/* $XConsortium: ut_mat.c,v 5.3 94/04/17 20:42:21 rws Exp $ */ /*********************************************************** Copyright (c) 1989, 1990, 1991 X Consortium Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. Except as contained in this notice, the name of the X Consortium shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization from the X Consortium. Copyright 1989, 1990, 1991 by Sun Microsystems, Inc. All Rights Reserved Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice and this permission notice appear in supporting documentation, and that the name of Sun Microsystems, not be used in advertising or publicity pertaining to distribution of the software without specific, written prior permission. SUN MICROSYSTEMS DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL SUN MICROSYSTEMS BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. ******************************************************************/ #include "phg.h" #include "mat_utils.h" int phg_mat3_equal( a, b ) register Pfloat *a, *b; { register int i; for( i = 0 ; i < 16; i++, a++, b++ ) if ( *a != *b ) return 0; return 1; } void phg_mat_scale(m, x, y, z) Pmatrix3 m; Pfloat x, y, z; { phg_mat_identity(m); m[0][0] = x; m[1][1] = y; m[2][2] = z; } void phg_mat_trans(m, x, y, z) Pmatrix3 m; Pfloat x, y, z; { phg_mat_identity(m); m[3][0] = x; m[3][1] = y; m[3][2] = z; } void phg_mat_shear_z(m, a, b) Pmatrix3 m; Pfloat a, b; { phg_mat_identity(m); m[2][0] = a; m[2][1] = b; } void phg_mat_rot_x(m, theta) Pmatrix3 m; Pfloat theta; { Pfloat sin_theta, cos_theta; sin_theta = (Pfloat) sin(theta); cos_theta = (Pfloat) cos(theta); phg_mat_identity(m); m[1][1] = m[2][2] = cos_theta; m[1][2] = sin_theta; m[2][1] = -sin_theta; } void phg_mat_rot_y(m, theta) Pmatrix3 m; Pfloat theta; { Pfloat sin_theta, cos_theta; sin_theta = (Pfloat) sin(theta); cos_theta = (Pfloat) cos(theta); phg_mat_identity(m); m[0][0] = m[2][2] = cos_theta; m[0][2] = -sin_theta; m[2][0] = sin_theta; } void phg_mat_rot_z(m, theta) Pmatrix3 m; Pfloat theta; { Pfloat sin_theta, cos_theta; sin_theta = (Pfloat) sin(theta); cos_theta = (Pfloat) cos(theta); phg_mat_identity(m); m[1][1] = m[0][0] = cos_theta; m[0][1] = sin_theta; m[1][0] = -sin_theta; } void phg_mat_transpose(m) register Pmatrix3 m; { register int i, j; register Pfloat t; for (i = 1; i < 4; i++) { for (j = 0; j < i; j++) { t = m[i][j]; m[i][j] = m[j][i]; m[j][i] = t; } } } void phg_mat_mul_pt(new_pt, opt, mat) register Pfloat *new_pt;/* the transformed point: x, y, z, w */ Ppoint3 *opt; /* the old point: x, y, z */ Pmatrix3 mat; /* the xform matrix */ { register int i,j; register Pfloat *col_val; register Pfloat *pt_val; Pfloat sum; Pfloat pt[4]; pt[0] = opt->x; /* this is a kludge */ pt[1] = opt->y; pt[2] = opt->z; pt[3] = 1.0; for(i = 0; i < 4 ; i++) { pt_val = pt; col_val = &(mat[0][i]) ; /* get the start of the column */ sum = 0.0; for ( j = 0; j < 4 ; j++) { sum += *pt_val++ * *col_val; col_val += 4; } *new_pt++ = sum; } } /* * Multiply matrices: m = a * b; * * This simple-minded explicit form is about 40% faster than * nested loops and indexes. */ void phg_mat_mul(m , a, b) Pmatrix3 m; Pmatrix3 a; register Pmatrix3 b; { register Pfloat *r; register int i; if ((m != a) && (m != b)) { for ( i = 0; i < 4; i++) { r = a[i]; m[i][0] = r[0]*b[0][0] + r[1]*b[1][0] + r[2]*b[2][0] +r[3]*b[3][0]; m[i][1] = r[0]*b[0][1] + r[1]*b[1][1] + r[2]*b[2][1] +r[3]*b[3][1]; m[i][2] = r[0]*b[0][2] + r[1]*b[1][2] + r[2]*b[2][2] +r[3]*b[3][2]; m[i][3] = r[0]*b[0][3] + r[1]*b[1][3] + r[2]*b[2][3] +r[3]*b[3][3]; } } else { Pmatrix3 t; register Pfloat *tp, *mp; for ( i = 0; i < 4; i++) { r = a[i]; t[i][0] = r[0]*b[0][0] + r[1]*b[1][0] + r[2]*b[2][0] +r[3]*b[3][0]; t[i][1] = r[0]*b[0][1] + r[1]*b[1][1] + r[2]*b[2][1] +r[3]*b[3][1]; t[i][2] = r[0]*b[0][2] + r[1]*b[1][2] + r[2]*b[2][2] +r[3]*b[3][2]; t[i][3] = r[0]*b[0][3] + r[1]*b[1][3] + r[2]*b[2][3] +r[3]*b[3][3]; } tp = &t[0][0]; mp = &m[0][0]; for (i = 0; i < 16; i++) *mp++ = *tp++; } } void phg_mat_mul_3x3(m, a, b) Pmatrix m; /* OUT result matrix */ Pmatrix a; /* matrix a */ register Pmatrix b; /* matrix b */ { register Pfloat *r; register int i; if ((m != a) && (m != b)) { for ( i = 0; i < 3; i++) { r = a[i]; m[i][0] = r[0]*b[0][0] + r[1]*b[1][0] + r[2]*b[2][0]; m[i][1] = r[0]*b[0][1] + r[1]*b[1][1] + r[2]*b[2][1]; m[i][2] = r[0]*b[0][2] + r[1]*b[1][2] + r[2]*b[2][2]; } } else { Pmatrix t; register Pfloat *tp, *mp; for ( i = 0; i < 3; i++) { r = a[i]; t[i][0] = r[0]*b[0][0] + r[1]*b[1][0] + r[2]*b[2][0]; t[i][1] = r[0]*b[0][1] + r[1]*b[1][1] + r[2]*b[2][1]; t[i][2] = r[0]*b[0][2] + r[1]*b[1][2] + r[2]*b[2][2]; } tp = &t[0][0]; mp = &m[0][0]; for (i = 0; i < 9; i++) *mp++ = *tp++; } } void phg_mat_identity (mat) register Pmatrix3 mat; { register int i,j; for( i = 0 ; i < 4; i++) for( j = 0; j < 4; j++) mat[i][j] = ( (i == j) ? 1.0 : 0.0); } void phg_mat_copy (m1, m2) register Pmatrix3 m1, m2; { register int i,j; for( i = 0 ; i < 4; i++) for( j = 0; j < 4; j++) m1[i][j] = m2[i][j]; } Pfloat phg_vector_dot_prod(a, b) register Pvec3 *a; register Pvec3 *b; { Pfloat sum; sum = (a->delta_x * b->delta_x) + (a->delta_y * b->delta_y) + (a->delta_z * b->delta_z) ; return(sum); } void phg_vector_cross_prod(a, b, c) register Pvec3 *a; register Pvec3 *b; register Pvec3 *c; { a->delta_x = b->delta_y * c->delta_z - b->delta_z * c->delta_y; a->delta_y = b->delta_z * c->delta_x - b->delta_x * c->delta_z; a->delta_z = b->delta_x * c->delta_y - b->delta_y * c->delta_x; } Pfloat phg_vector_length(a) register Pvec3 *a; { Pfloat sum; sum = (a->delta_x * a->delta_x) + (a->delta_y * a->delta_y) + (a->delta_z * a->delta_z) ; if (sum != 0.0) { sum = sqrt(sum); return(sum); } else return( 0.0); } void phg_vector_normalize(v) register Pvec3 *v; { register Pfloat len; len = phg_vector_length(v); if (len != 0.0) { v->delta_x /= len; v->delta_y /= len; v->delta_z /= len; } else { v->delta_x = 0.0; v->delta_y = 0.0; v->delta_z = 0.0; } } #ifdef DEBUG void phg_mat_print(m) register Pmatrix3 m; { register int i,j; for( i = 0 ; i < 4; i++) { for( j = 0; j < 4; j++) (void) fprintf(stderr, "\t% 10.5f",m[i][j]); (void) fprintf(stderr, "\n"); } } #endif /* DEBUG */ /* * phg_mat_inv - a fairly robust matrix inversion routine * * inverts a 4x4 matrix. * * TODO: If the matrix is singular, call a more robust routine (SVD) * to find a solution. See Numerical Recipes in C * */ void phg_mat_inv( a ) Pmatrix3 a; { short index[4][2], ipivot[4]; float pivot[4]; short row, colum; float max; short i, j, k, l; /* need this if we have a fallback to SVD inversion float save[4][4]; PHG_COPY_MAT(save, a); */ for (j = 0; j < 4; j++) ipivot[j] = 0; for (i = 0; i < 4; i++) { /* do matrix inversion */ max = 0.0; for (j = 0; j < 4; j++) { /* search for pivot element */ if (ipivot[j] == 1) continue; for (k = 0; k < 4; k++) { if (ipivot[k] == 1) continue; /* what does this mean? is it annother singular case? if (ipivot[k] > 1) TODO: */ if (fabs(max) < fabs(a[j][k])) { row = j; colum = k; max = a[j][k]; } } } if (max == 