0bf596732d59fd9904fe60221f36e30a9c6417a7934d083fcbe942ee4143284ab7d7ae6d03ea71c72fd76fe093686e8ca300e77ae57d18b75730d0ea684c3db2f05a4cae1f0ff9d1e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b8551519053e90e981413310081284e4425613cebaa725c417ed1f2116e73da8578acb495d70c20a09e4ffb51a3fb8e37a0afc6e7dff8ce0cc66aa7cc0d240c51d85e2eb2550439dc3f00267d47e54a5f69bcd8794378d16b06cfb33fcbae5a3e6025d8b00702d36620be57ea01038b63684eba081e465461933b4db0b61619be1048ccf9c154fe4b5a9e8c89d1271162fe71c28861137a4aa5584106d777d5bf88460fab97f5d4c50057a59c2d06e5f31296726d7b94c8fd489d3d99a9aa182a710a2ed533f96c53698d168bdbecd0c734b5d42870bc0902569de4ef5481b4e3bd36e8060b1bcf646be3da414f218d4f74e72d14cf49abb28c135e09519e93ba143e753a9b72706482dd9f3d99bf054250f8d37d86b888bce3bda258d5ff4098699184af8c83e8e9cfb4da3df0c7f4a79afcbedfe71264dea93446de99630000db4e1e284dad822d6591e706e99cce07fda28fe32864810e4b2d93633d7dbdfdabaefd85c7dda941e002d0687cde196474e438937361e275d8ab028199b8ce783a25cc387a76b849886765ae00df79e1ebcd187f4e2ea713bb7d951809675c79db2d781484d818c0d0cd92ec008bba4f021e4bf121e0eddd4e2cd71d19952dd7402dc80714a9cfcd2e44c5b74b501ed05bd22d6ef19843a1a7c1a26c0a6b04e1d4436e5e6f25ad1e6cf32962fdb51abaf814b17d29d3233e130b6f363eacace6ed5dfc78397badfda93fd6b721a72a1a2e1a2120ff68892589cf29a5ba6c56659eaa3766f8148bd8afa561aa3c893a84200672cf0ff669630313f9e285e941f62231981b4594a654603bb14fe28dc58d6daad56e4f66ef561019c9b8514e543847a52f84e9dee92caf04a8f90c8606c9f0fd6eefd170ca800d8e5ecdb56484147cbd207c13e34d7ae234458723cfdcbd33dbe4c769b9df19e34daa32669b5e7a0a1f572bf271993bf82230a0b49d3775de8048d0c87bc1f472b10e6bb31bb2d513237686743546b7591671e98507ca133d9ff27293d225c484c76d471b73c813f81daa034dce1673225d08fa685d2f21458dd81f7d0f8c9df9d10c48c3980ce2dfde0a97893926fba9cdce59da985cbe8abbae96e284ed273f54eab4916e77d74543ca21457a261effd2305ba0fa772073e6a7a2d656ce2d6c891dbbf16d988ff95fa10256f0b4c6d37906d53640186aca8f5e172990e231d7df09939a1aef09b60e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b8559ed5dcc084837209a51867cc870616896763aad4d55547c57501e6f8cb31e727174ee7da2574fd73cad890bff1e81d9cee850c44e9b6d47b816e9efbccc3b44b39035c6463a0d45a2a5555eba2e1ea6a71b6776cc250451d86eb5157d59a20eb5b56a41f9f204e2f55ad78761a2c897cf869789cdfe7b5e700554880cdf7869e7f236c44199d1e7d52774b906a85de2fbd2425bea740231e604e57eeeb71912d369df1b4030de73962a0ce4716cc8b478b5d0095b489bbdf25bcfd40758c90eac5badda1f03e5c2c1986cc8f2f9b4c283119e5c5b3c4da7a3f3e1257fe2728451b3473de57b2a5dd94ad613e130b8858bd256db8fa92ce8c8e58b7b68cc337d5ffb3bed39ab72448ddc66bb305d5b196281055d0baa86ca02a66e17e2616f4a446f2870ba1a93c211c65d18b6220c6dd11f9bc46c97ce90be1f3348a07c10000470f0f873f410ef2eb5116ca2211ff64061522d25d04a98229d9387a5bc5bfc03b33cb56ffda03b9312eef56746891a8edbfc80db5eb73d6422dcbc30ae1b3713b7017640abdecccfdfe2ee2ea66e07619b2622517f7ba79027804664496ea90a9dd06bb3d5ffc07c1fd5aaa672c3f8c08915b84c7480d74175288c3929ff72c666fab6737bcafa196293fa8f6d62ad835729b400c876b4dc04fecea6d59f81752512c17175bb3ba29c3ed8f0e5918c0378f704f433523e552a540628d89f4b5e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b85564539d028506259e87312400debad8ea6d7fd29fd21514f7c09a5aa30fb7891f11bd30104e5c6c69252307124cd90f23a0a96b0b2920226cc77958b530f197b049e5d4740030cd53b1adf1784f9dacdcfee08ea4426ccc317d97b77e3e1e8129853939f3441b0a03433d258ad3bfcd720c30bd3b9fe076e63cc752e8f0a3546330744ae5e8a6c2b0bd444ef6dc794e70e406c6ee4702643eab095c557d6c6759644d05e1e5bd54b4f8469a4c6ef165d8f6eae4faa477cb7b7d22a722f4fbec05e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855654be4419cbfb3c8084b3393bf473f893ecfba8da3d03ff3ef045c50a2275d26252201b101f8b75add31caf5f827f68c127a097cc81841726685b1509b9723b32d87cea1efd83c6f9d1e2e3561312747aeb239be55910660d7fef1f8748741aa9d8b55d7a29ca2a01c1ecc1f60efaee9b448ac306f0afa6a8c235f97bce4f92008b90017ca5ac0b95f9460760f4ed47ce95811d3f28638864a5672df64d86df34b59c4b4306f353f3b66bb7c5e6b92548056a5a9c9c23b43d5889195c7fb7a80f15dd13150a46ce229b3472d201f9568476d7c3808c503754e356e2a8ee98bf84bf72a05e81dee477056ad6483f0c09f2c3014f4ff8356e30c9ebe2ccab42cee370547233f244a1193a4217e3f8f4afebb1ea27e966bc34a90f294156368659d7989fbab04030e609cf6a56fb331792da8b7f35100eef1a7e6d05c82bc43b27f8a0fa44c3662bdc780b748a1076a002c1e988fab146e6bde147cb934f6aacd4804492d9f43ee5659a0510ff3195357bb4c10621dd6d3f6eeeb52e740faf1636d21da6c35474158c8ebd4d655f9ceda0646cb9eb94c949529a032d29144ab0e2589998628f1c019022c86c10e341fa82edee01cfcf1d81839ee86adfcce0ce5719a196f9482d78526de033d795713bc31ea23ae157b12d0bc7be0301b9492c48b6acdc4d24852913b1e091a72bed3924aae1f258d4ad65aeb03221c5ce12b4cca3a080a0ccfa79dd2771f089251329c624bc6fe861b0b8bf02b686bf17296d45306b14ace8dcf79a8b97a471da6f5f70a541268feffca7f74d1a006d9fbf156fcc45d0f6ab251b9b9291557058cd700f5a70fb46f13d44ee579a218fa17c7ee91c3048ea8c5d70020a8e4af791fdbbbe3a6c5036540373dd8ffeced2a4d07a4b62cfcf96c48ce88a57600ed50693bad37123ffd3a00850fdb9a7f4ca1063f54b5e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b8559a43023d23c976b2b1425f77bb4425204769e494b4b42ce02c75eea180c3bf3bb0a057c2e459c0c15289e9b747d7a0073cd2501f35924a70f72f98d3b8aa53631155a88bec0feedc888b382e897821a8c9379a3be423905463cc45081eadc6dbdd9db01c47367fed2566b743b9e01d6def7a290c350ea33f685a2c79af5546d67cb8dfa94b9dcbc5e6591b132ca96b4992b930e593d9fc4745a315aecffde2c8e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855172fdd05df3446b06e7f2797212901bba912dd7ef4d2a383e686f4a438d1b2c858a20b78439edcd74a3ff5c0cbeb82b385448bbaff82143b354848807d4bce8356d4d36403e7b09f31b4a2f2d6a62a230ae97234eda89f713fda8fe7ea7c0db50a68a4c1e8274565eb30eeefbec67867c3bc6f00ec7eeab9b5f3963bed1c72cfeec0e83c692fbd96acec5853e2839446def903924072bfd6b36ba827d71532264b19503dbf04b6d7cfe15e62189c97301b435934b711c61504df895834ed4b2ec9ee130469ceb8f019caee5b4b9243c5857984b82551041f292acc5b063fa612a3eaf926c9463204a71daeae2ae4efda8d2c70dc1f13ce31f7068367888c6eed893faf41eedaac61eedebcf9d0fe7b1e98a3679502ef037456ee85be9f66197b588f9f1bbf03f1b2956334be22a8f94c09b3b98afad40c51eca04a5deae1b485rootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootpython2-numpy-1.16.5-150200.3.5.1.src.rpmpython-numpypython2-numpypython2-numpy(s390-64)@@@@@@@@@@@@@@@@@@@     /usr/bin/python2ld64.so.1()(64bit)ld64.so.1(GLIBC_2.3)(64bit)libblas.so.3()(64bit)libc.so.6()(64bit)libc.so.6(GLIBC_2.10)(64bit)libc.so.6(GLIBC_2.11)(64bit)libc.so.6(GLIBC_2.2)(64bit)libc.so.6(GLIBC_2.3)(64bit)libc.so.6(GLIBC_2.3.4)(64bit)libc.so.6(GLIBC_2.4)(64bit)liblapack.so.3()(64bit)libm.so.6()(64bit)libm.so.6(GLIBC_2.2)(64bit)libm.so.6(GLIBC_2.4)(64bit)libpthread.so.0()(64bit)libpthread.so.0(GLIBC_2.2)(64bit)libpython2.7.so.1.0()(64bit)python(abi)rpmlib(CompressedFileNames)rpmlib(FileDigests)rpmlib(PartialHardlinkSets)rpmlib(PayloadFilesHavePrefix)rpmlib(PayloadIsXz)2.73.0.4-14.6.0-14.0.4-14.0-15.2-14.14.1b4t@a]rJ@]fl]>]:@\\"\P\\\@\y\mA@\mA@\k\Yz\'@[[[!@Z4@Zb@Z@Z}@ZyZaZV@ZOhZ @Z7Y@YY{Yχ@Y@Y\Y6@X-XXXX~@X43@W֘WίWWW@VVV@VV@TPT[bmcepl@suse.commcepl@suse.comnormand@linux.vnet.ibm.comtoddrme2178@gmail.comtoddrme2178@gmail.comtoddrme2178@gmail.commliska@suse.cztoddrme2178@gmail.comadrian@suse.decomurphy@suse.comtbechtold@suse.commcepl@suse.commcepl@suse.comtchvatal@suse.comtchvatal@suse.comtchvatal@suse.comtoddrme2178@gmail.comtoddrme2178@gmail.comtoddrme2178@gmail.comtoddrme2178@gmail.comtoddrme2178@gmail.comtoddrme2178@gmail.comtoddrme2178@gmail.comschwab@suse.decgoll@suse.comeich@suse.comro@suse.deadrian@suse.deeich@suse.comeich@suse.comeich@suse.comeich@suse.comeich@suse.comeich@suse.comarun@gmx.dehsk17@mail.deschwab@suse.demanfred99@gmx.chtoddrme2178@gmail.comtoddrme2178@gmail.comtoddrme2178@gmail.comtoddrme2178@gmail.comtoddrme2178@gmail.comtoddrme2178@gmail.comdmueller@suse.comjweberhofer@weberhofer.atdmueller@suse.comtoddrme2178@gmail.comstecue@gmail.comtoddrme2178@gmail.comtoddrme2178@gmail.comtoddrme2178@gmail.comtoddrme2178@gmail.comtoddrme2178@gmail.comtoddrme2178@gmail.com- Add CVE-2021-41495-retval-PyArray_DescrNew.patch fixing CVE-2021-41495 (bsc#1193911): "Null Pointer Dereference vulnerability exists in numpy.sort in NumPy > and 1.19 in the PyArray_DescrNew function due to missing return-value validation, which allows attackers to conduct DoS attacks by repetitively creating sort arrays." by reviewing return values for PyArray_DescrNew.- bsc#1193913 CVE-2021-33430 fix potential buffer overflow by adding CVE-2021-33430-bufovrflw-ctors-DoS.patch - bsc#1193907 CVE-2021-41496 rewrite creation of the exception message for Fortran files CVE-2021-41496-bufovrflw-fortranobject-DoS.patch- as bypass boo#1148173 ignore %check error for ppc64/ppc64le- Update to 1.16.5 * ENH: Add project URLs to setup.py * TEST, ENH: fix tests and ctypes code for PyPy * BUG: use npy_intp instead of int for indexing array * TST: Ignore DeprecationWarning during nose imports * BUG: Fix use-after-free in boolean indexing * MAINT/BUG/DOC: Fix errors in _add_newdocs * BUG: fix byte order reversal for datetime64[ns] * MAINT,BUG: Use nbytes to also catch empty descr during allocation * BUG: np.array cleared errors occured in PyMemoryView_FromObject * BUG: Fixes for Undefined Behavior Sanitizer (UBSan) errors. * BUG: ensure that casting to/from structured is properly checked. * MAINT: fix histogram*d dispatchers * BUG: further fixup to histogram2d dispatcher. * BUG: Replace contextlib.suppress for Python 2.7 * BUG: fix compilation of 3rd party modules with Py_LIMITED_API... * BUG: Fix memory leak in dtype from dict contructor * DOC: Document array_function at a higher level. * BUG, DOC: add new recfunctions to `__all__` * BUG: Remove stray print that causes a SystemError on python 3.7 * TST: Pin pytest version to 5.0.1. * ENH: Enable huge pages in all Linux builds * BUG: fix behavior of structured_to_unstructured on non-trivial... * REL: Prepare for the NumPy 1.16.5 release.- Make sure to provide oldpython names- Add python2-only version since the latest release doesn't support python2. - Remove python3-only patch fix-py34-tests.patch- Disable LTO in order to address boo#1136831.- update to version 1.16.3 * The NumPy 1.16.4 release fixes bugs reported against the 1.16.3 release, and also backports several enhancements from master that seem appropriate for a release series that is the last to support Python 2.7. + New deprecations * Writeable flag of C-API wrapped arrays + Compatibility notes * Potential changes to the random stream- update to version 1.16.3 NumPy 1.16.3 Release Notes: The NumPy 1.16.3 release fixes bugs reported against the 1.16.2 release, and also backports several enhancements from master that seem appropriate for a release series that is the last to support Python 2.7. The wheels on PyPI are linked with OpenBLAS v0.3.4+, which should fix the known threading issues found in previous OpenBLAS versions. Downstream developers building this release should use Cython >= 0.29.2 and, if using OpenBLAS, OpenBLAS > v0.3.4. The most noticeable change in this release is that unpickling object arrays when loading *.npy or *.npz files now requires an explicit opt-in. This backwards incompatible change was made in response to CVE-2019-6446 _. Compatibility notes Unpickling while loading requires explicit opt-in The functions np.load, and np.lib.format.read_array take an allow_pickle keyword which now defaults to False in response to CVE-2019-6446 _. Improvements Covariance in random.mvnormal cast to double This should make the tolerance used when checking the singular values of the covariance matrix more meaningful. Changes __array_interface__ offset now works as documented The interface may use an offset value that was previously mistakenly ignored.- Fix python sitearch paths for SLE_12_SP3/4- add fix-py34-tests.patch to fix build with python3.4 from SLE12SP4- Update to 1.16.2: - Primarily focused on fixing on Windows-related bugs - regression fix correcting signed zeros produced by divmod- Use direct number in Version: tag.- Do not bother with standard flavor, just make it default - Execute the tests only on standard package for now not hpc variants- Add constraints for testsuite to not run out of mem/disk space - Use %license macro- Enable testsuite- Update to version 1.16.1 Changes documented in release notes: https://github.com/numpy/numpy/blob/master/doc/release/1.16.1-notes.rst - Update to version 1.16.0 Changes documented in release notes: https://github.com/numpy/numpy/blob/master/doc/release/1.16.0-notes.rst- Update to version 1.15.4 Changes documented in release notes: https://github.com/numpy/numpy/blob/master/doc/release/1.15.4-notes.rst- Update to version 1.15.3 Changes documented in release notes: https://github.com/numpy/numpy/blob/master/doc/release/1.15.2-notes.rst- Update to version 1.15.2 Changes documented in release notes: https://github.com/numpy/numpy/blob/master/doc/release/1.15.2-notes.rst - Update to version 1.15.1 Changes documented in release notes: https://github.com/numpy/numpy/blob/master/doc/release/1.15.1-notes.rst - Update to version 1.15.0 Changes documented in release notes: https://github.com/numpy/numpy/blob/master/doc/release/1.15.0-notes.rst - Update to version 1.14.6 Changes documented in release notes: https://github.com/numpy/numpy/blob/master/doc/release/1.14.6-notes.rst - Rebase numpy-1.9.0-remove-__declspec.patch - Rebase riscv.patch- update to version 1.14.5 Changes documented in release notes: https://github.com/numpy/numpy/blob/master/doc/release/1.14.5-notes.rst - update to version 1.14.4 Changes documented in release notes: https://github.com/numpy/numpy/blob/master/doc/release/1.14.4-notes.rst- Fix issues with some targets not having certain versions of openblas- update to version 1.14.3 Changes documented in release notes: https://github.com/numpy/numpy/blob/master/doc/release/1.14.3-notes.rst - update to version 1.14.2 Changes documented in release notes: https://github.com/numpy/numpy/blob/master/doc/release/1.14.2-notes.rst - update to version 1.14.1 Changes documented in release notes: https://github.com/numpy/numpy/blob/master/doc/release/1.14.1-notes.rst- riscv.patch: Add support for RISC-V - Don't use openblas on m68k and riscv64 - Avoid misparsing of indented conditionals- Fix summary in module files (bnc#1080259)- The HPC of python-numpy expects openBLAS. OpenBLAS is not availble for sc390: disable buidling on s390 for HPC (bsc#1079513).- add s390 to the ifarch conditional to build without openblas- update to version 1.14.0 Changes documented in release notes: https://github.com/numpy/numpy/blob/master/doc/release/1.14.0-notes.rst- Switch from gcc6 to gcc7 as additional compiler flavor for HPC on SLES. - Fix library package requires - use HPC macro (boo#1074890).- Add 'family "NumPy"' to modules file to avoid that different versions of this get loaded.- Add Requires for libopenblas to base package. - Add Requires for lua-lmod - Fix '-' in environment variable mane of modulefile.- Fix Requires: of devel package for openblas.- Add magic to limit the number of flavors built in the OBS ring to non-HPC builds.- Convert to multibuild: Add support for HPC environment modules (FATE#321709).