0.0) { /* input matrix is singular, return the an identity matrix */ phg_mat_identity(a); /* TODO: restore matix 'a' and call SVD routine */ } ipivot[colum] += 1; if (row != colum) { /* interchange rows to put */ for (l = 0; l < 4; l++) { max = a[row][l]; a[row][l] = a[colum][l]; a[colum][l] = max; } } index[i][0] = row; index[i][1] = colum; pivot[i] = a[colum][colum]; #ifdef DEBUG if ((pivot[i] < 1.0e-6) && (pivot[i] > -1.0e-6) ) { /* TODO: restore matix 'a' and call SVD routine */ fprintf(stderr,"Matrix is singular: pivot=%f\n", pivot[i]); } #endif /* the following isn't needed if we have SVD routine */ if (pivot[i] == 0.0) { pivot[i] = PHG_ZERO_TOLERANCE; } a[colum][colum] = 1.0; /* divide pivot row by pivot element */ for (l = 0; l < 4; l++) a[colum][l] /= pivot[i]; for (j = 0; j < 4; j++) if (j != colum) { max = a[j][colum]; a[j][colum] = 0.0; for (l = 0; l < 4; l++) a[j][l] -= a[colum][l] * max; } } for (i = 0; i < 4; i++) { /* interchange columns */ l = 4 - 1 - i; if (index[l][0] != index[l][1]) { row = index[l][0]; colum = index[l][1]; for (k = 0; k < 4; k++) { max = a[k][row]; a[k][row] = a[k][colum]; a[k][colum] = max; } } } /* determinant is d * pivot[0] * pivot[1] * pivot[2] * pivot[3] if needed*/ } int phg_tranpt3( p, m, r) register Ppoint3 *p; /* point */ register Pmatrix3 m; /* transformation matrix */ Ppoint3 *r; /* OUT transformed point */ { register float w; /* homogeneous coordinate */ if ( PHG_NEAR_ZERO( w = m[3][0]*p->x + m[3][1]*p->y + m[3][2]*p->z + m[3][3])) { return 0; } else { w = 1.0 / w; r->x = w * (m[0][0] * p->x + m[0][1] * p->y + m[0][2] * p->z + m[0][3]); r->y = w * (m[1][0] * p->x + m[1][1] * p->y + m[1][2] * p->z + m[1][3]); r->z = w * (m[2][0] * p->x + m[2][1] * p->y + m[2][2] * p->z + m[2][3]); return 1; } } int phg_tranpts3( m, n, p, r) register Pmatrix3 m; /* transformation matrix */ register int n; /* number of points */ register Ppoint3 *p; /* list of points to transform */ register Ppoint3 *r; /* OUT transformed points */ { register float w; /* homogeneous coordinate */ int status = 1; while ( n--) { if ( PHG_NEAR_ZERO( w = m[3][0]*p->x + m[3][1]*p->y + m[3][2]*p->z + m[3][3])) { status = 0; break; } else { w = 1.0 / w; r->x = w * (m[0][0] * p->x + m[0][1] * p->y + m[0][2] * p->z + m[0][3]); r->y = w * (m[1][0] * p->x + m[1][1] * p->y + m[1][2] * p->z + m[1][3]); r->z = w * (m[2][0] * p->x + m[2][1] * p->y + m[2][2] * p->z + m[2][3]); } p++; r++; } return status; } /* transfrom pt 4: transform point with variable w*/ int phg_tranpt4( p, m, r) register Ppoint4 *p; /* vector (x,y,z,w) */ register Pmatrix3 m; /* transformation matrix */ Ppoint4 *r; /* OUT transformed vector (x,y,z,w) */ { r->x = m[0][0] * p->x + m[0][1] * p->y + m[0][2] * p->z + m[0][3] * p->w; r->y = m[1][0] * p->x + m[1][1] * p->y + m[1][2] * p->z + m[1][3] * p->w; r->z = m[2][0] * p->x + m[2][1] * p->y + m[2][2] * p->z + m[2][3] * p->w; r->w = m[3][0] * p->x + m[3][1] * p->y + m[3][2] * p->z + m[3][3] * p->w; } void phg_tranpts4( m, n, p, r ) register Pmatrix3 m; /* transformation matrix */ register int n; /* number of points */ register Ppoint4 *p; /* list of points to transform */ register Ppoint4 *r; /* OUT transformed points */ { while ( n--) { r->x = m[0][0] * p->x + m[0][1] * p->y + m[0][2] * p->z + m[0][3] * p->w; r->y = m[1][0] * p->x + m[1][1] * p->y + m[1][2] * p->z + m[1][3] * p->w; r->z = m[2][0] * p->x + m[2][1] * p->y + m[2][2] * p->z + m[2][3] * p->w; r->w = m[3][0] * p->x + m[3][1] * p->y + m[3][2] * p->z + m[3][3] * p->w; p++; r++; } }