- updated line numbers in patches - update to version 1.13.3: * #9390 BUG: Return the poly1d coefficients array directly * #9555 BUG: Fix regression in 1.13.x in distutils.mingw32ccompiler. * #9556 BUG: Fix true_divide when dtype=np.float64 specified. * #9557 DOC: Fix some rst markup in numpy/doc/basics.py. * #9558 BLD: Remove -xhost flag from IntelFCompiler. * #9559 DOC: Removes broken docstring example (source code, png, pdf)... * #9580 BUG: Add hypot and cabs functions to WIN32 blacklist. * #9732 BUG: Make scalar function elision check if temp is writeable. * #9736 BUG: Various fixes to np.gradient * #9742 BUG: Fix np.pad for CVE-2017-12852 (bsc#1053963) * #9744 BUG: Check for exception in sort functions, add tests * #9745 DOC: Add whitespace after "versionadded::" directive so it actually... * #9746 BUG: Memory leak in np.dot of size 0 * #9747 BUG: Adjust gfortran version search regex * #9757 BUG: Cython 0.27 breaks NumPy on Python 3. * #9764 BUG: Ensure _npy_scaled_cexp{,f,l} is defined when needed. * #9765 BUG: PyArray_CountNonzero does not check for exceptions * #9766 BUG: Fixes histogram monotonicity check for unsigned bin values * #9767 BUG: Ensure consistent result dtype of count_nonzero * #9771 BUG: MAINT: Fix mtrand for Cython 0.27. * #9772 DOC: Create the 1.13.2 release notes. * #9794 DOC: Create 1.13.3 release notes. - changes from version 1.13.2: * #9390 BUG: Return the poly1d coefficients array directly * #9555 BUG: Fix regression in 1.13.x in distutils.mingw32ccompiler. * #9556 BUG: Fix true_divide when dtype=np.float64 specified. * #9557 DOC: Fix some rst markup in numpy/doc/basics.py. * #9558 BLD: Remove -xhost flag from IntelFCompiler. * #9559 DOC: Removes broken docstring example (source code, png, pdf)... * #9580 BUG: Add hypot and cabs functions to WIN32 blacklist. * #9732 BUG: Make scalar function elision check if temp is writeable. * #9736 BUG: Various fixes to np.gradient * #9742 BUG: Fix np.pad for CVE-2017-12852 (bsc#1053963) * #9744 BUG: Check for exception in sort functions, add tests * #9745 DOC: Add whitespace after "versionadded::" directive so it actually... * #9746 BUG: Memory leak in np.dot of size 0 * #9747 BUG: Adjust gfortran version search regex * #9757 BUG: Cython 0.27 breaks NumPy on Python 3. * #9764 BUG: Ensure _npy_scaled_cexp{,f,l} is defined when needed. * #9765 BUG: PyArray_CountNonzero does not check for exceptions * #9766 BUG: Fixes histogram monotonicity check for unsigned bin values * #9767 BUG: Ensure consistent result dtype of count_nonzero * #9771 BUG, MAINT: Fix mtrand for Cython 0.27.- Update to version 1.13.1 * bugfix release for problems found in 1.13.0; major changes: + fixes for the new memory overlap detection and temporary elision + reversion of the removal of the boolean binary - operator * 1.13.0 Highlights: + Operations like a + b + c will reuse temporaries on some platforms + Inplace operations check if inputs overlap outputs and create temporaries + New __array_ufunc__ attribute provides improved ability for classes to override default ufunc behavior. + New np.block function for creating blocked arrays. * 1.13.0 New functions: + New np.positive ufunc. + New np.divmod ufunc provides more efficient divmod. + New np.isnat ufunc tests for NaT special values. + New np.heaviside ufunc computes the Heaviside function. + New np.isin function, improves on in1d. + New np.block function for creating blocked arrays. + New PyArray_MapIterArrayCopyIfOverlap added to NumPy C-API. * deprecations, compatibility notes, etc see full changelog at https://github.com/numpy/numpy/blob/master/doc/changelog/1.13.0-changelog.rst - dropped xlocale.patch (now upstream) - do not apply 'sed 1d' command to exec_command.py- Add xlocale.patch: xlocale.h: don't use obsolete - allow building numpy on fedora by making fdupes dependency optional- Update to version 1.12.1 * Fix wrong future nat warning and equiv type logic error... * Fix wrong masked median for some special cases * Place np.average in inline code * Work around isfinite inconsistency on i386 * Guard against replacing constants without '_' spec in f2py. * Fix mean for float 16 non-array inputs for 1.12 * Fix calling python api with error set and minor leaks for... * Make iscomplexobj compatible with custom dtypes again * Fix undefined behaviour induced by bad __array_wrap__ * Fix MaskedArray.__setitem__ * PPC64el machines are POWER for Fortran in f2py * Look up methods on MaskedArray in `_frommethod` * Remove extra digit in binary_repr at limit * Fix deepcopy regression for empty arrays. * Fix ma.median for empty ndarrays - Further updates to macro usage.- Fix macro usage.- Fix -devel package dependency- Switch to single-spec version- update to version 1.12.0: * Highlights + Order of operations in np.einsum can now be optimized for large speed improvements. + New signature argument to np.vectorize for vectorizing with core dimensions. + The keepdims argument was added to many functions. + New context manager for testing warnings + Support for BLIS in numpy.distutils + Much improved support for PyPy (not yet finished) * full changelog at: https://github.com/numpy/numpy/blob/master/doc/release/1.12.0-notes.rst - changes from version 1.11.3: * #8341: BUG: Fix ndarray.tofile large file corruption in append mode. * #8346: TST: Fix tests in PR #8341 for NumPy 1.11.x - update to version 1.11.2: * #7736 BUG: Many functions silently drop 'keepdims' kwarg. * #7738 ENH: Add extra kwargs and update doc of many MA methods. * #7778 DOC: Update Numpy 1.11.1 release notes. * #7793 BUG: MaskedArray.count treats negative axes incorrectly. * #7816 BUG: Fix array too big error for wide dtypes. * #7821 BUG: Make sure npy_mul_with_overflow_ detects overflow. * #7824 MAINT: Allocate fewer bytes for empty arrays. * #7847 MAINT,DOC: Fix some imp module uses and update f2py.compile docstring. * #7849 MAINT: Fix remaining uses of deprecated Python imp module. * #7851 BLD: Fix ATLAS version detection. * #7896 BUG: Construct ma.array from np.array which contains padding. * #7904 BUG: Fix float16 type not being called due to wrong ordering. * #7917 BUG: Production install of numpy should not require nose. * #7919 BLD: Fixed MKL detection for recent versions of this library. * #7920 BUG: Fix for issue #7835 (ma.median of 1d). * #7932 BUG: Monkey-patch _msvccompile.gen_lib_option like other compilers. * #7939 BUG: Check for HAVE_LDOUBLE_DOUBLE_DOUBLE_LE in npy_math_complex. * #7953 BUG: Guard against buggy comparisons in generic quicksort. * #7954 BUG: Use keyword arguments to initialize Extension base class. * #7955 BUG: Make sure numpy globals keep identity after reload. * #7972 BUG: MSVCCompiler grows 'lib' & 'include' env strings exponentially. * #8005 BLD: Remove __NUMPY_SETUP__ from builtins at end of setup.py. * #8010 MAINT: Remove leftover imp module imports. * #8020 BUG: Fix return of np.ma.count if keepdims is True and axis is None. * #8024 BUG: Fix numpy.ma.median. * #8031 BUG: Fix np.ma.median with only one non-masked value. * #8044 BUG: Fix bug in NpyIter buffering with discontinuous arrays. - update copyright year - changed from tar.gz to zip on pypi - Remove long-unused atlas support. - Use preferrered pypi.io download url. - Add openBLAS support. This can improve performance in many situations. - Remove numpy-1.10.4-cblas.patch since openblas handles this.- Fix cblas handling for SLES 12.- use pypi.io as Source URL- Don't include cblas-devel on SLES 12- update to 1.11.1: - #7506 BUG: Make sure numpy imports on python 2.6 when nose is unavailable. - #7530 BUG: Floating exception with invalid axis in np.lexsort. - #7535 BUG: Extend glibc complex trig functions blacklist to glibc < 2.18. - #7551 BUG: Allow graceful recovery for no compiler. - #7558 BUG: Constant padding expected wrong type in constant_values. - #7578 BUG: Fix OverflowError in Python 3.x. in swig interface. - #7590 BLD: Fix configparser.InterpolationSyntaxError. - #7597 BUG: Make np.ma.take work on scalars. - #7608 BUG: linalg.norm(): Don't convert object arrays to float. - #7638 BLD: Correct C compiler customization in system_info.py. - #7654 BUG: ma.median of 1d array should return a scalar. - #7656 BLD: Remove hardcoded Intel compiler flag -xSSE4.2. - #7660 BUG: Temporary fix for str(mvoid) for object field types. - #7665 BUG: Fix incorrect printing of 1D masked arrays. - #7670 BUG: Correct initial index estimate in histogram. - #7671 BUG: Boolean assignment no GIL release when transfer needs API. - #7676 BUG: Fix handling of right edge of final histogram bin. - #7680 BUG: Fix np.clip bug NaN handling for Visual Studio 2015. - #7724 BUG: Fix segfaults in np.random.shuffle. - #7731 MAINT: Change mkl_info.dir_env_var from MKL to MKLROOT.specfile: * require setuptools - update to version 1.11.0: * Highlights + The datetime64 type is now timezone naive. + A dtype parameter has been added to randint. + Improved detection of two arrays possibly sharing memory. + Automatic bin size estimation for np.histogram. + Speed optimization of A @ A.T and dot(A, A.T). + New function np.moveaxis for reordering array axes. * full changelog at https://github.com/numpy/numpy/blob/master/doc/release/1.11.0-notes.rst- Add numpy-1.10.4-cblas.patch to build against system cblas. Numpy assumes either libblas.so or libcblas.so to contain all CBLAS and BLAS functions. However the cblas-devel in Leap and Tumbleweed contains only the CBLAS interface and libblas.so is also needed.- update to version 1.10.4: * see https://github.com/numpy/numpy/blob/master/doc/release/1.10.4-notes.rst * There is no 1.10.3 due to packaging issues. - update to version 1.10.2: * see https://github.com/numpy/numpy/blob/master/doc/release/1.10.2-notes.rst- Update to 1.10.1 + Bugfix for build problems * Compiling with msvc9 or msvc10 for 32 bit Windows now requires SSE2. This was the easiest fix for what looked to be some miscompiled code when SSE2 was not used. If you need to compile for 32 bit Windows systems without SSE2 support, mingw32 should still work. * Make compiling with VS2008 python2.7 SDK easier * Change Intel compiler options so that code will also be generated to support systems without SSE4.2. * Some _config test functions needed an explicit integer return in order to avoid the openSUSE rpmlinter erring out. * We ran into a problem with pipy not allowing reuse of filenames and a resulting proliferation of *.*.*.postN releases. Not only were the names getting out of hand, some packages were unable to work with the postN suffix. - Remove upstream-included numpy-1.10.0-remove_Wreturn_type_warnings.patch- Update to version 1.10.0 + Highlights * numpy.distutils now supports parallel compilation via the --parallel/-j argument passed to setup.py build * numpy.distutils now supports additional customization via site.cfg to control compilation parameters, i.e. runtime libraries, extra linking/compilation flags. * Addition of *np.linalg.multi_dot*: compute the dot product of two or more arrays in a single function call, while automatically selecting the fastest evaluation order. * The new function `np.stack` provides a general interface for joining a sequence of arrays along a new axis, complementing `np.concatenate` for joining along an existing axis. * Addition of `nanprod` to the set of nanfunctions. * Support for the '@' operator in Python 3.5. + Dropped Support: * The _dotblas module has been removed. CBLAS Support is now in Multiarray. * The testcalcs.py file has been removed. * The polytemplate.py file has been removed. * npy_PyFile_Dup and npy_PyFile_DupClose have been removed from npy_3kcompat.h. * splitcmdline has been removed from numpy/distutils/exec_command.py. * try_run and get_output have been removed from numpy/distutils/command/config.py * The a._format attribute is no longer supported for array printing. * Keywords ``skiprows`` and ``missing`` removed from np.genfromtxt. * Keyword ``old_behavior`` removed from np.correlate. + Future Changes: * In array comparisons like ``arr1 == arr2``, many corner cases involving strings or structured dtypes that used to return scalars now issue ``FutureWarning`` or ``DeprecationWarning``, and in the future will be change to either perform elementwise comparisons or raise an error. * The SafeEval class will be removed. * The alterdot and restoredot functions will be removed. - Rebase numpy-1.9.0-remove-__declspec.patch - Add numpy-1.10.0-remove_Wreturn_type_warnings.patch This patch is already merged upstream and should be present in numpy-1.10.1- update to version 1.9.3: * #5866: fix error finding Python headers when build_ext --include-dirs is set; * #6016: fix np.loadtxt error on Python 3.5 when reading from gzip files; * #5555: Replace deprecated options for ifort; * #6096: remove /GL for VS2015 in check_long_double_representation; * #6141: enable Visual Studio 2015 C99 features; * #6171: revert C99 complex for MSVC14.- Update to 1.9.2: Bugfix release * #5316: fix too large dtype alignment of strings and complex types * #5424: fix ma.median when used on ndarrays * #5481: Fix astype for structured array fields of different byte order * #5354: fix segfault when clipping complex arrays * #5524: allow np.argpartition on non ndarrays * #5612: Fixes ndarray.fill to accept full range of uint64 * #5155: Fix loadtxt with comments=None and a string None data * #4476: Masked array view fails if structured dtype has datetime component * #5388: Make RandomState.set_state and RandomState.get_state threadsafe * #5390: make seed, randint and shuffle threadsafe * #5374: Fixed incorrect assert_array_almost_equal_nulp documentation * #5393: Add support for ATLAS > 3.9.33. * #5313: PyArray_AsCArray caused segfault for 3d arrays * #5492: handle out of memory in rfftf * #4181: fix a few bugs in the random.pareto docstring * #5359: minor changes to linspace docstring * #4723: fix a compile issues on AIX- Update to 1.9.1: Bugfix release * gh-5184: restore linear edge behaviour of gradient to as it was in < 1.9. The second order behaviour is available via the `edge_order` keyword * gh-4007: workaround Accelerate sgemv crash on OSX 10.9 * gh-5100: restore object dtype inference from iterable objects without `len()` * gh-5163: avoid gcc-4.1.2 (red hat 5) miscompilation causing a crash * gh-5138: fix nanmedian on arrays containing inf * gh-5203: copy inherited masks in MaskedArray.__array_finalize__ * gh-2317: genfromtxt did not handle filling_values=0 correctly * gh-5067: restore api of npy_PyFile_DupClose in python2 * gh-5063: cannot convert invalid sequence index to tuple * gh-5082: Segmentation fault with argmin() on unicode arrays * gh-5095: don't propagate subtypes from np.where * gh-5104: np.inner segfaults with SciPy's sparse matrices * gh-5136: Import dummy_threading if importing threading fails * gh-5148: Make numpy import when run with Python flag '-OO' * gh-5147: Einsum double contraction in particular order causes ValueError * gh-479: Make f2py work with intent(in out) * gh-5170: Make python2 .npy files readable in python3 * gh-5027: Use 'll' as the default length specifier for long long * gh-4896: fix build error with MSVC 2013 caused by C99 complex support * gh-4465: Make PyArray_PutTo respect writeable flag * gh-5225: fix crash when using arange on datetime without dtype set * gh-5231: fix build in c99 modepython-numpys390zp31 1647959708  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOP_~       !"#$%&'()*+,-./0123456789:;<?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~1.16.51.16.5-150200.3.5.11.16.5-150200.3.5.11.16.5       !!""""""!!!!!!!!!!!!!!!!!!!!!!!! ###########$$$$$%%%%%%%%%%%%%&&&&&&&&%%%%%%'''''''(((((((()))))))))))))))))))))**********++++++++,,,---............-----------////--0000000012f2py2f2py2.7numpynumpy-1.16.5-py2.7.egg-infoPKG-INFOSOURCES.txtdependency_links.txtentry_points.txtnot-zip-safetop_level.txtLICENSE.txt__config__.py__config__.pyc__init__.py__init__.pyc_distributor_init.py_distributor_init.pyc_globals.py_globals.pyc_pytesttester.py_pytesttester.pyccompat__init__.py__init__.pyc_inspect.py_inspect.pycpy3k.pypy3k.pycsetup.pysetup.pyctests__init__.pytest_compat.pyconftest.pyconftest.pyccore__init__.py__init__.pyc_add_newdocs.py_add_newdocs.pyc_aliased_types.py_aliased_types.pyc_dtype.py_dtype.pyc_dtype_ctypes.py_dtype_ctypes.pyc_dummy.so_internal.py_internal.pyc_methods.py_methods.pyc_multiarray_tests.so_multiarray_umath.so_operand_flag_tests.so_rational_tests.so_string_helpers.py_string_helpers.pyc_struct_ufunc_tests.so_type_aliases.py_type_aliases.pyc_umath_tests.soarrayprint.pyarrayprint.pyccversions.pycversions.pycdefchararray.pydefchararray.pyceinsumfunc.pyeinsumfunc.pycfromnumeric.pyfromnumeric.pycfunction_base.pyfunction_base.pycgenerate_numpy_api.pygenerate_numpy_api.pycgetlimits.pygetlimits.pycincludenumpymultiarray_api.txtufunc_api.txtinfo.pyinfo.pyclibnpy-pkg-configmlib.ininpymath.inimachar.pymachar.pycmemmap.pymemmap.pycmultiarray.pymultiarray.pycnumeric.pynumeric.pycnumerictypes.pynumerictypes.pycoverrides.pyoverrides.pycrecords.pyrecords.pycsetup.pysetup.pycsetup_common.pysetup_common.pycshape_base.pyshape_base.pyctests__init__.py_locales.pydataastype_copy.pklrecarray_from_file.fitstest_abc.pytest_api.pytest_arrayprint.pytest_datetime.pytest_defchararray.pytest_deprecations.pytest_dtype.pytest_einsum.pytest_errstate.pytest_extint128.pytest_function_base.pytest_getlimits.pytest_half.pytest_indexerrors.pytest_indexing.pytest_item_selection.pytest_longdouble.pytest_machar.pytest_mem_overlap.pytest_memmap.pytest_multiarray.pytest_nditer.pytest_numeric.pytest_numerictypes.pytest_overrides.pytest_print.pytest_records.pytest_regression.pytest_scalar_ctors.pytest_scalarbuffer.pytest_scalarinherit.pytest_scalarmath.pytest_scalarprint.pytest_shape_base.pytest_ufunc.pytest_umath.pytest_umath_complex.pytest_unicode.pyumath.pyumath.pycumath_tests.pyumath_tests.pycctypeslib.pyctypeslib.pycdistutils__config__.py__config__.pyc__init__.py__init__.pyc__version__.py__version__.pyc_shell_utils.py_shell_utils.pycccompiler.pyccompiler.pyccommand__init__.py__init__.pycautodist.pyautodist.pycbdist_rpm.pybdist_rpm.pycbuild.pybuild.pycbuild_clib.pybuild_clib.pycbuild_ext.pybuild_ext.pycbuild_py.pybuild_py.pycbuild_scripts.pybuild_scripts.pycbuild_src.pybuild_src.pycconfig.pyconfig.pycconfig_compiler.pyconfig_compiler.pycdevelop.pydevelop.pycegg_info.pyegg_info.pycinstall.pyinstall.pycinstall_clib.pyinstall_clib.pycinstall_data.pyinstall_data.pycinstall_headers.pyinstall_headers.pycsdist.pysdist.pyccompat.pycompat.pycconv_template.pyconv_template.pyccore.pycore.pyccpuinfo.pycpuinfo.pycexec_command.pyexec_command.pycextension.pyextension.pycfcompiler__init__.py__init__.pycabsoft.pyabsoft.pyccompaq.pycompaq.pycenvironment.pyenvironment.pycg95.pyg95.pycgnu.pygnu.pychpux.pyhpux.pycibm.pyibm.pycintel.pyintel.pyclahey.pylahey.pycmips.pymips.pycnag.pynag.pycnone.pynone.pycpathf95.pypathf95.pycpg.pypg.pycsun.pysun.pycvast.pyvast.pycfrom_template.pyfrom_template.pycinfo.pyinfo.pycintelccompiler.pyintelccompiler.pyclib2def.pylib2def.pycline_endings.pyline_endings.pyclog.pylog.pycmingwmingw32ccompiler.pymingw32ccompiler.pycmisc_util.pymisc_util.pycmsvc9compiler.pymsvc9compiler.pycmsvccompiler.pymsvccompiler.pycnpy_pkg_config.pynpy_pkg_config.pycnumpy_distribution.pynumpy_distribution.pycpathccompiler.pypathccompiler.pycsetup.pysetup.pycsystem_info.pysystem_info.pyctests__init__.pytest_exec_command.pytest_fcompiler.pytest_fcompiler_gnu.pytest_fcompiler_intel.pytest_fcompiler_nagfor.pytest_from_template.pytest_misc_util.pytest_npy_pkg_config.pytest_shell_utils.pytest_system_info.pyunixccompiler.pyunixccompiler.pycdoc__init__.py__init__.pycbasics.pybasics.pycbroadcasting.pybroadcasting.pycbyteswapping.pybyteswapping.pycconstants.pyconstants.pyccreation.pycreation.pycdispatch.pydispatch.pycglossary.pyglossary.pycindexing.pyindexing.pycinternals.pyinternals.pycmisc.pymisc.pycstructured_arrays.pystructured_arrays.pycsubclassing.pysubclassing.pycufuncs.pyufuncs.pycdual.pydual.pycf2py__init__.py__init__.pyc__main__.py__main__.pyc__version__.py__version__.pycauxfuncs.pyauxfuncs.pyccapi_maps.pycapi_maps.pyccb_rules.pycb_rules.pyccfuncs.pycfuncs.pyccommon_rules.pycommon_rules.pyccrackfortran.pycrackfortran.pycdiagnose.pydiagnose.pycf2py2e.pyf2py2e.pycf2py_testing.pyf2py_testing.pycf90mod_rules.pyf90mod_rules.pycfunc2subr.pyfunc2subr.pycinfo.pyinfo.pycrules.pyrules.pycsetup.pysetup.pycsrctests__init__.pysrcarray_from_pyobjwrapmodule.cassumed_shape.f2py_f2cmapfoo_free.f90foo_mod.f90foo_use.f90precision.f90commonblock.fkindfoo.f90mixedfoo.ffoo_fixed.f90foo_free.f90parameterconstant_both.f90constant_compound.f90constant_integer.f90constant_non_compound.f90constant_real.f90regressioninout.f90sizefoo.f90stringchar.f90test_array_from_pyobj.pytest_assumed_shape.pytest_block_docstring.pytest_callback.pytest_common.pytest_compile_function.pytest_kind.pytest_mixed.pytest_parameter.pytest_quoted_character.pytest_regression.pytest_return_character.pytest_return_complex.pytest_return_integer.pytest_return_logical.pytest_return_real.pytest_semicolon_split.pytest_size.pytest_string.pyutil.pyuse_rules.pyuse_rules.pycfft__init__.py__init__.pycfftpack.pyfftpack.pycfftpack_lite.sohelper.pyhelper.pycinfo.pyinfo.pycsetup.pysetup.pyctests__init__.pytest_fftpack.pytest_helper.pylib__init__.py__init__.pyc_datasource.py_datasource.pyc_iotools.py_iotools.pyc_version.py_version.pycarraypad.pyarraypad.pycarraysetops.pyarraysetops.pycarrayterator.pyarrayterator.pycfinancial.pyfinancial.pycformat.pyformat.pycfunction_base.pyfunction_base.pychistograms.pyhistograms.pycindex_tricks.pyindex_tricks.pycinfo.pyinfo.pycmixins.pymixins.pycnanfunctions.pynanfunctions.pycnpyio.pynpyio.pycpolynomial.pypolynomial.pycrecfunctions.pyrecfunctions.pycscimath.pyscimath.pycsetup.pysetup.pycshape_base.pyshape_base.pycstride_tricks.pystride_tricks.pyctests__init__.pydatapy2-objarr.npypy2-objarr.npzpy3-objarr.npypy3-objarr.npzpython3.npywin64python2.npytest__datasource.pytest__iotools.pytest__version.pytest_arraypad.pytest_arraysetops.pytest_arrayterator.pytest_financial.pytest_format.pytest_function_base.pytest_histograms.pytest_index_tricks.pytest_io.pytest_mixins.pytest_nanfunctions.pytest_packbits.pytest_polynomial.pytest_recfunctions.pytest_regression.pytest_shape_base.pytest_stride_tricks.pytest_twodim_base.pytest_type_check.pytest_ufunclike.pytest_utils.pytwodim_base.pytwodim_base.pyctype_check.pytype_check.pycufunclike.pyufunclike.pycuser_array.pyuser_array.pycutils.pyutils.pyclinalg__init__.py__init__.pyc_umath_linalg.soinfo.pyinfo.pyclapack_lite.solinalg.pylinalg.pycsetup.pysetup.pyctests__init__.pytest_build.pytest_deprecations.pytest_linalg.pytest_regression.pyma__init__.py__init__.pycbench.pybench.pyccore.pycore.pycextras.pyextras.pycmrecords.pymrecords.pycsetup.pysetup.pyctests__init__.pytest_core.pytest_deprecations.pytest_extras.pytest_mrecords.pytest_old_ma.pytest_regression.pytest_subclassing.pytestutils.pytestutils.pyctimer_comparison.pytimer_comparison.pycversion.pyversion.pycmatlib.pymatlib.pycmatrixlib__init__.py__init__.pycdefmatrix.pydefmatrix.pycsetup.pysetup.pyctests__init__.pytest_defmatrix.pytest_interaction.pytest_masked_matrix.pytest_matrix_linalg.pytest_multiarray.pytest_numeric.pytest_regression.pypolynomial__init__.py__init__.pyc_polybase.py_polybase.pycchebyshev.pychebyshev.pychermite.pyhermite.pychermite_e.pyhermite_e.pyclaguerre.pylaguerre.pyclegendre.pylegendre.pycpolynomial.pypolynomial.pycpolyutils.pypolyutils.pycsetup.pysetup.pyctests__init__.pytest_chebyshev.pytest_classes.pytest_hermite.pytest_hermite_e.pytest_laguerre.pytest_legendre.pytest_polynomial.pytest_polyutils.pytest_printing.pyrandom__init__.py__init__.pycinfo.pyinfo.pycmtrand.sosetup.pysetup.pyctests__init__.pytest_random.pytest_regression.pysetup.pysetup.pyctesting__init__.py__init__.pyc_private__init__.py__init__.pycdecorators.pydecorators.pycnoseclasses.pynoseclasses.pycnosetester.pynosetester.pycparameterized.pyparameterized.pycutils.pyutils.pycdecorators.pydecorators.pycnoseclasses.pynoseclasses.pycnosetester.pynosetester.pycprint_coercion_tables.pyprint_coercion_tables.pycsetup.pysetup.pyctests__init__.pytest_decorators.pytest_doctesting.pytest_utils.pyutils.pyutils.pyctests__init__.pytest_ctypeslib.pytest_matlib.pytest_numpy_version.pytest_public_api.pytest_reloading.pytest_scripts.pytest_warnings.pyversion.pyversion.pycpython2-numpyTHANKS.txt/usr/bin//usr/lib64/python2.7/site-packages//usr/lib64/python2.7/site-packages/numpy-1.16.5-py2.7.egg-info//usr/lib64/python2.7/site-packages/numpy//usr/lib64/python2.7/site-packages/numpy/compat//usr/lib64/python2.7/site-packages/numpy/compat/tests//usr/lib64/python2.7/site-packages/numpy/core//usr/lib64/python2.7/site-packages/numpy/core/include//usr/lib64/python2.7/site-packages/numpy/core/include/numpy//usr/lib64/python2.7/site-packages/numpy/core/lib//usr/lib64/python2.7/site-packages/numpy/core/lib/npy-pkg-config//usr/lib64/python2.7/site-packages/numpy/core/tests//usr/lib64/python2.7/site-packages/numpy/core/tests/data//usr/lib64/python2.7/site-packages/numpy/distutils//usr/lib64/python2.7/site-packages/numpy/distutils/command//usr/lib64/python2.7/site-packages/numpy/distutils/fcompiler//usr/lib64/python2.7/site-packages/numpy/distutils/tests//usr/lib64/python2.7/site-packages/numpy/doc//usr/lib64/python2.7/site-packages/numpy/f2py//usr/lib64/python2.7/site-packages/numpy/f2py/tests//usr/lib64/python2.7/site-packages/numpy/f2py/tests/src//usr/lib64/python2.7/site-packages/numpy/f2py/tests/src/array_from_pyobj//usr/lib64/python2.7/site-packages/numpy/f2py/tests/src/assumed_shape//usr/lib64/python2.7/site-packages/numpy/f2py/tests/src/common//usr/lib64/python2.7/site-packages/numpy/f2py/tests/src/kind//usr/lib64/python2.7/site-packages/numpy/f2py/tests/src/mixed//usr/lib64/python2.7/site-packages/numpy/f2py/tests/src/parameter//usr/lib64/python2.7/site-packages/numpy/f2py/tests/src/regression//usr/lib64/python2.7/site-packages/numpy/f2py/tests/src/size//usr/lib64/python2.7/site-packages/numpy/f2py/tests/src/string//usr/lib64/python2.7/site-packages/numpy/fft//usr/lib64/python2.7/site-packages/numpy/fft/tests//usr/lib64/python2.7/site-packages/numpy/lib//usr/lib64/python2.7/site-packages/numpy/lib/tests//usr/lib64/python2.7/site-packages/numpy/lib/tests/data//usr/lib64/python2.7/site-packages/numpy/linalg//usr/lib64/python2.7/site-packages/numpy/linalg/tests//usr/lib64/python2.7/site-packages/numpy/ma//usr/lib64/python2.7/site-packages/numpy/ma/tests//usr/lib64/python2.7/site-packages/numpy/matrixlib//usr/lib64/python2.7/site-packages/numpy/matrixlib/tests//usr/lib64/python2.7/site-packages/numpy/polynomial//usr/lib64/python2.7/site-packages/numpy/polynomial/tests//usr/lib64/python2.7/site-packages/numpy/random//usr/lib64/python2.7/site-packages/numpy/random/tests//usr/lib64/python2.7/site-packages/numpy/testing//usr/lib64/python2.7/site-packages/numpy/testing/_private//usr/lib64/python2.7/site-packages/numpy/testing/tests//usr/lib64/python2.7/site-packages/numpy/tests//usr/share/doc/packages//usr/share/doc/packages/python2-numpy/-fmessage-length=0 -grecord-gcc-switches -O2 -Wall -D_FORTIFY_SOURCE=2 -fstack-protector-strong -funwind-tables -fasynchronous-unwind-tables -fstack-clash-protection -gobs://build.suse.de/SUSE:Maintenance:22423/SUSE_SLE-15-SP2_Update/e85ada395aa08eca9ed2f8ed34ef7966-python2-numpy.SUSE_SLE-15-SP2_Updatedrpmxz5s390x-suse-linux    Python script, ASCII text executabledirectoryASCII textpython 2.7 byte-compiledemptyELF 64-bit MSB shared object, IBM S/390, version 1 (SYSV), dynamically linked, BuildID[sha1]=3fa8bb64d2aa96a873796344c09d6c9e1b177b7a, strippedELF 64-bit MSB shared object, IBM S/390, version 1 (SYSV), dynamically linked, BuildID[sha1]=22780f4dd220b9c41b5baa572a6198188ac89d33, strippedELF 64-bit MSB shared object, IBM S/390, version 1 (SYSV), dynamically linked, BuildID[sha1]=3bd642cbdfc4ea0b1f6d960fb340440dc226fa4f, strippedELF 64-bit MSB shared object, IBM S/390, version 1 (SYSV), dynamically linked, BuildID[sha1]=6fb9239901d530fc3e287e733db6199d001b9ee3, strippedELF 64-bit MSB shared object, IBM S/390, version 1 (SYSV), dynamically linked, BuildID[sha1]=4c9334a141319d76c8b08705824388efd1f9e663, strippedELF 64-bit MSB shared object, IBM S/390, version 1 (SYSV), dynamically linked, BuildID[sha1]=d04972fd100670deeb65bb34ebfa5625063b59f5, strippedELF 64-bit MSB shared object, IBM S/390, version 1 (SYSV), dynamically linked, BuildID[sha1]=3a39b9628e0c7395aac8110bc4f9040f3ac7967a, strippedFITS image data, 16-bit, two's complement binary integerPython script, UTF-8 Unicode text executablePython script, ASCII text executable, with very long linesC source, ASCII textRuby script, ASCII textELF 64-bit MSB shared object, IBM S/390, version 1 (SYSV), dynamically linked, BuildID[sha1]=e13c7f0b2a9835103e602fd4e9431191366477e8, strippedObjective-C source, ASCII textdata (Zip archive data, at least v2.0 to extract Zip archive data, at least v2.0 to extract)ELF 64-bit MSB shared object, IBM S/390, version 1 (SYSV), dynamically linked, BuildID[sha1]=bb418edc96cdcd00d734039af68c46d1b5fcbe7d, strippedELF 64-bit MSB shared object, IBM S/390, version 1 (SYSV), dynamically linked, BuildID[sha1]=e87ce22aaf84e4ff6aab321289898034e62be860, strippedELF 64-bit MSB shared object, IBM S/390, version 1 (SYSV), dynamically linked, BuildID[sha1]=845c73577d554ad0ee422d58f1f1ea51ee229eff, stripped  !"'()*+1AFMNOUVW]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ`abcdefghijklmnopqrstuvwxyz{|}~ RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR RRRRRRRRRRR RR RR R RRRRRRRRRRRR RRRRRRRR RRRRRRRR RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR RRR R RRR RRRRR RR RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRdN/vaAqutf-8dfc92c742e11a01b7e50482a78a62a4f4811051a2ca4ecb757a21802618b2046?7zXZ !t/ߡ±]"k%r) H<< n$BsdF섇Ս ENJSU9VWJXce$^Qsrٺ">t>#J1RB7A+jCeI\ΕNPe 3+SC3 %s_7pS=C*R.ղ7 %Ag*~8nw_B-3xc%n.>/NqXϊ<ޘ+Y)iG3{W@bU6 G`+^G@:|6tsӾ.S˙nW+:c`nf #:suBߟ i[p$HQiO?Fj7t~lG[P+}zDF6Kx A} N1l,?|X݆SѮo>p|JD{dz*:DI涴;fV]y(*!ʾ҆jr}+ڋ5VsFz0{TZ([FX#tn:/B|a1 2em j}beW*s뀩R/$ $yq@|3u], r5h խ&~zx+2W/ag+JOX*}ý`GUyu7E]KhjV+  9/u QӢ|NZ&?2 qQy>ҸƖ+yu^V[#W,H8P@S(C}>Ҫ"fmDіn"<<5rul&yΩrǢat]G _ b҉rd'zZ *X7MޚVq(,1`{t"I䮾 V|SLa-1ٸr!ĵhO/V1ntDFI&з 0p%8zxdGS'@ w]i_+<BALG aY#M+\ bcfi MU09%buCUPl@C_KTt6DXۜSPDu3KL4·Z~Eh3+Uq%n.W5EÜ|;4t;a\qm[HF_J\xZ4]h+PXCN , 0-Exx>Nvroga=`HaNiQ*Z1ă)ItA-*K䉋)+ ĎSRY.4DzjfYoE0pYBo.)}XZrj!J9Uħ BNNP?&R%͐fN=ca&5T?#g_KkI5_BB^0u:Ԑ 9cXxk^ɋ\ϥlbl236)ZںASRokQLRtt]OE>`.x JnIRTw@4Wf%{sBIbKwO~7~ҭ-O8yĤikjJL"Å IiP GO ~=/k:F~T !5F 6X R (rq92з_4K Bn FB1-YemC`m[A+Grk7 Qp?CpMo\Nƅjv 8c"}B9`@R鬝} %JϏ.e~|m׸'+|r /_\3?@]G)@6Q&=B 9Z/2 7>;hMk% G(3reƻlx\.,A'*(2FrZmO=*.%JgF%UKġ;0xNJiVeube+ ]l ICe1n (|~ G#/[d`N-Yx[`qD܀]LN{E23:TG[JKh(leŵ&+0;4*Bn8uZľMd,y-Kp y XLx~ҹEMˏӅ~ω؂n}WJ-Z+g8Fd!I@bT)y 5„D0˨p 与St-]*mݎ@5Bh`#i w)ۺm!Suo6՛jb}{&Rӑ&ӞMdMi N1$@,KU"7$;Ko`* (Q\HpaqbN𾦨e byЕФ}%pXHS+'0"r`6Ngep*}aBF#[rLp熟.{yHbo&˓Ȣɠ}@]hV0V.g?R9CJ2Uw 8:t4QJ8Hz*ϏXݮ;.j3<}xaJoGJbJRMTlۻKG?K[UyU")+%C{asP~sb8ã͗}q.DQy2790%-/Q7Mcl%A Hf]sb~F=?3-[ux/Ӽ{=Sz`ĝ~n@z2L pmf-"G3:~ã&n@<_Netpd>ܖdн<:\.+Sޝ0Ҏ`f*`w hs(Ws% O둜o&޽v52>c܎-7m!/r'9?ENQ M,ND>^"8I 2p~f~дdɐqn΀Z5ey'"¤{f"G: [sG&zhN:mJR:rXwn1" ԭ=D/%cWߧpF4$=Ի5H/!RN3`=cJC {7< 6VW,RG?vQU ThKž8E*Q-Tcy ʆ]r o0Xf؎pS6Ԗ. [b61zR੖$G=vE(,BI"إݻ/+k4A;=|gy} NK5I2?\'oTޜ{x]/ ^$B0#W0 n"~d;Ymr%QF( [?{JU2|[sU|*:8nmY! ZtiBI;U NCLsGZb3shW2+2==ldTe[V ir/d \4ܐmo3G T^I2˵FT;+Vwsd R f)l3lAQHm{5m8и`qHZqNquai ]rwTEZQMKiy k9xl-ԗnvƤMQmƂoh# Ja7ƯH:;.u6ub<47Ñ2iSg1H(3㼨3X"mԉlU),(an\E<1}+RKeoOf;LbxK OL2$ԣU{B %rf3 ˤm}ព(ۉ z[ 3,dR )$jaG׍t$̂cK<.1=x<4MϔC+׳(gn{ ~gJrw OtteLJN8d"':3c,.(zȋo:U^ou[5z{/c@?RnpR#2}^&./Wʾk6"‌k!xlJ<{>dtP L?ؒgVguA;w Ft׹:qvB[l_+q[@ꜰEneWvO hvl* VcY@ Fm=}ߖmrjNҝe-kͷD~5,ߧ~UG! ~4tU3uXͦyV4i*ql—h])p,,,so= kme:L?̴ѝ]`[k6)lذQIFzR<k~hI͸fˎd-vb֎&S9Ӓ:H-!DXJцѦ&Y-Y *rو:4Tۀ:Б,m,}ڌ&~WO+gYN|w7 ?cMl&fT{UR?6 Ԅt7ZW3u><} $o@c3'$޲\8/cJL|SKUD=+y M _3۹ f):}  Xp'  2"1NUJv[%-bޫ6"o']!ә2;S,MLD!(T{21^_"?m"T7Kh?y^libUwY#H|F5剑v0mOѴ#O#%@]po324q4ŊɥuL33ϸ*Çf?֋[J!Ŀ'~Kؠj =И`Q-De""4C;uҋV8W!kxRgSM\V-tNHCkcͰR>w1dm'iMCƺ͈-?(Tx4%+.S \(I:Bz;%/$tݷizZOC3$K␼ oLQ 9MSȫt1z6 ͿLHS#[># Zt,s@s]W dHK2ܤW){_}q]~I:K "jዿT s}iZ|$#Ǯ;b 6CCBSJ#mךc dtexd&r>CLY(H V,#> #BVp H$fQ.U>&`$I+#}˴' c&&k p#IXԬDj!eͪ!b9{ qk.C,߱ VK>41$}.iE$uO(5_6v\jK޶K:ޏť;R>U6,dfkLY5ܑkr'2Y`2 GAj[(oaWĕ=ĒJiȒh{NfÍpF}mwSz@G :~ 2$9t[+w]Cd^B coo/& $wF m2S`6Ӑz{A|8댯-S'`֣Nf& ۰QP1 HMݞ!n*{}{헼O , N8X-?+m@CdC1>haEeZOcίSr1ЏU;tŊe@wصe.RMHfK]Jޝ(.Z7} jpggЏ"Zc'QXs SX`$D;s5퍍# b{k\*mG3oINΥ'Yz+OJvZR:;5"Q`v>699h F񖟾Rp[6_o4]8w,i3E_>[+Z]@[ ofs:jz^'tpem۝~`Vd j_чx7A,GZD:%E=NϽ/v2_\}ĺ%.gyyhtu&}IQvtrܥ >sM9]YsEnVD, Dk1ooC?5LЦLw5^n1XHɵ᭶j+:3_הIGF;Ϛ}\0I#oKKrPߟ5Rda{g`lVf1I+UF~.wVVHTd#C~] 5oK&WIr0kUkn@gmc۝Vإj0W>2h O(Ġ]ux T&\! R|y<^Qq"#Ok!mxd%"kg[s TYuViJqZ:hܺڐ! fhh3&_ @](ڒ +"s4w <[xxe$At.Β'u͞ 擪s!:qr@o w.w#8-"!`wE\tL*tۉk4 0dBb7|\3OZ[~xU>> }ΣNy %| 4zb{THCv=c77.t4sL9!BϼʅIY|h]fz[ ' tWMTJ`/%b41 6w ?+\v |=U~@g*N+tǁE*ji~o"WsETH/]P{0F{J+ɘ9' ^0Mz[^ [FVCjf8rה9ihtA z`V;/P! G~؝ɵfix(s4ɬ A7om,NPL1|{PX_ wIhAUķ3NMϡxdA#}E \!fEQf4"}'CtԁNAvg??\nWọ`;j3˖krHgP c2ˬsjWmRRDnW>ɢ|NC_S/1o•$M@zȇ҂DkXb*&*1^Bl .8(Re'$=|o 7ިcSNY+G͙En ќSƖ1 B&2:k]1<H4exbr[$q.O]5IL QQz1 z4 *Izi9S{Bj%~clP"s[g3 2@&@W-+6eL9^7=yV,M3Ԡ/eCԕ,Yè7UGY5?^#uvm:*d| E(c>Uh3_~ y`jmA AM*q, F֠ X`dV޾"8$Il/_kgKm\u`'A5HDw+XN˓PΘ 73 Ml * Gp` ʗn18?Z`PeKyԧ0qppcd 4;>QL&FÆT`>Ӓ=&,0 r h $ BhbhoB(Vs:+i.hy,Ɠ޴mu6~.fIM}59(^hiO!pM<} ł!4 m'bws0 H{㖨 4To_CW÷9 !a,# ڞ-B݇c^g\ =E;NTJq%||+{౟B6"2Ȇ -V>z.|h]4Pok̟SԛJ=!p@+=Eo0kC- Yq[AEhgEdAo@9Ok9+`d0 hGvvw{T +yB ݥ\W[7|K:E0K b|d\`J X.k݆=dXkM@>x1~/`Qcs^e+MrNK0x3gt. 6ih H/9YsS "`*>Hba=n-)m'iy*Oʼku$0E!TNQxbCV?weBIq=:_}'h7F~r'㶄 iwytȘ zlnDzdTu/Si 읝zyN P-l 06;NaG6n!WP'qԃd"HgKvd'U +ÿ8& St,*~&/g=sR+Y^ϧ.q 5> J&A^:pЫ.~' 4vgY`_ 텾XU뙶ū.UnCOpۨv՞}~*3 ,L2OV jSQ[e9j hF}wV2\8Xgo= aeB (UЀ0~jp$܊` '" llQ#KgsK&*\oNNݧuZTXܨ*b*Y6\iX.H%/_hr= NT=iM'-eka ENk=P`?D%ZÑ^}$iU}&4]$ke;!f3'|GCwQ3^#-OjNfj!%]BOVd^Z?4Z&IWFe)ܸ5@6q)I叱iuu(+ŨNSէ H!6lۛ?gFoxQ4#'t?Lx b TnX#&Ue I'5BpVت /ȩz7;#Ximխjmr[*@ Y-0?gPɄFx8l5ypuT|oi-+ -{UnG2m1q/ۃ}:R[h³A{DxJ'">J?}l3wOn:t_6I"SQ!vHd/EyF.TTHFkdqc5D:-"=3dnBUc`$w|/0dx?I|1qcԛ:st_Uh<ܱZZF!H6djijL 59G Z4w5{g9o>+֦SkG#Ty>Z':X]+#H-rz4Nx:NфRDO8B;b{\wyq!;6ow [Đ x \33Д:z4eK H&irxCiGC$m+GJPWf+N1L۶7.qHQyx02T~Z j+A 9Qx\Q)\;?c{7%|kYzᴌ3T^hAi<**Cֻx%\Fyxe%!-.?qk9{TFR۴֏(CS0MN7t4R4{*ߨo=rɄ n@XDǐXj!<J} =陿d80pH%Wr'H-=OaQ uęr,]X Agqz,R{˟ɦJB/Hb~(mM|_QmTSCqLiP#C'X] _p`a{nAdːl~nJ)Mzwi;ʤhyt[mh0`H1KD1ZypҢZָn&]pIx;7ꃐWbX/j-%F|#&LJo ᘣq6șV 9 IH[ow/~16 "Ov0cjNX<_J}nQJ&rdkv/àNNecxʬ+7gu#&/9=LjnOaa*}DA+-)tcr\@HMz)|Y GVt.ܚT ?B;m  ދ&RL n1?3+ZKQcDy8gz vv\mļ_jT 5T}tYYGR)H_ِ3>6!s]X^9knGCDDV (@\p-ޞ (tBbA:'Vg6’Wr~+3*i~4cbNdiTkqZ=5zu-e.!];uZ`l,DK-]pR?wT,m1!W+!DIV;9G]cgԒT'po B{'iׂ`{/9 ^z}w浠ybZ&?{u9%b5=? !EJX”v?}K9ckq0pX-c ޜh_GY X!7u+ɑc&$v#4HQ }gJ $ctx[b/=Eddƕh˧ IEWf{(<]gQЎryVCe&i'ڣ\arK~-=BQIs[9m6fb3׮@b=xhiA^T]훺{Skwe1 bZw L5⎗{OgqMnX*՜=IFGţ OXY=t.~hQeiH2'mar2&(u[DU4`W,tǂi=Eٻb IӃ^X㛘L'ȾlV"x sLZ{T'T͆Jڕwݿ&ә8.c/E՚#9b9K~&cS!3m%E|6KUB 6YSG@M#k5JFlvwQ(qxo fR͘B&\EfR*닣Bpg~?g >9BJ5:NH(d+uЌ+x'#TmT8]Y}2){5Nj.hiT u_RQFr- 'x(>Z߶Ei}Aյ9u~ƙoh5w?z[a8*ŏin\gȨ@fyy_<ԀFv6/\M#"Z8b#њ\Kid+|Fs8[2DW?9!ϷPXg.a7"`AO7|ܘqs/Xkn {SĽ⊓>e(uPwQ*ƶzd-'?O#-s%\N$Jp 38#|n3Ma=?tP/r3R=ˇlIg`Jܬ$S@Һ'{Q;6 &cx\T?_/qԞdX|w \^W;;v1V6M\2lffi0 Qg׊P dSPߏƽ]t-""\wS}tjI3@ơ 05v)}}1ge4 X'9 ޸[LقKɸ5EQ ee*ޖN*Iշ``C-]"x*Bx […bx? =8~'H6hRƩf~;a2٧Ǽ` ܷT;_K/uLa'@\01PPTVmădJQ!^G̺|'xC h?K3}C/Z]:!1eN'*=۸˔zZ1ͥ4 D?d۝ AoZ|p^KC>响.p=ryٍЍqEC̤LjEn H#TjY栗xaP]J [e:lyV=E:Zf}$P6&S4FN"R p/5d2 4(p2r̶$YJMCg kq2ГLenX\A<1P<%bvU 爆pv'$f]=?GP5/rKH`}cR (& OaT/m6kW[擉at3p Jݟ%NE>HqOJp:^vΖmЈDV5Zy# T3,D5{b+w GMVqnAOCYi5цys:l"l߳jZtv)d"IA6!\^UMJ2b-4u!۠r"?RM2xw7Xahw[VƲt(bCs|sx͌ t,K<(ۋʪ(0gfPKϭ7H{()W28:KGaqTz.pDBv bbXQ:} z28Si5n2U#ߏMh.SLRi7}> }e+r!vv DU>1Lֆl8>2 g@0+q)ghp5 ɪB B"* =8_'~"թͿ `YS=`WNi@Р>kk|GaJ1tT>a8.)OCAC{&L&q:T_ތ l״f,SURAΝ66n1SemVF+|V͒Y(ѫ&)jf, )-^:lM"0lQgv iql W\FH|x~֏)JRVv^NFHk|:Sy}VR.cv]8މ|UܞH_/鈣a$]JYuJҦӼ~U?aڭ}r+,ncw62ոd jQ%\hbncnp: n)@~OW1|Hm^\Щ)]H-)|*7L,c"W Q|Ӵe[c0+q= sOI+|{2Jт6j3"Z)}*2Ѵ{Aͯ,">갳6wK q8OC@a7rVDɻƼeѿ4M *`P=SNGG?nYwP% /멘ZUǼ`<zX;W2m#.Eփn%'H=WՑ49iVpr[]b #DbegM?Rs5 TJKfsYOp@u"W]AB ?r5vC@}`IK)T@}Ya;pcZ%&>hu Yh(?28 K; 8Ksf6zT"d5r]҇g=Cvji- 6uQǀraf$Ÿ+|,Zq.2Pv9W~S=;LN)wᴌ61ԝc{%xD N^F;UK5/HSrڄ7lIkM n-aa˞Qbx@@XǬt 6ii cS"MUI뙞xP>ȫFOF",m`)UA2>I~{=cql;+ 㴍pKsx{RH1OV{U4[6SI՟5>P_&Dr3sqQ<軩C%onVTSmARǞO F$f r `yUy+UTdBcn C>;8#L&(ןg_}41ym ,wƜ͈AcxŠ@aVzȵZ[-MqzΦaCVqEHitćq67fߛ걃*p 5 +ZJ ~OlТNJ+qeW߸i]aM ֪fիH&@@h*8GgtozrfK|Rhn[&w~sJ"P`r)-5ְ܁*Q(֖EZ'9a΄ *Ao{o"&{P%AыiF7B[uG<2[óyG_n0l--0WenvΡYs ž[$ 5-gOg^t:ኙ>V"#GW̏ L% ׷89.xp,#ݳM0rT]xIAoh1WD tgL)ʧGoyN 5fVQ`5f,5E}3Y:P gXQ5V6w)rKM/6QtF\zT=ݹ}P-BP":a~j Fo USM4tr^|F/]??W|}5֎8-J '2-ky!+ñڢ.{w!?Z|GڤI*JXa˗{.w<{Zy% @`@)"܍3<#Ml$^{5 "#:%kh;8m_FhmbXMY"`IY{k8E!)G 1(ol` #l=21,"uȰJMԣZV~RD>cT=حQI֝_fG;yGud%.Y:Ss e<^$Y2Bӝ o)^F\mVg~ qiTr]ϕn&\}2S.R1Ģ+, 7 y.y]:5fmZ6+>Z>WMVjMlQ[u &j???ܰ{p~iknj-[fb/ 7"6>į$Wps+=FBMzKK"kT V=Nx_TJ7ޞb:GbUƵ`|.awD=̉~hWp /Ɏ4 \5!ֽEݭ^B0vS¶!gn_wI#zj}~Kc-_ T |MU&XxةI2GO KiѐRnz@s3Si:B'J3c[ݸNS#EVP9 D*O>\T;ʵ>J&2]=šyW]BXS> 9N9y)=mTS]?1V{Y):/_G NݷHFSm7U9w7Zԃu/oCWweq(|G?=I֌X7ZmVIV'֪RrPT`'45x]˲)DMd2 +)c6BX{2kx@db omлé d9*"o8B![Ӯo-M1s=6|rV @Trw2YݸF'LIƑL%2.-0c, x̴HxDB?(TLd9_IYG ˊGi3:'iFdg2?%Wkq:\ n[3Yf:fdU"9/ڀ=n{E}3piJNqx5g[ gFFF!#X [&fU&,ClVR!`>G;# ?RpݘU -QISʂw/!p h M>C&SclF <2'EںæF03K7 .G*a#sOZCEK%<ߠg-+MqO*7-/Q\K$z5˂ZTrDHB  >K\YV,< <|{w緷y%U\o.˥o G0TIϺ~ v_b A(Sk/#~*7<\Uج8,l^yҘp7URzroa3B"W#4 P &xAu !gg`ۗVd2ENtF*z{!5dڑįi0nDKcf(3=* T2x0Wَ&qDx"OtęeW_[̛kU kĿ Ɉf4ƹ6 *Ρ)4aJUԧ,Zz M{<19n4~eiֵXtRje?Tm;*IE(<{,܉xc:=5a d4>=Ʈ鄌v<K=w0yQMNm : [;0lJj¦ڎQ7?}nbU0l@|.0R,Tw$ gHۧ7680A9+r=rai[>Ɠw8t#3NjmKѠ%Qz0i9gSz,-z,r{8d"T錣n9T%,Mv=R]P-!K:6iu#wF!+\`奒~]eVԁlrB_jSZ&~"cap$QDX۽jĖл;tg(C4|E~+;a|H\BB<6&C>$]G*$&Ua .IXAG$ Y5 MxnӢbE^5;ܠB!D*ޥ2xJ D`nK~lHjX~zųHD{DAKdK1~Du^^-#+)y6@LE}}8V IR C3&%;vU*˥!f 1nrȝػ Ќ>z2y$o|  *>=.c̛sHC*b:vsR7\YG4q4]V'7sA~!xpvvaxdt*=J42Q,"m2+;Jy|x4 @(JWK88g,wamv=7#:*@0~ v@?V`[ʣUQ?4׽6'is#{~ JXT3Q*FxP|uE%1(N?OHŭC9qS{, b%>f)J^';tFojiнnE#$ك-{j5E%Њ8P`yU<\SWTĖ>`- XOJa"\NU,-&imadDN($q hlp7&?Q#II'"edi?,`-n0fZcgJռ,/Se_?*s7oܘ;?sK=.._؞ !Z,D)eSKq3sHϸ&d6sO1-F`"U^ E=x dUxM MP iLbͲ'8)kƓ2(109O:з!: Q vQ2ܔ]}l72Gx!CspK,<6HWvu&Qxmҽ>H^&SRZ|ujɟ{a?|H ;<x `qe%f :@:eA/isLߨ>oC va*(ay*rɗ@T[Y7n)7K).9b]nfl*^;j7kVWE1hf ,zS9 <=ɜ$ǦrlkwO)[.8U4.mITS%PG>}߅X& Bd_&pXO3 (z/3($ p;⦶E]!~f|L޽+^PyƋ|d;vGz-;E exj\]\3^ 4z/YFDwYAxtJZ++:Pz3ac4s _<6XѬ,}sR/3QHv=`1U}N̥ \j B0B"Sv ]e.-k!wrmt˵ԟ:YE}܍c3 L&*kYt|@DCG۟>VmdAx= W̤jM6mpZPut.ζk8x:!ܗcb/h8:>Ԏd%k-95 aZn侹RzK7o^<͇O|7 `[X&I/ G~i11ԑ {K~9<ū`:˴7.m Wtxv-44R ޾EppJ(J=ń3м)֘ 8U ƦW,`#_eh' 1%F!2n흘aouts!s>O*B}n.1ĸ R6~HvkhJЌ#xȮ j6 |<ݜ+_u /L rhO4rq̼Kfqr-5)4Nm}j4CZm8!K0:)ZYj!$y|MT3t. }Vaҋ_*%V-&& 9lnۓ'C!!7ki#IU| ƙ#a -cZH97Sj4&X7W>Ό詾W|/q'&*ꦁL] [0cHfWbdߔQ">Io*TAEvP77)ԉF؏PՓB<$] gB:|^,tT{N@R`| ;Jo&S#ZD_EW9 ??;|#JŏDԐ &Cؐ. j>% ~m['ZI`ZackOQv"Y08bͼ.B[(Re%sDy!e7[\!-.)I&Ozwl^ ׊f]L4n BT)gՊEZ?Om1Mv(m5&ᜂ 2Ŗ4 a?'}*NLDl WqX Kp,N%"y'맍aI*m8VZMzz m2b 6Q1l%Ye`q5w,.&G".A@;^FJ]Nm\Ơ \rX;o^),R'F{Ìly R"͎,sDrkN |:>ʸWBټ"6ˆS;v(E#L5дli\~<1>"XiҔ~TϡA]Wk͑8ط$q^Kg,gTXKd``p 7ݼEO@"uÉuX.ċnԑ"3kEu#}~_>0x wөt_!j0 G]6§};ht=C(hJ?>M=\N,d闘m,O08$(CaaC˟~փ0 МߞWSӕHN)LӡNt1\z3vl^cOc/1,tE$&\+{㺿nmD']ן6e|CD=.qiGHV*q>gYs3݈Wn7ڛbiX?z`lu!I<"q9:pVBbA=F`j qY#ʝ8x-+Ll0=p猣Ԥ=){^QkKܛ̧y#HaiKѽ,2A4L)i\mﺸMƪ@: Җckg))6kE4]E JLCBiRFR8Ӂ9 y}3U"YD4נ~]她פD&3މ0' X1_e:oxg$yR&`zeUo)חJ6zwۥ&2{7! 7gw2-`Tc s14QzbMfTkkbLߕ^MxF@Bb^1uA{栛XRAd ~~)@dƃ'br<>+  <-=֎W&OO=1vmA@ Ǻj6X5[ݬP.#igWY9DΘKӴĢ̥q9ܫVŸ`> %MΫh{^՞p:84-%̃sdfFMv! *_A(ܘ $4լZ%JzMq!IG7-cP@^{+[2}n5;F5 D7>qᓰnIK$H=3qt@:Ӵ2;@sxe[Pprً!WOMJڮILO=]$_b}5?EWj!63|!#WgyH)C.Eׂ] (:+T6}7Cq߲\i[[srIVyFU_-юlDMVH& %P&1YT[C gؕi` #~^KM+cV0}K,c6U)4$[+~W=X.v=e[檆Eo"d9`-R~3aA#:ʫ`Gs'k\;KzъU.pQ;[j]YOhrث5=?n8n}n$˝w Y3,Y(~$gvO;y\$BcUS,"g!~@W5σU)9@䄄Ü7<m-u'ob/g3fj\<"FIui|5M2Π\~l|6,*J^hҸStaOh<w؏- HGzn\P'+k*mp,Ef+#1IHN_(x(SV1힖cx!Zl! vd;BKS-ÝXsf4:Tm i(:̞[Q=m,XAi>̟Lp>!NytI8${}FGcQ"T=dd#Zw&b\ӹ}:\_>6*ӡV5*P6oS-^^2zGRwtR7A홙pރҙ O*xx gC@4$mhH}uc'a <>v3pκx314Vu_S˧(H$B;K}\`ex' d2މf|/ ;E5SREUrnJTK/i쎵=*9bX|$CG/b֑(us[zv$Q^#%" Ké8J\㤞'Merz&"\A͞^y{H6xӂJ=T/Q, RXm#Q(eQ@>iǒ[25a1w}l)<`'7Z[26!JHٷVT<}AIȸ9ԍ+/~ zS\׽%R6"P@;NgBḗRCg8㣼̙ rnTmtPӂSW1`;r?]u&b=)'!y =$IY$f7GdzWD5DOt3[G].ZT-BOd (ƀk|/==2*~ f$88fr0~-up@S@q։Ǡ ,* a{ٻ4]i@{fw4H2-ݡCU1PzT_cg^[~sOl Ic#;I4GDEaK/5XZlyy[^#ޖsB !kHkf\HE8!0c/c3URi>mYH뻐bA2xN6Ğ9*i'Bё荽<3F'eƖDo2@ },E3 "ưN;B> Ț1CI?N_1 A I^8}KEJ {g/w4ZJ%53CfT yےuAm߳:X1 Vh`,(QvF2O û?fr|}UC%<$q/}Q䇬oډ7Zot|0:\\VBϳ;2A VSO(4ڑw-24tNo7몗+9i5bc cFd3< 䎞QG$"[{z6zlر95m]%FI>|YiJdb] 2@S2W*5p{0G .7ɾTa#~)bbiU%i}ՍԦQFiDk0b&bodXR[ 9{P(|59M _U2k;Cs1*ĊQqr$v>~\3f 0]/DubQ;u~x dCQκJ/|WkuR}O;>ᓎRW[n3Dp@` `9(3Xnz^aTqpӥe&R,]{7׿/ӯYdK:{gϑӸ1u_ e<e |vdhxW<}) \tgR̰[heW̰ݱy=/i㸬)l"vW(!V=###s=p]: !-Xx2&SLew}EqkvɆD nZ;<;9mk!CGzs>bR9_"_ [E\r.:UO03/PgAzS̬<1#ROGjA*]% ,t:x qz3K?m^ig|{P-/ΤRVcurהrr#^F+6ʯr>4xvRMrTKVMO~xe~ht멟6)o`+1Z( $`Q~Ig%10!.pb٤I.l`5>|+E;yی(MT&V-a?7zB1V.lMeobZ!å^`n0i UrH:2~@_ֻBfP]&&#V@%(P:@~Ljt2,1ə$ڇ>3 ss"Z.V] 1"ALiH;O)\y:47 $66\@ e; " ݭ!Vu菴QcsՆIjuVDaRLO GV V/r]7X3  WbmO͙OްQ=ml$ X@S\T`0x#* +Ԕ`:3 X.,֖; ,OQsbB&pӴ Dݺ@]ZeI*^Xv@7*2\7 MZlLҳњqzU2gSiN7h.ow*\߇ L vψ_d1Q1Ꮟ|:s,z$xJ՘Gx`ҫC`I<4ȭF {q|nu^0*[o<{MvJ j鵧o[1bd]IL=g–9SWN[dA ^&<)}lJ}*FgMiFsdov[o)U41T3 U.uˏw_&sD%ipnV:Ԏ-8"+QM7P+#[3e׮}kq]-ƇqйhVd8sڮY|+yPˆvF-Z@npJvm]wN:PiQ\&^+ѫF2h}ubW[>._Kh8 dl OS(/4sfkIl>͎ŝnSq9Y2R#3qR>7U Q5jr%An+s5+ 5mRdBTEy]*p7FEejwdaE3\)j>~^O24G[%.w[4jރޒIW-98\pfqmr>b}׫h F9P|\x筷p4dYJ52nNRthjf6(}+ D<#E1fjÒbo &ܩԨ0eeAA!17JB =jz:&elfQ3,3<9ohP6ؑ̽ƋߩČLJ^!>18DՋ m3gd{Rb{K*Mcې]fXzB:fn#TQ\s-G? :p2ti(.#,rڂ۾eKĕ@c0d,>ǚ^3ȍ1W"2y 7 -pwEO.٤83Y$%:i~-{NLC;vbsqe>.5RJy=f&הv3:9+uCܢ}/˻EdQўQ>}A|l5Ў0 0-bqD w F?U4#~3ei**iYdA 0ocS ZgŨ{Y؞FZoKǦ1^wVF$D >],rdhH VV=SR=\`Wvw` mL.MBۥ3YV}oKd21 l -~Z e22#;E܍i@mxSH7DsLdLɑòq*Z^,,{s4o88qGz\ZP*GGHX8ȸvr95kj̉T>i6lk|5sWl@K!Ii+0O){Llv1}W&U~'b|+:$GհwlEJj!ƨEȦ*K (89YbR3h'޷;S=p,n)VsGqP<`nfY!}I˷)le/F˓v:1(ۖ)vZ @ 'ob_+.2Lt ;386#?[yY jJ?RQ];(/% -jM7kڰA);ɫnKf.wQ2j9.OATaؚ0M8%>\Sɍwad z7kO%ϚlL%DtGvBCN #k-*Ude rlÅ[^/ThV9d/ om|D|n@K,F{=G48Oe8 oh0_ f'H ݌"i54ՎꟚIN"%hZm v9~VWNr_{+:ׂxN^C|j}<[9KyZ'F ⓗL1zn rQ'5ux!yDAs9h81aҺfRQ0Ce?O?B_O\\f})fFОکMD^e "Cw %ƼI+2w:5CY?6n.y6W(* }7b26s"K3ల0UඋK6' ڴ$X7e lFvF.|8:᷈nhW䱬i:.[/bL0?jw? ȍE`*Z'gI(Vqj"HۅfTXxp,r ];ؤDq珚I]>0uA+eGK3(r.!LHNA1^_[K- 1:SDSC޽q>-rA%6w7)zX/7sA4 &p^:}dYF?TGO |3ܑ X;ńLffKb" p°0J?&aҎZ[Y5Q8q-bmj?ܷ=-80JBCK>W&WF Z&= ֱкYIHrU]8n7f0Pt̀2awbDX=Gm-pjʸŊߊ~b .Jhxsc3EޟE:^R;kRq '|T 7Y<0VvN!L;pM~NnYnՑ0M8t`kť@!\ mP]0! J!ǠЬ2ieGNWϫ]7[2Ɠ{%v`S_:/7҅4M/ (u P)) % ֲcٺ5fOq": f_<ظR:& ݧ[Q9Fy6-%2gU_Fk fϫ/GTKnb27{)y :v/V62}6:WϬ :SNwlRkVb=@0=,2]ЉYT+tJcTS Ćdlg =F +L"PL^9=>%xNznof7Db ͫ).Ȉs,Ck+|a@VH{OeY2 $!I&nMGMbfQ+*dܛ׍ k< v/UsW:Ŝ^4z6``cX G>g~B uwqٔYjuY-A)DxDvJ\F:+ד"U# .YTN =lU)5F /W\I8_P1QbDVUFpr/NqӂGQea6T]c)}™@3Hj{Q\gέ$sxf?a ͻ ARu򷟓Wq~} B؏!sAe糙  @(װ\!iOjPRC\5->lNܜ?[<[*W$iUBSD0Tzp\-"~$\tn$6 :w+w4xGTlLJM_qB. lP :>Ϡ:/CuX %HBa<:Ж0=I5H_Jp"g CZ6+]r1೺QlA*Ox#0Z.NX-VGQe |@| v &lˆS+ϽZr1\F7JRWy[:IvE%3mխ(S8w&\OtBvQ';@SOD6'p\yh#˗# h׿^7DCgCS[ R9j &Ayo!>da׀x5kX?͠ZgPQԬ;JEOn6~s PVPєZ41({Hǀb>&5pz MWϊp=\II.mA,|i?1HN(©WVݐ}XӁ֢>| zeS*Mf煛nt:]3U~=[Ad|ʑKA!a F@٣ʮQ>ȉy8sϷCYDVf2),@nFdu?Wj-L $фV^xd 6fz@-ʎl0OqJAL~@@Wu]qg5tIDUD]d=H)A2*%z6#Xvhg\A/wL <_m,{cy`/*Qi(c fpUICcH8@ lF_a~:Si7o§Bm/UjVYQ;9¯N FxnC|,%vEՄ.mkGQs/M3+Z]~ciLKE:I8U[8jGɝ HS <*'YR'h.Hd1Q?!bRUȾgzv iRJoZzXY/6XX:p2F)6L0ftdËsEq3={M djEu-tS1o'Hk~ d#s/*.sM/ sDX*?0$SǶѸnc.31 ݸSWy ]by[T 6Rw]Ҫi k$pO밟1.HXy%+ Kc/<ȫل/P ;tM,=j0ږAM= w6xٻl7Y \%k_xt ^o׮+f@[oŁkӼ!wFhU#8P|%_6`Q' ѝ[)Mv)X踩hm/lEk'8G--, zcyfUͼ/Jwz 1\&Jv'~vكH ަ١N'9{ tuX Е4 8wx>[FI5@) Ʊ@H(1ҩ?/d;6GDq| E{ T"uxÔsGrm4jڒ!c} V(DKSSgdX)4%Mmߡ9s,"]$|i:|IwP$Sk6:<73y"AYtDJDD?L _igֈEh*OՀS,)(m^K: mkԖٍv{2Pl@W Ռ2fhV iVW6+! 8 G@Qmu-=$ne,8Z#.{x]Oh@M9mbޣl;\!7罧>b[RW﷣)s-SE!X' ijE ԛY= .SS6ƴѦO⯓huxTEţ /$Z8r{.c7s>ۢ9[ŦG֌7$_ _E qj;+pv  +SF0Q5R11T #br ;Ax].zO>l;=t]}Rrbp2qh{A*Uw*C@^=:sq^ۗ6gLƦ" Cdruuּ[R1\ uVy@V>u[jsT BZ qTB)*UNWa =:j v5¡A;ѪlɂG+AX[xӃ:n`Hoh А4 > p 9=. %n "NEd*(# j!%&[DyײVFlHƵMuD1 %ɤ>#oHxn yj6:fvn!޳4Ƣ^C;'{kSW<B^ƻ_LǼ/(%;C~/ ;H9+BzL[xHOה٢47Q'NcdciiDٟa ?Y$6d _Ȋ xt^U/ÑĝLwS\yGZzcbMhrЖXplȻdeίv]Azg@wWzτ;Z6 {HMކT!P鐯v;{̽C(Hc P* k7kfe<êH b^tc4 +XjS`{gުF`#5A*`=I 'lAN 3}0Wz\bD BwuIxtGf*3muq;sÐէjrX(mNekY9Xy=Bwd IQ"+9a\WbL،fbߌMP[xrr;n@ ApD kkcN)Piu 쁡 kpJ5ǽoRwBy#8_A|_!\^L,SR~ۄl2zY() @$9 9Τ9:2 -))lxb3mo%xzZDu0Iŏ_b9#523L|݉,Ѵ*-qNTN52i,S.L` ¯IşYF#:vł=~T@# ь[[r\4 y_(ҡXG/F:թҹ\b㌩z;k,fYYPZ1Ft/gjqi_1`*q9`wV/1G ,*PV+p'÷a2 QU.eMƁ6AG>$y6j( AԔ^n_H6'[et2ߤGNPBX4%y4k3atϞ+TƼ"Z,)B3x%6to M|@i ` _[ }uDPH0"0,M6d9ͪy ZqHpLr *[4Ph7ImK7柃@-< OI~šOoֳv|._BeZ\gW*\ľUKv-DLKBX6v8 ;lcJ1':yLJ @5_Ldd1 aܦvؐ ݓ9r4L( $Ik*4 YD防\]sѸFǑx VvsR%Y[8NSʨ)xJg7(-zBW(n#B|i`Aw (CP בd@GS'r۰>X4Eo^c<کzRd =c̳pfX>a,L@E_UG3K~iERtuyt|j|& &B,93Q#$yvQ50TbN2 u9&pb5ߦTu$c1Nkn=oj#چ-o@i-Cs؟W&E Kؕ+gd+4y^;|8%k ˎ /6iЊ?A=P pK>ܕgK;V>iFn BLIBL㗐3O߭/q`h[y0@Qi*钒5B8~P`s3uOU䡿 pyBn7ԢQJԸ[_XU1'SV;F SL-J#uNÔ]=8㇘*3IʵNn¥:j؝],쏅#79/vR' 5O&QTVf pPw3Pbgv-KRϰSx3D7Q.࿭U߂ P)ˮyg 7EN1\@?k\"tdH}du2zd;]F=* o; I:jЊ:dvUK5&d ՄT';{Fk;R+7QO2ՙ5VL٣$SP&[驢)@!R1,6 $*8Ix5[½ߵ%cFpʈ¯|uTSo9Vq>ЭV,'JO,n)7 RL-[*?o"0c9K;0燎VⳐ8ճJnױv&TQa:jrIτ6<ȑј)C0[-?Zхra)QF\NϞNU-0!TA@?yp㼂s seSrhp,o@rq:0UZdj@V_%XNx&:tU£T~9hӱ/iS^Q&Ui5NFށwƹB=DwCńXJD)iR^S!d\۔p Lx$I .Bqu6ݽ ֍9ƟuǂR鄌R r5n˚ƟTT28N/8Go` .,6yȁPIk^@EKdk͑4Dn쪏jVX?EB:'7E v̓_]EL! 6 }& r$ P8iJ+I`gk<7PDu- N~554b4ϢN;J2} -T*2# >j}!*2`zX3:#43y)d&lHf_%eecR90c@/!>Ƶt-Z y T1tê4 JtmʈGM|R !n'Q-F>"=*ڟ&O4_ RsԜOK1 BruS/|טMF]d'H$`ZK;t`2c=7lR':fvl=L?~졏Mq>*,V|Cլ&||'g&r<mMˈUflN\S>k<2m.+I5TX"\A #4zfɣ _g̺яJd|/M {f GrwoAѢRj60*oX{Gf0'g*PAuZ0 :.ѷ$: Oyuob(ԥ2t0vshE %ÉZ @^QG}6NwfoP{4=@cWtg찯Tb3!h-К9"a% (/'rrvIKD7y _v&UŬڮL]dUp,rWor1`Z֑FR'ZNY jFB>L}PۜG/`{3n&"n3`LpBfIާЖnn䋬qNc^Bfn!oken3諐KصrJ!*lXKjjӧL‚Xjfx)xub ʩ*O2Bay8,I(M lI;cN>2r\LnAxkم1̇ZOy<dc`' 0p9oj2An@-M^F: k:b /ı]z/Gᶓ#OAG'WNTM>S\"U7B? 'HwR)ֶMے(}ZO 4If&1ƛDO6{QQ, duP}/,~4Ix bVf'`A!I{L~I$HWRNII~hbER5F4q}lߛ?* _a&_>D;-?UǠKQL8~Ȫ<:*](kPVl{gx)~(&|**z4p]eyo&"< !w(/Ȝ'1ɺfA#uB'qkPS${6.J%VHKv3lȫ8߭XOkA7h!K__(gMJ8}eGkT`Hf,OƖ"ėQy.ֺt rG$oG H2Y:oZ9Š{p ݷ:ÚzT59(CMe;_F\IQs{k~W?N{Lm>O+ҩڄ\]8YD23/0琠iӨa:rhw{SXP;ERXi?b a/b9?d0)|RffrH}]Â4jZO;Y \,GN ;3bM&uFnnD#?lƤ{OsL@bQXd5ȱb9bz!lq'KzO\)&"9vUŞ ˎa ~%[r֙x-'FIBg):q&c\+7`!bn^deG;TNa)".C/|SOcf7*qlwj!\E=hy] Mi>'"]PƃUml3mŊ1ù<S3ѡŊ';#>"f9Ʋ}hIK7?|JC/ĖXw{2&a0vh[ly:44{׮_KI4_޸VX$_QQIv*dܽ>M~L+?cnJ X&60.'g] >MEڝM,+35kτ6'tE; lEb)1UL.(BO{L6VrsR(Pg(avnW8U"`-bcȧGB$@)߈Si2t JXPo#R}G :[}G4\EQV,󖁳,NnX/h,I|;+8& .`ڕhʗfIv;ќ= \cxPf}lΊ+A|rȭ9AtчtQѣEuϰ%||6o5kb%3哥l zVDUI2 L, K֪zYsr6ӭkȣ`VǞ@u {lXI;;{/ dY(ę5&]tuI$>ڠ#IJI~cM|$ʖTУ.$c[ץ xnL~V%Qe.%pfnl k0v0vVrƦ2Ak4'j,כ-ДB*&7Z ۵L/ yl.LaF?2R]`Բh:${x?,&h)-ZUz2dYm^J&^!Hֲ/ D ƚz';!>,rw-ϴ cwƀ.EM`-q >#_7~`L{$N#":~M-4(jp$g$c;j}EH^Tvi PU#٬1$P CAyAI< q -}ۍM]ռLh3d7[-Q$>U1 To^r"#5ɢߌWvjn2 ˎt$6a8\8_%H7cjF %ۃXwǍG; sOIo4"PNd @~C6l5!A`jY ;dEY, OnpEO!R8Do$9[5āR{wb]_n̴Tm_nehPhnA''\2`*̍"ug8u:? .''1%(D_[-ha+PH*y,@氁l xܣdqPWk|e&S؋e2bHpy-#UNgg2|ܑ|2!C>/%/Ί? 4gqU&b^ƒ#)d"{eupceUsb U,:7}yUA vP/  "5sV :'+M 8p ]:[jD!R2"s`jRg7PDѪ?jmJ[Ad}D]FBq]E9# IR~Vo7xO,=5,#/;)3\ԞB%106-Vt:O)#ζ YZ